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Abstract

Background: Obesity is a major global health concern, leading to increased risk of metabolic diseases and
mortality. Swimming, as a low-impact exercise, may provide metabolic benefits. However, the influence of
water temperature on the metabolic and physiological responses remains underexplored. This study
investigated the effects of water temperatures on muscle and adipose tissue adaptations in high-fat diet-induced
obese mice.

Methods: Obese mice were subjected to swimming at different water temperatures: 15°C, 25°C, or 32°C.
Changes in body and tissue weight, grip strength, exhaustive swimming performance, and key metabolic
parameters were assessed. Epididymal fat pads (EFP) and gastrocnemius muscles were collected for histological
analyses (muscle fiber composition and adipose tissue remodeling), gene expression (Ucpl, Pgc-1a, Prdm16,
Cidea), and western blot analyses (SIRT1-PGC-1a—-FNDCS5 pathway).

Results: Swimming at 25°C and 32°C significantly reduced body weight and EFP weight, improved metabolic
profiles and grip strength, whereas cold-water swimming (15°C) enhanced endurance performance.
Histological analysis revealed reduced adipocyte size in the 25°C group, accompanied by increased oxidative
(Type 1) fibers across all swimming groups. Elevated Pgc-l1a expression in EFP was particularly prominent at
25°C, and FNDC5 in muscle was most pronounced at [5°C. These findings highlight distinct
temperature-dependent metabolic and muscular adaptations during swimming in obese mice.

Conclusion: Moderate (25°C) and warm (32°C) water temperatures are optimal for reducing obesity-related
metabolic dysfunctions and enhancing muscle strength, while cold water (15°C) improves endurance through
oxidative muscle adaptation.
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Introduction

Obesity is a global public health concern,
contributing to numerous metabolic disorders such as

known to enhance insulin sensitivity, fat oxidation,
and muscle metabolism[4]. Among various types of

type 2 diabetes, dyslipidemia, and cardiovascular
diseases[1, 2]. Prolonged consumption of high-fat
diets (HFDs) not only leads to obesity but also causes
intramyocellular lipid accumulation, which may
negatively affect muscle function[3]. Exercise is

physical activity, aquatic exercise has gained attention
due to its low-impact nature and high energy
expenditure, making it suitable for individuals with
obesity and limited mobility[5].

Although swimming is recognized for its
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cardiometabolic benefits, the influence of water
temperature on metabolic and muscular adaptations
remains underexplored. Warmer water temperatures
may induce vasodilation, thereby improving blood
flow and enhancing nutrient delivery while
facilitating the removal of metabolic by-products[6].
Conversely, cold water induces vasoconstriction,
which may reduce inflammation and alleviate pain
and muscle soreness[7]. However, the role of water
temperature in muscle fiber composition and adipose
tissue remodeling remains unclear. Swimming has
been shown to trigger slow-to-fast transitions in
certain muscle types, indicating a complex adaptive
response[8]. While Type I (slow-twitch) muscle fibers
are known for their elevated mitochondrial density,
abundant capillary networks, and high fatigue
resistance[9], how temperature modulates these
adaptions is wunclear. Furthermore, research on
whether cold-water swimming effectively induces
browning of white adipose tissue is inconsistent[10,
11].

Elucidating the interaction between swimming
and water temperature is crucial for optimizing
exercise interventions for obesity and related
metabolic disorders. We hypothesize that water
temperature differentially affects adipose tissue

remodeling, skeletal muscle adaptation, and
metabolic health in obese mice.
Methods

