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Abstract 

Objective: Lymph node metastasis (LNM) plays a crucial role in informing treatment decisions and 
prognosis for early gastric cancer (EGC). This study aimed to offer a practical approach to predict LNM 
in EGC by using machine learning algorithms. 
Methods: This study collected data from 1085 patients with EGC who underwent radical gastrectomy 
with D1+ or D2 lymph node resection. Seven machine-learning algorithms were compared, and 
hyperparameters were fine-tuned to identify the model with the best accuracy, Brier class and Area 
Under the Curve (AUC). The efficacy of the selected model was evaluated. 
Results: Following comparison, the Random Forest (RF), Extreme Gradient Boosting (Boost), and 
Neural Network (NNT) models exhibited exemplary performance on the training dataset, with AUC 
values of 0.796, 0.788, and 0.779, respectively, on the validation set. We conducted parallel analyses 
within the T1a and T1b subgroups, where Logistics Models (LM) and RF yielded AUCs of 0.710 and 0.636 
in the T1a validation set, and LM, RF, and Boost achieved AUCs of 0.666, 0.658, and 0.558, respectively in 
the T1b validation set. Variable importance analysis utilizing SHAP revealed distinct values for lymph node 
metastasis (LNM) in EGC patients, as well as in those stratified into T1a and T1b groups. 
Conclusion: The machine learning model holds the potential to guide more effective treatment 
strategies for early gastric cancer (EGC), specifically in addressing lymph node metastasis (LNM). The 
identified risk factors contribute valuable insights for personalized decision-making in the management of 
EGC patients. 
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Introduction 
Gastric cancer (GC) stands as one of the most 

frequently diagnosed malignant tumors and ranks as 
the third leading cause of cancer-related fatalities in 
China [1,2]. Gastric cancer remains a significant global 
health concern, and the identification of reliable 
prognostic indicators is crucial for guiding 
appropriate therapeutic interventions [3]. Lymph 

node metastasis (LNM) plays a crucial role in 
determining the prognosis and guiding treatment 
decisions for gastric cancer, especially in the context 
of early-stage disease [4–6]. 

Comprehending the clinical and endoscopic 
features linked to the probability of LNM is essential 
for crafting effective risk stratification models and 
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refining patient management strategies [7]. It assumes 
a pivotal role in the preliminary assessment of gastric 
cancer, offering valuable insights into the tumor's 
biological behavior and the likelihood of metastatic 
spread. Recognizing specific features associated with 
an elevated risk of LNM is crucial for refining 
treatment strategies [8,9].  

Several models have been proposed, 
incorporating factors such as tumor size, depth of 
invasion, histological type, lymphatic invasion, and 
molecular markers to predict the probability of lymph 
node involvement in early gastric cancer. Among 
these, the nomogram appears to be the most popular, 
offering a straightforward process yet demonstrating 
effective predictive capabilities [10–13]. 

Recently, with advancements in machine 
learning, more effective methods have been 
implemented in the field of predicting lymph node 
involvement in gastric cancer [11,14]. Efforts are 
underway to seamlessly integrate machine learning 
predictions into the clinical workflow, thereby 
facilitating real-time decision support for healthcare 
providers [15,16]. Machine learning holds immense 
promise in revolutionizing the prediction of LNM in 
EGC. As technology advances and more data becomes 
available, the collaboration between medical 
professionals and machine learning experts becomes 
essential to harness the full potential of these 
innovative approaches, ultimately improving patient 
outcomes.  

This study aims to delve into the intricate 
interplay between clinical and endoscopic 
characteristics and their relationship with the 
propensity for lymph node involvement in gastric 
cancer. Through a comprehensive evaluation of 
nuanced features that may indicate a higher risk of 
LNM, clinicians can enhance their ability to identify 
patients who would benefit most from aggressive 
therapeutic approaches. Moreover, integrating 
advanced endoscopic techniques allows for a detailed 
examination of mucosal and submucosal changes, 
offering an opportunity to refine risk stratification 
and guide decisions regarding endoscopic resection 
versus more extensive surgical interventions. The 
findings of this study hold promise for advancing our 
understanding of predictive factors, ultimately 
contributing to the development of more precise risk 
assessment tools and fostering personalized treatment 
strategies for patients with gastric cancer. 

