Int J Med Sci 2021; 18(6):1332-1338. doi:10.7150/ijms.51364 This issue

Research Paper

The association between intraoperative hyperglycemia and cerebrovascular markers

Cornelia Knaak1, Ilse MJ Kant2,3, Florian Lammers-Lietz1, Claudia Spies1✉, Theo D Witkamp2, Georg Winterer1,4, Gunnar Lachmann1,5*, Jeroen de Bresser6*

1. Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, D-13353 Berlin, Germany.
2. Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
3. Department of Intensive Care Medicine and Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands.
4. Pharmaimage Biomarker Solutions GmbH, Robert-Rössle-Str. 10, D-13125 Berlin, Germany.
5. Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, D-10178 Berlin, Germany.
6. Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
* These authors contributed equally to this work.

This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Citation:
Knaak C, Kant IMJ, Lammers-Lietz F, Spies C, Witkamp TD, Winterer G, Lachmann G, de Bresser J. The association between intraoperative hyperglycemia and cerebrovascular markers. Int J Med Sci 2021; 18(6):1332-1338. doi:10.7150/ijms.51364. Available from https://www.medsci.org/v18p1332.htm

File import instruction

Abstract

Graphic abstract

BACKGROUND AND PURPOSE: Hyperglycemia can lead to an increased rate of apoptosis of microglial cells and to damaged neurons. The relation between hyperglycemia and cerebrovascular markers on MRI is unknown. Our aim was to study the association between intraoperative hyperglycemia and cerebrovascular markers.

METHODS: In this further analysis of a subgroup investigation of the BIOCOG study, 65 older non-demented patients (median 72 years) were studied who underwent elective surgery of ≥ 60 minutes. Intraoperative blood glucose maximum was determined retrospectively in each patient. In these patients, preoperatively and at 3 months follow-up a MRI scan was performed and white matter hyperintensity (WMH) volume and shape, infarcts, and perfusion parameters were determined. Multivariable logistic regression analyses were performed to determine associations between preoperative cerebrovascular markers and occurrence of intraoperative hyperglycemia. Linear regression analyses were performed to assess the relation between intraoperative hyperglycemia and pre- to postoperative changes in WMH volume. Associations between intraoperative hyperglycemia and postoperative WMH volume at 3 months follow-up were also assessed by linear regression analyses.

RESULTS: Eighteen patients showed intraoperative hyperglycemia (glucose maximum ≥ 150 mg/dL). A preoperative more smooth shape of periventricular and confluent WMH was related to the occurrence of intraoperative hyperglycemia [convexity: OR 33.318 (95 % CI (1.002 - 1107.950); p = 0.050]. Other preoperative cerebrovascular markers were not related to the occurrence of intraoperative hyperglycemia. Intraoperative hyperglycemia showed no relation with pre- to postoperative changes in WMH volume nor with postoperative WMH volume at 3 months follow-up.

CONCLUSIONS: We found that a preoperative more smooth shape of periventricular and confluent WMH was related to the occurrence of intraoperative hyperglycemia. These findings may suggest that a similar underlying mechanism leads to a certain pattern of vascular brain abnormalities and an increased risk of hyperglycemia.

Keywords: Intraoperative hyperglycemia, Neuroimaging MRI, perfusion, cerebral small vessel disease, vascular lesions.