Experimental design and animal model

Forty male C57BL/6] mice aged five weeks were
obtained from BioLASCO Taiwan. All animals were
housed under standardized conditions: identical cage
density, bedding, enrichment, and a 12 h/12 h light-
dark cycle, controlled temperature (23-25 °C) and
humidity (50%), with distilled water provided ad
libitum. Cage positions were rotated to minimize
location bias. Following one week of acclimation, mice
were initially divided into the control group (CON)
(n=8) and the high-fat diet (HFD) obesity induction
group (n=32). The CON group received a standard
chow diet (13.5% kcal from fat, 3.36 kcal/g,
Laboratory rodent diet 5001; LabDiet), whereas the
obesity induction group was fed HFD (60% kcal from
fat, 5.24 kcal/g, Research Diets D12492; Research
Diets, Inc.). All mice were pair-fed with isocaloric
diets to minimize confounding effects from
differences in food intake and to ensure that weight
gain could be attributed primarily to the dietary fat
composition rather than caloric intake[12, 13].
Previous studies have demonstrated that rodents fed
a high-fat diet develop more pronounced obesity and
insulin resistance than those maintained on isocaloric

control diets[14, 15]. Obesity induction was
considered established when the HFD group's
average weight exceeded the CON group's by a
minimum of 10%. Food intakes were recorded daily,
and body weights were recorded bi-weekly. The
experimental design is illustrated in Figure 1A. All
procedures and protocols were approved by the
Institutional Animal Care and Use Committee of the
National Taiwan Sport University (IACUC-11001).

Swimming exercise intervention

Mice were given one week to acclimate to
swimming and determine the tolerable water
temperature. The HFD group was subsequently
randomly assigned into four groups using a random
number generator: a sedentary HFD group (HFD) and
three swimming training subgroups, categorized by
water temperature - cold water swimming group at
15°C, mild below thermal neutral swimming group at
25°C, and the warm water swimming group at 32°C
(n=8 per group). Sample size (n=8 per group) was
determined  using the Resource  Equation
approach[16, 17]. With 5 groups, the resulting error
degrees of freedom (E = 35) exceed the minimum
recommended range and still provide adequate
statistical power. This sample size is consistent with
established rodent exercise intervention
studies[18-20] and adheres to the 3Rs principle of
minimizing animal use. The selection of water
temperatures (15°C, 25°C, and 32°C) was based on
physiological and metabolic considerations. Previous
studies have established that 30-32°C represents the
thermoneutral zone for mice, where metabolic stress
is minimized[21]. A moderate water temperature of
25°C was chosen to mimic standard laboratory
conditions and assess exercise-induced metabolic
adaptations in a neutral thermal state[22]. The 15°C
water temperature was included to investigate the
impact of cold exposure on metabolic and muscle
adaptations, as prior research suggests that
cold-water swimming enhances endurance capacity
and promotes oxidative muscle fiber transition[23,
24].

The swimming exercise protocol was based on
previous studies with slight modifications[25, 26].
Briefly, mice underwent 40 minutes of swimming
exercise in a 45 x 45 x 45 cm water tank with a water
depth of 15 cm five times weekly for eight weeks.
Water temperature during swimming sessions was
continuously monitored using a digital thermometer
placed in the swimming tank, and maintained within
1£0.5°C of the target temperature by adding ice or
pre-warmed water as needed. Swimming sessions
were closely monitored to ensure compliance and
equal exposure, and mice were carefully towel-dried
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after each session. No running wheels or other
exercise equipment were provided. Outside the
intervention, staff performed daily visual checks
(locomotion, grooming, posture) to identify any
abnormal spontaneous activity.

Exercise performance

Exercise performance was evaluated using
forelimb grip strength and exhaustive swimming test.
Forelimb grip strength was evaluated using a
low-force testing system (Model-RX-5; Aikoh
Engineering, Japan).[27] The tensile force each mouse
exerts was measured using a force transducer fitted
with a 2 mm-diameter, 7.5 cm-long metal bar. Grip
strength was measured 4 times per mouse with
appropriate intervals to avoid fatigue. The highest
force (in grams) recorded served as a measure of
absolute grip strength, whereas relative grip strength
was expressed relative to body mass. The test of
forelimb grip strength was performed after obesity
induction and 8 weeks after exercise intervention.

Endurance performance was assessed in a
columnar pool maintained at 25 £ 1 °C. Swimming
time was recorded from the start until exhaustion,
defined as uncoordinated movements and the
inability to surface within a 7-second timeframe.[19]
Mice swam freely without tail weights.