Methods 
Study design 

We retrieved records of EGC patients who 
underwent radical gastrectomy for gastric cancer with 
D1+ or D2 lymph node resection at Sun Yat-Sen 

Cancer Center (Guangzhou, China) from January 2012 
to March 2021. After screening, 1085 records were 
identified, with pathologically confirmed T1a/T1b 
stage cases included. Clinical data were extracted 
from the electronic health records system at Sun 
Yat-Sen University Cancer Center (SYSUCC). 

Population and definition 
Clinicopathological evaluations entailed a 

comprehensive review of pertinent medical records, 
specifically blood analysis, gastroscopy, and 
pathological reports for each participant. Tumor 
markers, namely A carcinoma embryonic antigen 
(CEA), CA199, CA125, CA153, and alpha-fetoprotein 
(AFP), were extracted from the blood analyses. 
Gastroscopy data, inclusive of tumor localization, 
were extracted from the respective reports. 
Pathological outcomes furnished critical information 
concerning invasion depth (T1a/T1b), histological 
type, Lauren classification, tumor dimensions, and 
ulcerative status. The clinical attributes of 
participants, encompassing gender, age, body mass 
index (BMI), and personal pathological history, were 
systematically documented. 

The tumors were classified histologically 
according to the World Health Organization's 
Classification of Tumors. Differentiated gastric cancer 
included well-differentiated adenocarcinoma, 
moderately differentiated adenocarcinoma, and 
papillary adenocarcinoma. Undifferentiated gastric 
cancer included poorly differentiated 
adenocarcinoma, signet-ring cell carcinoma, and 
mucinous adenocarcinoma [17]. The macroscopic 
types of the tumor were classified according to the 
Japanese classification of gastric carcinoma. Special 
pathological types, such as Gastric Fundic Gland 
Adenocarcinoma, were categorized and summarized 
under the designation “others.” 

The delineated exclusion criteria encompassed 1. 
patients with antecedent history of neoadjuvant 
therapy, 2. individuals manifesting two or more 
primary cancer types, inclusive of gastric and/or 
other malignancies, 3. patients with antecedent 
history of cancer or remnant gastric cancer, 4. patients 
presenting with distant metastasis, and 5. those with 
incomplete preoperative evaluations (variables 
demonstrating > 25% information deficit), clinical 
parameters such as blood analysis, gastroscopy 
pathological reports, and/or pathological outcomes. 
These exclusion criteria were systematically applied 
to the implementation of machine learning (ML) 
models.  

Clinicopathological evaluations entailed a 
comprehensive review of pertinent medical records, 
specifically blood analysis, gastroscopy, and 
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pathological reports for each participant. Tumor 
markers, namely CEA, CA199, CA125, CA153, and 
AFP, were extracted from the blood analyses. 
Gastroscopy data, inclusive of tumor localization, 
were extracted from the respective reports. 
Pathological outcomes furnished critical information 
concerning invasion depth (T1a/T1b), histological 
type, Lauren classification, tumor dimensions, and 
ulcerative status. The clinical attributes of 
participants, encompassing gender, age, body mass 
index (BMI), and personal pathological history, were 
systematically documented. 

Statistical analysis 
Descriptive statistics were employed to 

summarize the characteristics of the study population. 
Mean and standard deviation were utilized for 
continuous variables demonstrating a normal 
distribution, whereas median and interquartile range 
(IQR) were employed for non-normally distributed 
variables. Categorical variables were presented as 
frequencies and percentages. Two-sided P values less 
than 0.05 were considered statistically significant. 
Variables with a p-value less than 0.1 were selected 
for inclusion in the multivariable analysis. 

As not all variables exhibited an effect in 
predicting LNM, we conducted variable and feature 
selection using the Boruta method. This method 
employs an algorithm wrapper built around the 
random forest classifier and was implemented using 
the R package Boruta [18]. The Boruta method 
generated a corresponding “shadow” attribute, where 
values were obtained by shuffling the values of the 
original attribute across objects, and non-zero values 
could only result from random fluctuations. 
Subsequently, the importance of all variables was 
computed, and the set of importance higher than the 
shadow was considered confirmed as important, 
while those lower were rejected. This process aids in 
distinguishing genuinely important features from 
those that could arise by chance. 

