Int J Med Sci 2021; 18(2):459-473. doi:10.7150/ijms.51842 This issue Cite

Review

Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments

Xue Zhang1,2,3, Zilong Li1,2, Yi Liu1,2, Zhongtao Gai1,2✉

1. Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan 250022, China.
2. Jinan Pediatric Research Institute, Jinan Children's Hospital, Ji'nan 250022, China.
3. Neonatal Intensive Care Unit, Children's Medical Center, The Second Hospital of Shandong University, Ji'nan 250033, China.

Citation:
Zhang X, Li Z, Liu Y, Gai Z. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. Int J Med Sci 2021; 18(2):459-473. doi:10.7150/ijms.51842. https://www.medsci.org/v18p0459.htm
Other styles

File import instruction

Abstract

Somatic cells such as skin fibroblasts, umbilical cord blood, peripheral blood, urinary epithelial cells, etc., are transformed into induced pluripotent stem cells (iPSCs) by reprogramming technology, a milestone in the stem-cell research field. IPSCs are similar to embryonic stem cells (ESCs), exhibiting the potential to differentiate into various somatic cells. Still, the former avoid problems of immune rejection and medical ethics in the study of ESCs and clinical trials.

Neurodevelopmental disorders are chronic developmental brain dysfunctions that affect cognition, exercise, social adaptability, behavior, etc. Due to various inherited or acquired causes, they seriously affect the physical and psychological health of infants and children. These include generalized stunting / mental disability (GDD/ID), Epilepsy, autism spectrum disease (ASD), and attention deficit hyperactivity disorder (ADHD). Most neurodevelopmental disorders are challenging to cure. Establishing a neurodevelopmental disorder system model is essential for researching and treating neurodevelopmental disorders. At this stage, the scarcity of samples is a bigger problem for studying neurological diseases based on the donor, ethics, etc.

Some iPSCs are reprogrammed from somatic cells that carry disease-causing mutations. They differentiate into nerve cells by induction, which has the original characteristics of diseases. Disease-specific iPSCs are used to study the mechanism and pathogenesis of neurodevelopmental disorders. The process provided samples and the impetus for developing drugs and developing treatment plans for neurodevelopmental disorders. Here, this article mainly introduced the development of iPSCs, the currently established iPSCs disease models, and artificial organoids related to neurodevelopmental impairments. This technology will promote our understanding of neurodevelopmental impairments and bring great expectations to children with neurological disorders.

Keywords: iPSCs, IPSCS Disease Models, Neurodevelopmental Impairments, Autism Spectrum Disease, Pediatric Epilepsy, Down Syndrome, Organoid


Citation styles

APA
Zhang, X., Li, Z., Liu, Y., Gai, Z. (2021). Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. International Journal of Medical Sciences, 18(2), 459-473. https://doi.org/10.7150/ijms.51842.

ACS
Zhang, X.; Li, Z.; Liu, Y.; Gai, Z. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. Int. J. Med. Sci. 2021, 18 (2), 459-473. DOI: 10.7150/ijms.51842.

NLM
Zhang X, Li Z, Liu Y, Gai Z. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. Int J Med Sci 2021; 18(2):459-473. doi:10.7150/ijms.51842. https://www.medsci.org/v18p0459.htm

CSE
Zhang X, Li Z, Liu Y, Gai Z. 2021. Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. Int J Med Sci. 18(2):459-473.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.