Metabolic parameter measurements

Serum total cholesterol (TCHO), triglycerides
(TG), low-density lipoprotein cholesterol (LDL), and
high-density lipoprotein cholesterol (HDL) were
determined by the Beckman DxC 800 autoanalyzer
(Beckman Coulter, Brea, CA, USA) before and after 8
weeks of swimming intervention.

Oral glucose tolerance testing (OGTT) was
performed as described previously[28]. Mice were
fasted for 12 hours before testing. Tail vein glucose
samples were obtained at baseline and 15, 30, 60, and
120 minutes following oral gavage of glucose (2 g/kg
for all groups).

Animal sacrifice and sample collection

Mice were euthanized wusing isoflurane
inhalation and cervical dislocation after 12 hours of
fasting. Trunk blood was collected and centrifuged
(800 g, 20 min) to generate plasma. Epididymal fat
pad (EFP) and gastrocnemius muscle tissue were
extracted, weighed, immediately frozen in liquid
nitrogen, and kept at =80 °C for subsequent analysis.

Histology analysis

EFP and gastrocnemius muscle were fixed with
10% formalin, embedded in paraffin, and cut into 4
pm slices. These sections underwent Hematoxylin and

eosin (H&E) staining for histological analysis. Muscle
fiber types were distinguished by immunohisto
chemical analysis using myosin heavy chain fast

(NCL-MHCf) and myosin heavy chain slow
(NCL-MHCs) antibodies with the Bond-Max
autostainer (Leica Biosystems)[29]. Briefly, this

involved initial dewaxing of slides using Bond Dewax
solution (Leica Biosystems) and rehydrating with
Bond Wash solution (Leica Biosystems). Antigen
retrieval was performed using Epitope Retrieval 2
solution (Leica Biosystems) at a pH of 9, heated to
100°C for 20 minutes. Slides were then incubated with
the primary antibody at a concentration of 1:100 for 60
minutes at room temperature. The detection kit used
was the Bond Polymer Refine Detection (DS9800) and
Bond Polymer Refine Red Detection (DS9390),
incubated with post-primary for 8 minutes, polymer
for 8 minutes, DAB for 5 minutes, and counterstained
with Hematoxylin for 5 minutes. Images were
captured by a light microscope (200x magnification)
equipped with a CCD camera (BX-51, Olympus,
Tokyo, Japan). Cross-sectional areas of the imaged
adipocytes and muscle fibers were analyzed with Fiji
Is Just Image] software supplemented by the
Adiposoft and Muscle] plugins.

Quantitative real-time PCR

Total RNA was isolated from the frozen mice
EFP via TOOLSmart RNA Extractor (DPT-BD24,
Taiwan). RNA quality and concentration were
assessed before further analysis. Quantitative
real-time PCR analysis was performed using SYBR
green one-step PCR Master Mix (Applied Biosystems,
Carlsbad, CA). Ucp-1 and other thermogenic genes
(Prdm16, Cidea, and Pgc-1a) were evaluated in EFP as a
hallmark of brown-like phenotype. All data were
normalized to Gapdh mRNA content, and the primers
are shown in Table S1.

Western blotting

Gastrocnemius muscles were homogenized in
lysis buffer (T-PER™ Tissue Protein Extraction

Reagent, Thermo Scientific) supplemented with
protease and phosphatase inhibitors (ReadyShield
Protease and Phosphatase Inhibitor Cocktail,

Sigma-Aldrich). Protein quantities from each sample
were evaluated utilizing the BCA protein assay kit
(Thermo Scientific), followed by standardizing
protein concentration before conducting all western
blot experiments. Protein extracts from muscle lysates
were separated into SDS-PAGE. Membranes were
incubated with primary antibodies targeting SIRT1
(Cell signaling, catalog# 2496, 1:1000), PGC-la
(ABclonal, catalog# A12348, 1:1000), FNDC5 (Abcam
catalog# abl74833, 1:1000), and p-actin (Cell
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signaling, catalog# 4970, 1:10000). The immuno
staining was detected using horseradish peroxidase-
conjugated anti-rabbit or anti-mouse IgG for 1 h at
room temperature. For quantification, densitometry
was performed using ImageJ, normalizing the target
proteins against B-actin levels.