The imbalance in our dataset, with a majority of 
N0 patients, posed a challenge for model 
performance, particularly in identifying high-risk 
LNM positive (N+) patients. To address this, we 
employed the Synthetic Minority Over-sampling 
Technique (SMOTE) using the “themis” package in R. 
Specifically, we utilized the step_smotenc function, 
setting the over_ratio parameter to 0.25. This 
approach effectively increased the number of N+ 
samples to 25% of the N0 sample count, thereby 
balancing the dataset. 

The statistical analyses and machine learning 
models encompassed association analyses and the 
application of seven supervised ML classifiers. These 

classifiers included logistic regression with lasso or 
elastic net regularization (Logistic), support vector 
classifier (SVC), extreme gradient boosting (XGBoost), 
random forest classification (RF), K-Nearest 
Neighbors (KNN), decision trees (DT), and neural 
network models (NNET). The models were trained 
using the aforementioned algorithms, each subjected 
to a number of tuning parameters, and were 
subsequently evaluated based on the Receiver 
Operating Characteristic Area Under the Curve 
(ROC-AUC). Subsequently, the data was partitioned 
into a training set and a validation set with a 3:1 ratio. 
The model with the highest AUC was selected for 
training on the training set and validation on the 
validation set. ROC curve, calibration plot, and 
decision curve analyses were then conducted to 
evaluate the model. To determine the order of 
importance in the model, the SHAP (SHapley 
Additive exPlanations) method [19] was employed to 
compute the importance score. 

The data analysis was conducted using the R 
language version 4.3.2. 

Results 
The baseline characteristics of the patients 

The baseline clinical characteristics of the entire 
patient cohort are detailed in Table 1, including 
findings from both univariable and multivariable 
analyses. Female patients with early-stage gastric 
cancer showed a higher propensity for lymph node 
metastasis (LNM), with this trend being statistically 
significant in both univariable and multivariable 
analyses (p < 0.001). Patients with LNM (Group N+) 
tended to be slightly younger than those without 
metastasis (Group N0), with mean ages of 54±12 years 
and 56±11 years, respectively. This age difference was 
evident in the univariable analysis (p=0.006) and was 
further confirmed in the multivariable analysis (p = 
0.007). Although the tumor diameter in the N0 group 
was smaller compared to the N+ group (2.43±1.96 cm 
vs. 2.64±1.93 cm, p = 0.022), this difference did not 
attain statistical significance in the logistic regression 
analysis. Significant differences were also noted in the 
macroscopic classification between the two groups, 
with the 0-IIa type being less likely to exhibit LNM 
compared to the 0-I type (OR 0.17, 95% CI 0.02 to 
0.90). Additionally, CA 199, HLG, pathological type, 
Lauren classification, T stage, lymphovascular 
invasion (LVI), and perineural invasion (PI) showed 
significant differences in the univariable analysis. Of 
these, the differences in pathological type, T stage, 
LVI, and PI were further confirmed to be significant in 
the logistic regression analysis. 
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Table 1. Baseline characteristics of the total patients with both T stage 1a and 1b. 

