Int J Med Sci 2018; 15(1):16-22. doi:10.7150/ijms.20522 This issue Cite

Research Paper

Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry

Antonio Boccaccio1✉, Antonio E. Uva1, Michele Fiorentino1, Giuseppe Monno1, Andrea Ballini2, Apollonia Desiate3

1. Department of Mechanics, Mathematics and Management, Politecnico di Bari, Bari 70126, Italy;
2. Department of Base Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy;
3. Interdisciplinary Department of Medicine, Section of Dentistry, School of Medicine, University of Bari “Aldo Moro”, Bari, Italy;

Citation:
Boccaccio A, Uva AE, Fiorentino M, Monno G, Ballini A, Desiate A. Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry. Int J Med Sci 2018; 15(1):16-22. doi:10.7150/ijms.20522. https://www.medsci.org/v15p0016.htm
Other styles

File import instruction

Abstract

Thanks to the recent advances of three-dimensional printing technologies the design and the fabrication of a large variety of scaffold geometries was made possible. The surgeon has the availability of a wide number of scaffold micro-architectures thus needing adequate guidelines for the choice of the best one to be implanted in a patient-specific anatomic region. We propose a mechanobiology-based optimization algorithm capable of determining, for bone tissue scaffolds with an assigned geometry, the optimal value Lopt of the compression load to which they should be subjected, i.e. the load value for which the formation of the largest amounts of bone is favoured and hence the successful outcome of the scaffold implantation procedure is guaranteed. Scaffolds based on hexahedron unit cells were investigated including pores differently dimensioned and with different shapes such as elliptic or rectangular. The algorithm predicted decreasing values of the optimal load for scaffolds with pores with increasing dimensions. The optimal values predicted for the scaffolds with elliptic pores were found higher than those with rectangular ones. The proposed algorithm can be utilized to properly guide the surgeon in the choice of the best scaffold type/geometry that better satisfies the specific patient requirements.

Keywords: Scaffolds for Bone Tissue Engineering, Computational Mechanobiology, Numerical Optimization Algorithms, Hexahedron Unit Cell, Printing of Biomaterials.


Citation styles

APA
Boccaccio, A., Uva, A.E., Fiorentino, M., Monno, G., Ballini, A., Desiate, A. (2018). Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry. International Journal of Medical Sciences, 15(1), 16-22. https://doi.org/10.7150/ijms.20522.

ACS
Boccaccio, A.; Uva, A.E.; Fiorentino, M.; Monno, G.; Ballini, A.; Desiate, A. Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry. Int. J. Med. Sci. 2018, 15 (1), 16-22. DOI: 10.7150/ijms.20522.

NLM
Boccaccio A, Uva AE, Fiorentino M, Monno G, Ballini A, Desiate A. Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry. Int J Med Sci 2018; 15(1):16-22. doi:10.7150/ijms.20522. https://www.medsci.org/v15p0016.htm

CSE
Boccaccio A, Uva AE, Fiorentino M, Monno G, Ballini A, Desiate A. 2018. Optimal Load for Bone Tissue Scaffolds with an Assigned Geometry. Int J Med Sci. 15(1):16-22.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Popup Image