Statistical analysis

Results were represented as mean + standard
deviation (SD) for normally distributed data and
median # interquartile range for skewed data. The
normality of distribution for variables was assessed
using the Shapiro-Wilk test. For normally distributed
variables, comparisons among groups Wwere
performed wusing one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test to correct
for multiple comparisons. For non-normally
distributed variables, the Kruskal-Wallis test was
used with Dunn’s post hoc test and Bonferroni
correction for multiple comparisons. To further
evaluate changes within each group before and after
the swimming intervention, paired t-tests were
applied for normally distributed data and Wilcoxon
matched-pairs tests for non-normally distributed
data.  Investigators = performing  histological
assessments and molecular analyses were blinded to
group allocation to minimize potential bias. Statistical
analyses were performed using SPSS v22 (IBM,
Armonk, New York) and GraphPad v9 (GraphPad
Software, San Diego, CA). A p-value of less than 0.05
was considered statistically significant.

Results

Swimming at moderate and warm
temperatures (25 °C and 32 °C) lowers body
weight and fat pad weights

Body weight changes over time for each group
are presented in Figure 1B. At baseline, body weights
did not differ significantly between groups. After 8
weeks of obesity induction, the body weight of the
HFD group was significantly higher than that of the
CON group (p < 0.001). One week after the initiation
of the swimming exercise, the body weights of the
mice in the 25 °C and 32 °C groups showed a
significant decrease compared to the HFD group (p <
0.001). During the training period, the 15 °C group
showed a reduction in body weight, but the difference
was not statistically significant. At the end of the
study, swimming at 25 °C and 32 °C exhibited
significant weight loss compared with the HFD
group, while swimming at 15 °C showed no
significant difference between the HFD group (15 °C
46.1£3.92 g, 25 °C 42.48+3.88 g, 32 °C 42.93+4.30 g, HFD
48.75+2.64 g, p < 0.05). Additionally, there was no

significant difference among all groups in cumulative
caloric intake (Fig. 1C).

Absolute and relative weights of EFP and
gastrocnemius muscles are shown in Figure 1D-G.
The HFD group revealed significantly higher absolute
and relative EFP weights compared to the CON
group. Swimming at 25 °C and 32 °C significantly
reduced both absolute and relative EFP weights
compared with the HFD group (Figure 1D, E). The
absolute gastrocnemius weights were significantly
higher in the HFD group compared to the CON
group, suggestive of muscle fat infiltration (Figure
1F). Nevertheless, the 25 °C and 32 °C groups exhibited
significantly higher relative gastrocnemius weights
than the HFD and 15 °C groups (Figure 1G).

Swimming in moderate and warm
temperatures (25 °C and 32 °C) conditions
enhances grip strength, while cold water (15
°C) increases endurance

Prior to the swimming intervention, the CON
group significantly outperformed the HFD group in
both absolute and relative grip strength (n = 8 per
group, Figure 2AC). After 8 weeks of intervention,
both 25 °C and 32 °C groups showed significantly
enhanced relative grip strength compared with the
HFD group and 15 °C groups, suggesting potential
benefits of swimming in warmer water temperatures
on grip strength (Figure 2BD). Interestingly, in the
endurance test, measured by time until swimming
exhaustion, the 15 °C group exhibited significantly
longer endurance (Figure 2F). Consistently,
within-group pre-post analyses (Supplementary
Table S2) revealed significant increases in grip
strength and relative grip strength in the 25 °C and
32°C groups, and a marked prolongation of
swimming time in the 15 °C group.