 Univariable Multivariable 
Characteristic N0, N = 8681 N+, N = 2171 p-value2 OR3 95% CI3 p-value 
Sex   < 0.001   < 0.001 
F 304 (35%) 116 (53%)  — —  
M 564 (65%) 101 (47%)  0.43 0.30, 0.63  
Age 56±11 54±12 0.006 0.98 0.96, 0.99 0.007 
Diameter 2.43±1.96 2.64±1.93 0.022 1.05 0.97, 1.14 0.20 
Tumor type   0.012   0.043 
0-I 20 (2.3%) 8 (3.7%)  — —  
0-IIa 34 (3.9%) 2 (0.9%)  0.17 0.02, 0.90  
0-IIb 185 (21%) 34 (16%)  0.48 0.18, 1.37  
0-IIc 4 (0.5%) 0 (0%)  0.00   
0-III 34 (3.9%) 5 (2.3%)  0.51 0.10, 2.35  
Borrmann I 60 (6.9%) 15 (6.9%)  0.64 0.21, 2.02  
Borrmann II 444 (51%) 116 (53%)  1.28 0.28, 5.74  
Borrmann III 70 (8.1%) 32 (15%)  2.35 0.48, 11.4  
Borrmann IV 17 (2.0%) 5 (2.3%)  0.36 0.07, 1.64  
Ulcer   0.063   0.32 
No 331 (38%) 68 (31%)  — —  
Ulcer 537 (62%) 149 (69%)  0.54 0.17, 1.85  
Location   0.7    
L 549 (63%) 131 (60%)     
M 244 (28%) 67 (31%)     
U 75 (8.6%) 19 (8.8%)     
CEA 2.47±3.22 2.83±6.04 0.090 1.02 0.99, 1.06 0.20 
CA199 26±216 38±227 0.037 1.00 1.00, 1.00 0.82 
CA724 3.12±9.78 3.55±7.10 0.7    
LDH 162±30 164±36 > 0.9    
Albumin 43.7±19.2 42.5±3.7 0.10 0.97 0.92, 1.00 0.11 
CRP 4.8±38.4 13.0±137.0 0.3    
HLG 134±21 129±20 < 0.001 1.00 0.99, 1.01 0.82 
Pathology   < 0.001   0.043 
Poor 589 (68%) 177 (82%)  — —  
Special 15 (1.7%) 7 (3.2%)  1.78 0.61, 4.79  
Well 264 (30%) 33 (15%)  0.53 0.30, 0.92  
Lauren   < 0.001   0.15 
Intestinal 363 (42%) 66 (30%)  — —  
Mix 187 (22%) 73 (34%)  1.18 0.70, 1.98  
Diffuse 318 (37%) 78 (36%)  0.78 0.46, 1.32  
T stage   < 0.001   < 0.001 
T1a 440 (51%) 56 (26%)  — —  
T1b 428 (49%) 161 (74%)  2.44 1.70, 3.54  
Vascular Invasion   < 0.001   < 0.001 
Present 13 (1.5%) 37 (17%)  — —  
Absent 855 (99%) 180 (83%)  0.12 0.06, 0.24  
Nerve Invasion   < 0.001   0.025 
Present 6 (0.7%) 9 (4.1%)  — —  
Absent 862 (99%) 208 (96%)  0.24 0.07, 0.83  
BMI 22.6±13.1 23.7±31.8 0.4    
1n (%); Mean±SD; 2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test; 3OR = Odds Ratio, CI = Confidence Interval 

 
Among the 496 patients with T stage 1a disease, 

56 had positive lymph nodes. A significant trend was 
observed among female patients with T stage 1a, who 
had a higher prevalence of LNM in both univariate (p 
< 0.001) and multivariate (p = 0.011) analyses. In 
contrast, patients without LNM were significantly 
older, with a mean age of 55±12 years compared to 

51±12 years (p = 0.012), although this age difference 
did not remain statistically significant in the 
multivariate analysis. The impact of pathology type 
on LNM was also noted, with poorly differentiated 
gastric cancer being the predominant type associated 
with LNM in the univariable analysis (p < 0.001), but 
this association was not sustained in the multivariate 
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analysis (p = 0.19). In a comprehensive analysis, both 
the Lauren classification and the presence of vascular 
invasion were identified as independent risk factors 
for LNM in both univariable and multivariate 
analyses. 

In the analysis of 589 patients with T stage 1b 
disease, 161 of whom had LNM (Table 3), it was 
found that female patients were more predominantly 
affected by LNM in both univariable and 

multivariable analyses. Younger age emerged (58±11 
vs 55±12) as an independent risk factor for LNM in 
patients in both univariable (p = 0.014) and 
multivariable analyses (p = 0.029), as did the presence 
of vascular and nerve invasions. However, despite 
significant differences in CA199, HLG, and 
differentiation type in the univariable analysis, the 
multivariable analysis did not reveal these factors to 
be statistically significant. 

 

Table 2. Baseline characteristics of the patients with T stage of 1a. 

