Int J Med Sci 2009; 6(1):18-27. doi:10.7150/ijms.6.18 This issue

Research Paper

Transporter Molecules influence the Gene Expression in HeLa Cells

Waldemar Waldeck1, Ruediger Pipkorn2, Bernhard Korn3, Gabriele Mueller1, Matthias Schick3, Katalin Tóth1, Manfred Wiessler4, Bernd Didinger5, Klaus Braun4 ✉

1. German Cancer Research Center, Division of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
2. German Cancer Research Center, Central Peptide Synthesis Unit, INF 580, D-69120 Heidelberg, Germany
3. German Cancer Research Center, Genomics and Proteomics Core Facilities, INF 580, D-69120 Heidelberg, Germany
4. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
5. University of Heidelberg, Dept. of Radiation Oncology, INF 400; D-69120 Heidelberg, Germany

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Waldeck W, Pipkorn R, Korn B, Mueller G, Schick M, Tóth K, Wiessler M, Didinger B, Braun K. Transporter Molecules influence the Gene Expression in HeLa Cells. Int J Med Sci 2009; 6(1):18-27. doi:10.7150/ijms.6.18. Available from

File import instruction


Progresses in biology and pharmacology led to highly specific bioactive substances, but their poor bioavailability at the site of action is a result of their physico-chemical properties. Various design approaches for transport carrier molecules facilitating the cellular entry of bioactive substances could help to reach their molecular target in cells and tissues. The transfer efficacy and the subsequent pharmacological effects of the cargo molecules are well investigated, but the investigations of effects of the carrier molecules themselves on the target cells or tissues remain necessary. A special attention should be paid to the differential gene expression, particularly in the interpretation of the data achieved by highly specific active pharmaceutical products. After application of transmembrane transport peptides, particularly the pAnt and also the HIV-1 Tat, cells respond with a conspicuous altered gene expression of at least three genes. The PKN1 gene was induced and two genes (ZCD1 and BSG) were slightly repressed. The genes and the chromosomes are described, the moderate differential gene expression graphed, and the ontology is listed.

Keywords: Drug Delivery, facilitated Transport, Transport Peptides, Carrier Molecules