Swimming at different temperatures
differentially affects metabolic parameters in
mice

Before exercise intervention, the serum TCHO,
LDL, TG, fasting glucose, and OGTT of the HFD
groups were significantly increased compared with
the CON group (n = 8 per group, p < 0.05; Figure 3 A,
G, E, G, K). The effect of swimming at varying water
temperatures produced mixed results after 8 weeks.
Both the 25 °C and 32 °C groups showed significantly
lower TCHO, LDL, and TG levels compared to the
HFD group (p < 0.05), whereas the 15 °C group did not
(Figure 3 B, D, F). HDL levels were also assessed, but
did not show the typical exercise-induced elevation,
possibly due to the continued high-fat diet
consumption. Notably, only the 25 °C group showed
improved fasting glucose levels (Figure 3H). All
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swimming temperature conditions resulted in a
significantly improved glucose tolerance than the
HFD group at 8 weeks (Figure 3 ], L). These findings
suggested that the water temperature during
swimming exerts differential effects on metabolic
parameters, with moderate and warm temperatures

Complementary within-group analyses
(Supplementary Table S2) showed no significant pre-
post changes in serum lipid or glucose parameters
within individual groups, suggesting that the
observed improvements were primarily temperature-
dependent intergroup effects.
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Swimming at warmer temperature (25 °C and
32 °C) reduces EFP adipocyte size and
improves muscle fiber composition

Histological examination of EFP indicated
marked adipocyte hypertrophy in HFD mice. The
25 °C group showed significantly smaller adipocyte
size compared with HFD and the other swimming
groups (Figure 4A, D). Additionally, the
gastrocnemius muscle in mice is predominantly a
fast-twitch (Type II) muscle with a relatively small
slow-twitch (Type I) component[30], and adaptations
to HFD were muscle-specific[31]. Gastrocnemius
muscle sections from HFD mice displayed increased
fiber cross-sectional area (CSA), lower total fiber area,
and a reduced proportion of Type I fibers (Figure 4B-
G). Swimming intervention countered these

alterations, with the 25°C group showing a notable
increase in total fiber area, while all swimming groups
exhibited increased Type I fiber proportions. Notably,
the largest rise in Type I fibers was observed in 15 °C,
which may account for this group’s superior
endurance capacity.

Expression of thermogenic genes in EFP
following different swimming temperatures

To explore the effects of swimming at different
temperatures on adipose tissue metabolism, we
measured the expression levels of thermogenic genes
in EFP (n = 4 per group) (Figure 5A). The 25 °C group
showed significantly increased expression of Pgc-1a
compared with CON and HFD groups (p < 0.05).
There were no significant differences in Ucp1, Prdm16,
and Cidea expression among groups.
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Effects of different swimming temperatures on
the SIRT1-PGC-1a-FNDCS5 pathway in
gastrocnemius muscle

Western blot analyses of the gastrocnemius
muscle revealed differential expression of key
metabolic and mitochondrial regulators under
different temperature conditions (Figure 5BC). All
exercised groups showed higher levels of SIRT1
expression relative to the HFD group; however, only
the 32 °C group showed a statistically significant
increase. PGC-1a expression was significantly lower
in the HFD group compared to the CON group (p <
0.05), while the 32 °C group exhibited a trend toward
increased expression but not statistical significance.
FNDC5 expression was significantly elevated in the
15°C group compared to both the CON and HFD
groups (p < 0.05). The 25 °C and 32 °C groups also
exhibited higher FNDC5 expression, although these
increases were not statistically significant. These
findings suggest that although exercise at any

temperature confers some metabolic benefits, each
temperature elicits a unique regulatory profile for the
SIRT1-PGC-1a-FNDC5 pathway.

Discussion

Our study investigated how varying water
temperatures (15 °C, 25 °C, and 32 °C) during
swimming exercise affect metabolic health, exercise
performance, adipose tissue characteristics, and
muscle adaptations in diet-induced obese mice. The
results demonstrated that all swimming groups
induced muscle fiber transition, but moderate (25 °C)
and warm (32 °C) swimming significantly reduced
body weight and fat mass, and improved metabolic
parameters, whereas cold-water swimming (15 °C)
primarily improved endurance. These preclinical
findings may have translational relevance. Water
temperature could be an important factor when
designing aquatic exercise interventions for obesity.

