Int J Med Sci 2021; 18(2):441-447. doi:10.7150/ijms.50026 This issue

Research Paper

Association analysis between the interaction of RAS family genes mutations and papillary thyroid carcinoma in the Han Chinese population

Mengdi Jin1,2, Zhijun Li2, Yaoyao Sun2, Mingyuan Zhang2, Xin Chen2, Hongguang Zhao1✉, Qiong Yu2✉

1. Nuclear Medicine Department, First Hospital of Jilin University, Changchun 130021, China.
2. Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130021, China.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Jin M, Li Z, Sun Y, Zhang M, Chen X, Zhao H, Yu Q. Association analysis between the interaction of RAS family genes mutations and papillary thyroid carcinoma in the Han Chinese population. Int J Med Sci 2021; 18(2):441-447. doi:10.7150/ijms.50026. Available from https://www.medsci.org/v18p0441.htm

File import instruction

Abstract

Papillary thyroid carcinoma (PTC) is the major subtype of thyroid cancer, accounting for 75%-85% of all thyroid malignancies. This study aimed to identify the association between the interactions of single nucleotide polymorphisms (SNPs) in RAS family genes and PTC in the Han Chinese population, to provide clues to the pathogenesis and potential therapeutic targets for PTC. Hap Map and NCBI-db SNP databases were used to retrieve SNPs. Haploview 4.2 software was used to filter SNPs based on specific parameters, six SNPs of RAS gene (KRAS-rs12427141, KRAS-rs712, KRAS-rs7315339, HRAS-rs12628, NRAS-rs14804 and NRAS-rs2273267) were genotyped by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) in 673 PTC patients and 657 healthy controls, the interactive effect was evaluated by crossover analysis, logistic regression and GMDR software.

We found that genetic mutation in rs712 have significant associations with PTC risk after Bonferroni correction (p<0.001). The interaction between KRAS-rs12427141 and HRAS-rs12628 increased the risk of PTC (U=-2.119, p<0.05), the interaction between KRAS-rs2273267 and HRAS-rs7315339 reduced the risk of PTC (U=2.195, p<0.05). GMDR analysis showed that the two-factor model (KRAS-rs712, NRAS-rs2273267) was the best (p=0.0107). Summarily, there are PTC-related interactions between RAS family genes polymorphisms in the Han Chinese population.

Keywords: PTC, RAS family genes, gene-gene interaction, SNP