 Univariable Multivariable 
Characteristic Overall, N = 4961 0, N = 4401 1, N = 561 p-value2 OR3 95% CI3 p-value 
Sex    <0.001   0.011 
F 214 (43%) 178 (40%) 36 (64%)  — —  
M 282 (57%) 262 (60%) 20 (36%)  0.38 0.17, 0.80  
Age 55±12 55±12 51±12 0.012 0.98 0.95, 1.01 0.24 
Diameter 2.34±1.55 2.33±1.60 2.43±1.09 0.12 0.97 0.76, 1.21 0.79 
Tumor type    0.22   0.067 
0-I 14 (2.8%) 13 (3.0%) 1 (1.8%)  — —  
0-IIa 26 (5.2%) 26 (5.9%) 0 (0%)  0.00 NA  
0-IIb 124 (25%) 109 (25%) 15 (27%)  2.49 0.37, 50.2  
0-IIc 3 (0.6%) 3 (0.7%) 0 (0%)  0.00 NA  
0-III 25 (5.0%) 23 (5.2%) 2 (3.6%)  0.71 0.02, 25.4  
Borrmann I 25 (5.0%) 24 (5.5%) 1 (1.8%)  1.07 0.04, 31.5  
Borrmann II 226 (46%) 198 (45%) 28 (50%)  2.10 0.09, 68.9  
Borrmann III 42 (8.5%) 33 (7.5%) 9 (16%)  4.89 0.18, 179  
Borrmann IV 11 (2.2%) 11 (2.5%) 0 (0%)  0.00 NA  
Ulcer    0.089   0.78 
No 212 (43%) 194 (44%) 18 (32%)  — —  
Ulcer 284 (57%) 246 (56%) 38 (68%)  1.36 0.18, 19.4  
Location    0.6    
L 335 (68%) 297 (68%) 38 (68%)     
M 138 (28%) 121 (28%) 17 (30%)     
U 23 (4.6%) 22 (5.0%) 1 (1.8%)     
CEA 2.40±3.71 2.46±3.91 1.88±1.32 0.054 0.93 0.70, 1.14 0.55 
CA199 25±202 27±215 13±9 0.6 0.99 0.96, 1.00 0.40 
CA724 3.13±8.96 3.15±9.40 2.99±4.27 0.7    
LDH 162±31 162±30 163±38 0.9    
Albumin 42.9±3.2 43.0±3.3 42.6±2.5 0.2 0.94 0.85, 1.05 0.30 
CRP 9.24±102.76 5.45±51.98 39.07±269.15 0.9    
HLG 133±20 133±20 130±15 0.053 1.00 0.98, 1.02 0.79 
Pathology    < 0.001   0.19 
Poor 345 (70%) 296 (67%) 49 (88%)  — —  
Special 11 (2.2%) 8 (1.8%) 3 (5.4%)  2.41 0.47, 9.70  
Well 140 (28%) 136 (31%) 4 (7.1%)  0.34 0.06, 1.50  
Lauren    < 0.001   < 0.001 
Intestinal 175 (35%) 169 (38%) 6 (11%)  — —  
Mix 100 (20%) 74 (17%) 26 (46%)  4.91 1.51, 19.9  
Diffuse 221 (45%) 197 (45%) 24 (43%)  1.34 0.40, 5.61  
Vascular Invasion    0.013   < 0.001 
Present 2 (0.4%) 0 (0%) 2 (3.6%)  — —  
Absent 494 (100%) 440 (100%) 54 (96%)  0.00   
Nerve Invasion    > 0.9   0.57 
Present 1 (0.2%) 1 (0.2%) 0 (0%)  — —  
Absent 495 (100%) 439 (100%) 56 (100%)  20,442,763 0.00, NA  
BMI 21.75±6.39 21.78±6.71 21.47±3.01 0.5    
1n (%); Mean±SD; 2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test; OR = Odds Ratio, CI = Confidence Interval 
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Table 3. Baseline characteristics of the patients with T stage of 1b. 