Muscle adaptations  varied by  water
temperature, which may in turn affect exercise
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performance[6, 32]. D’Amico et al. found that
increased expression of heat shock proteins (HSPs),
such as Hsp60 and aB-crystallin, during warm water
exercise supports muscle remodeling and adaptation
by enhancing cellular stress responses and promoting
protein stability, which may contribute to improved
muscle function in moderate and warm
temperatures[33]. In contrast, cold-water swimming
(15 °C) may trigger stress responses— potentially
mediated by elevated circulating glucocorticoids
—that counteract weight loss by stimulating
gluconeogenesis and fat storage[34]. Nevertheless, a
cold environment in 15 °C water may slow the
accumulation of muscle fatigue by reducing lactate
build-up, allowing for longer swimming periods
before exhaustion[35]. Bruton et al. found that
cold-acclimated mice exhibit adaptations similar to
endurance training, including increased -calcium
levels and mitochondrial content, which enhance
fatigue resistance[24]. Additionally, muscle fiber
transition may also affect exercise performance.
Previous study has shown that diet-induced obesity
can alter muscle fiber type, with type I fibers being
most susceptible, especially in male mice[36]. Insulin

EFP EFP

Ucpl mRNA expression
(fold to control)
Pgcla mRNA expression
(fold to control)

CON HFD 15°C nc

25°C

gastrocnemius

gastrocnemius

resistance and metabolic dysfunctions in diet-induced
obesity can be caused by alterations in muscle
metabolism and muscle fiber phenotypes[37]. After
swimming intervention, we found that the 15°C
group had the greatest increase in Type I fibers, which
may account for this group’s superior endurance
capacity. The 25 °C and 32 °C groups also exhibited an
increase in Type I fibers compared to the HFD group;
however, Type II fibers remained predominant, which
likely explains the greater grip strength observed in
these groups. Exercise can induce glycolytic muscle
fibers to transition towards a more oxidative
phenotype, which can upregulate myoglobin
synthesis, enhance lipid utilization, and improve
mitochondrial biogenesis and angiogenesis[38].
Despite these differences, all groups exhibited
improved insulin sensitivity, as reflected by OGTT
results, highlighting the general metabolic benefits of
swimming exercise. In addition to improvements in
glucose tolerance and lipid metabolism, we also
measured serum HDL levels, which showed no
significant differences among the HFD and swimming
groups. It is plausible that the continued consumption
of high-fat diets throughout the intervention period
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Figure 5. Gene and protein expression in adipose tissue and skeletal muscle at different swimming temperatures. (A) mRNA expression of Ucpl, Pgcla,
Prdm16, and Cidea in EFP (n = 4 per group). (B) Quantification of SIRT1, PGC-1a, and FNDCS5 protein levels in gastrocnemius (n = 2 per group). (C) Representative immunoblots.
Pgcla was significantly upregulated in the 25°C group, whereas FNDC5 expression was highest in the 15°C group. Different letters (a, b) indicate significant differences among
groups (p < 0.05) based on post hoc comparisons. Data are presented as mean + SD. EFP = Epididymal Fat Pads.
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may have attenuated the exercise-induced HDL
response[39]. Previous studies have reported that
high-fat feeding can blunt exercise-induced increases
in HDL or alter HDL subclass distribution rather than
total concentration[40, 41]. Moreover, improvements
in HDL function—such as enhanced antioxidant
capacity or cholesterol efflux—may occur without a
detectable rise in plasma HDL levels[42, 43].

