Int J Med Sci 2008; 5(6):354-360. doi:10.7150/ijms.5.354 This issue

Research Paper

An innovative method to evaluate the suture compliance in sealing the surgical wound lips

Farid Saleh1 ✉, Beniamino Palmieri2, Danielle Lodi2, Khalid Al-Sebeih3

1. Department of Anatomy, Faculty of Medicine, Health Science Centre, Kuwait University, Kuwait.
2. Department of General Surgery and Surgical Specialty, University of Modena and Reggio Emilia, Surgical Clinics, Via del Pozzo, 71, 41100 Modena, Italy.
3. Department of Surgery, Head and Neck Surgery, Faculty of Medicine, Health Science Centre, Kuwait University, Kuwait.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Saleh F, Palmieri B, Lodi D, Al-Sebeih K. An innovative method to evaluate the suture compliance in sealing the surgical wound lips. Int J Med Sci 2008; 5(6):354-360. doi:10.7150/ijms.5.354. Available from

File import instruction


Background and aim: The increasing number of surgical procedures performed with local anesthesia, followed by immediate patient discharge from the hospital, emphasizes the need for a tight waterproof suture that is capable of maintaining its tensile strength in the postoperative phase when the wound tumescence, edema due to the anesthetic drug, and surgical trauma disappear. Moreover, the issue of having an accurate surgical wound closure is very relevant in vivo in order to prevent hemorrhage and exogenous microbial infections. This study aimed at designing a new a lab technique that could be used for evaluating the best surgical material. Using such a technique, we compared the wound-lip-sealing properties of three commonly-used suture threads, namely polyurethane, polypropylene, and polyamide.

Materials and methods: The mechanical properties of same-size suture threads made from polyurethane, polypropylene, and polyamide, were compared in order to define the one that possess the best elastic properties by being able to counteract the tension-relaxation process in the first 12 hours following surgery. The tension holding capacity of the suture materials was measured in both in vivo and in vitro experiments. The surface area of the scar associated with the three different suture threads was measured and compared, and the permeability of the three different suture threads was assessed at 0 minute, 2 minute, 4 minute, 6 minute, and 8 minute- interval.

Results: Results showed that polyurethane suture threads had significantly (P < 0.05) better tensile strength, elongation endurance before breakage, and better elasticity coefficient as compared to polypropylene and polyamide suture threads. Moreover, polyurethane suture threads were significantly (P < 0.05) more impermeable as compared to the other two suture thread types (polypropylene and polyamide). This impermeability was also associated with a tighter wound-lip-sealing ability, and with significantly (P < 0.05) less scar formation.

Conclusion: Among the main concerns that surgeons, physicians, and patients often have is the development infection, oozing, and scar at the incision site following suturing. This always raises the question about which suture to use to avoid the above problems. This study provides evidence that the new technique developed in our lab could be used to compare the wound-lip sealing properties of different surgical suture threads. Using such a technique, the results show that polyurethane is significantly better than other commonly-used suture threads, like polypropylene and polyamide, in relation to wound sealing and scar formation.

Keywords: suture threads, polyurethane, polypropylene, polyamide, wound-lip-sealing properties