Int J Med Sci 2018; 15(3):274-279. doi:10.7150/ijms.22644 This issue


Risks of Using Sterilization by Gamma Radiation: The Other Side of the Coin

C. Randall Harrell1, Valentin Djonov2, Crissy Fellabaum1, Vladislav Volarevic3✉

1. Regenerative Processing Plant, LLC, Palm Harbor, Florida, United States of America.
2. Institute of Anatomy, University of Bern, Bern, Switzerland.
3. Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( See for full terms and conditions.
Harrell CR, Djonov V, Fellabaum C, Volarevic V. Risks of Using Sterilization by Gamma Radiation: The Other Side of the Coin. Int J Med Sci 2018; 15(3):274-279. doi:10.7150/ijms.22644. Available from

File import instruction


The standard sterilization method for most medical devices over the past 40 years involves gamma irradiation. During sterilization, gamma rays efficiently eliminate microorganisms from the medical devices and tissue allografts, but also significantly change molecular structure of irradiated products, particularly fragile biologics such as cytokines, chemokines and growth factors. Accordingly, gamma radiation significantly alters biomechanical properties of bone, tendon, tracheal, skin, amnion tissue grafts and micronized amniotic membrane injectable products. Similarly, when polymer medical devices are sterilized by gamma radiation, their physico-chemical characteristics undergo modification significantly affecting their clinical use.

Several animal studies demonstrated that consummation of irradiated food provoked genome instability raising serious concerns regarding oncogenic potential of irradiated consumables. These findings strongly suggest that new, long-term, prospective clinical studies should be conducted in near future to investigate whether irradiated food is safe for human consumption. In this review, we summarized current knowledge regarding molecular mechanisms responsible for deleterious effects of gamma radiation with focusing on its significance for food safety and biomechanical characteristics of medical devices, and tissue allografts, especially injectable biologics.

Keywords: gamma radiation, sterilization, medical devices, tissue grafts, micronized amniotic membrane injections, food, detrimental effects