The metabolic benefits of swimming may be
partially mediated by the SIRT1-PGC-la axis in
skeletal muscle[44, 45]. SIRT1 enhances fatty acid
oxidation and mitochondrial biogenesis[46], while
PGC-la regulates oxidative capacity and glucose
homeostasis[47, 48]. Increased Pgcl-a expression is
known to promote oxidative muscle fiber
type-switching, which could be more resistant to the
atrophic effects of HFD[49]. It is plausible that the
preserved muscle mass and increased grip strength in
the 32°C group might be related to the enhanced
mitochondrial activity and energy metabolism
through the upregulation of Pgcl-a. However, FNDC5
expression did not increase as much in the 25°C and
32°C groups, indicating potential temperature-
specific signaling pathways.

FNDC5, which is cleaved into irisin and
regulates muscle-adipose communication[50], was
significantly elevated in the 15°C group. Cold
exposure has been shown to alter gene expression in
skeletal muscle, enhancing thermogenic pathways
and muscle contractions[51]. One possible
explanation is that cold-water swimming may induce
additional muscle activity for thermogenesis, which
could contribute to the increased FNDC5 expression.
Additionally, Zhou et al. found that FNDC5's
protective role during cold-induced stress facilitates
muscle adaptation[52]. However, as irisin signaling
involves multiple interacting pathways, our
interpretation remains speculative and requires
further investigation.

In EFP, swimming at 25°C induces favorable
metabolic adaptations, including reduced adipocyte
size and upregulation of metabolic genes such as
Pgcla, Prdm16, and Cidea—albeit some changes were
not statistically significant. This trend suggests a
partial shift toward a more oxidative and
metabolically active adipose tissue phenotype
(possibly “beige” adipocytes), though it did not
involve robust elevations in Ucpl. Rahmani et al
found that cold-water swimming promotes adipose
tissue browning in Wistar rats by inhibiting Myostatin
and increasing expression of IRF4, PGC-la, and
UCP1, enhancing thermogenesis and energy
expenditure[53]. However, their study included
weighted swimming (3-6% body weight), which
likely imposed additional mechanical and metabolic

stress, potentially amplifying UCP1 expression. The
absence of a strong Ucpl response in our study
suggests that temperature alone may be insufficient to
induce classical adipose browning without additional
stimuli.

Our study had several limitations. First, the
muscle fiber analysis did not differentiate subtypes of
Type Il fibers, limiting a more nuanced understanding
of specific fiber adaptations. Second, as we did not
measure circulating stress hormones, such as cortisol
levels, it remains unclear whether different water
temperatures induced varying levels of stress in mice.
Further research is needed to determine the impact of
thermal stress on metabolic and muscular
adaptations. Third, although additional signaling
pathways such as AMPK, Akt, and mTOR are known
to mediate exercise-induced metabolic adaptations,
these were not systematically investigated in the
present study. Future research integrating these
pathways would provide a more comprehensive
understanding of the temperature-specific molecular
responses to swimming exercise. Moreover, our study
examined only three discrete water temperatures.
Including a broader range of temperatures or finer
increments could provide additional insights into the
relationship between temperature and exercise-
induced metabolic adaptations. However, our
temperature selection was based on tolerability in
mice, as extreme cold (< 15 °C) or warm (> 32 °C)
conditions may cause excessive stress or hypothermia.
Lastly, we observed relatively large variability in
some datasets, which may reflect biological
heterogeneity among diet-induced obese mice as well
as methodological factors such as inter-individual
differences in swimming tolerance or sample
processing.

In conclusion, our study highlights distinct
temperature-dependent outcomes of swimming
exercise in diet-induced obese mice. Swimming at
25°C and 32 °C effectively reduces body weight,
enhances adipose tissue remodeling, and improves
grip strength, whereas swimming at 15 °C primarily
enhances endurance by promoting oxidative muscle
fiber transition. These findings provide mechanistic
insights and potential translational relevance for
human aquatic exercise programs. Although direct
extrapolation from mice to humans should be made
cautiously, our results suggest that moderate water
temperatures may optimize weight loss and metabolic
outcomes, while cooler water may benefit endurance
training. Future studies should further clarify the
molecular pathways involved and determine optimal
water temperatures for different exercise goals in
obesity management.
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