 Univariable Multivariable 
Characteristic Overall, N = 5891 0, N = 4281 1, N = 1611 p-value2 OR3 95% CI3 p-value 
Sex    < 0.001   < 0.001 
F 206 (35%) 126 (29%) 80 (50%)  — —  
M 383 (65%) 302 (71%) 81 (50%)  0.44 0.28, 0.68  
Age 57±11 58±11 55±12 0.014 0.98 0.96, 1.00 0.029 
Diameter 2.58±2.24 2.53±2.27 2.72±2.15 0.2 1.06 0.97, 1.16 0.17 
Tumor type    0.11   0.12 
0-I 14 (2.4%) 7 (1.6%) 7 (4.3%)  — —  
0-IIa 10 (1.7%) 8 (1.9%) 2 (1.2%)  0.21 0.02, 1.58  
0-IIb 95 (16%) 76 (18%) 19 (12%)  0.22 0.06, 0.81  
0-IIc 1 (0.2%) 1 (0.2%) 0 (0%)  0.00   
0-III 14 (2.4%) 11 (2.6%) 3 (1.9%)  0.47 0.05, 3.39  
Borrmann I 50 (8.5%) 36 (8.4%) 14 (8.7%)  0.46 0.12, 1.77  
Borrmann II 334 (57%) 246 (57%) 88 (55%)  1.33 0.17, 10.5  
Borrmann III 60 (10%) 37 (8.6%) 23 (14%)  2.26 0.27, 19.3  
Borrmann IV 11 (1.9%) 6 (1.4%) 5 (3.1%)  0.26 0.04, 1.70  
Ulcer    0.8   0.19 
No 187 (32%) 137 (32%) 50 (31%)  — —  
Ulcer 402 (68%) 291 (68%) 111 (69%)  0.32 0.06, 1.74  
Location    0.8    
L 345 (59%) 252 (59%) 93 (58%)     
M 173 (29%) 123 (29%) 50 (31%)     
U 71 (12%) 53 (12%) 18 (11%)     
CEA 2.67±4.13 2.48±2.31 3.17±6.94 0.2 1.05 1.0, 1.12 0.083 
CA199 31±231 25±217 46±263 0.028 1.00 1.00, 1.00 0.80 
CA724 3.3±9.6 3.1±10.2 3.7±7.9 0.5    
LDH 164±32 163±31 164±35 0.9    
Albumin 44.0±23.3 44.5±27.2 42.4±4.0 0.3 0.98 0.93, 1.00 0.24 
CRP 4.1±13.6 4.1±14.7 4.0±9.9 0.5    
HLG 133±22 134±22 129±21 0.002 1.00 0.99, 1.01 0.74 
Pathology    0.009   0.17 
Poor 421 (71%) 293 (68%) 128 (80%)  — —  
Special 11 (1.9%) 7 (1.6%) 4 (2.5%)  1.39 0.31, 5.54  
Well 157 (27%) 128 (30%) 29 (18%)  0.56 0.30, 1.04  
Lauren    0.2   0.64 
Intestinal 254 (43%) 194 (45%) 60 (37%)  — —  
Mix 160 (27%) 113 (26%) 47 (29%)  0.77 0.42, 1.40  
Diffuse 175 (30%) 121 (28%) 54 (34%)  0.77 0.42, 1.42  
Vascular Invasion    < 0.001   < 0.001 
Present 48 (8.1%) 13 (3.0%) 35 (22%)  — —  
Absent 541 (92%) 415 (97%) 126 (78%)  0.15 0.07, 0.30  
Nerve Invasion    0.004   0.013 
Present 14 (2.4%) 5 (1.2%) 9 (5.6%)  — —  
Absent 575 (98%) 423 (99%) 152 (94%)  0.20 0.05, 0.71  
BMI 23.8±24.2 23.5±17.3 24.5±36.8 0.3    
1n (%); Mean±SD; 2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test; 3OR = Odds Ratio, CI = Confidence Interval 

 

Variable selection, model comparison, 
training, and validation of the total cohort 

The Boruta feature selection method confirmed 
the following features as crucial, with “HLG”, “SEX”, 
“Nerve invasion”, “T stage”, “Lauren type”, 
“Pathology”, and “Vascular invasion” emerging as 
the most important in ascending order (Figure 1A). 
Importantly, these selected variables consistently 
demonstrated greater significance in each iteration 

compared to the shadow variables, which are used as 
a control to assess the importance of the original 
features. 

A multitude of models, incorporating various 
parameters and machine learning algorithms, were 
developed using the training datasets. These models 
were evaluated and ranked based on their accuracy, 
Brier score, and Area Under the Curve (AUC), as 
shown in Figure 1B. Notably, three models stood out 
as the most effective: Extreme Gradient Boosting 
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(Boost), Random Forest (RF), and Neural Network 
(NNT). The corresponding AUC values for the Boost, 
RF, and NNT models were 0.796, 0.788, and 0.779, 
respectively (Figure 1C) in the validation set, 
indicating considerable predictive performance. 

The calibration plot (Figure 1D) revealed that the 
NNT and RF models exhibited better reliability, 

suggesting that their predicted probabilities were 
more closely aligned with the observed outcomes. In 
contrast, the decision curve analysis (Figure 1E) 
indicated that the Boost model was more 
cost-effective across a wider range of threshold 
probabilities, suggesting its potential clinical utility in 
decision-making. 

 

 
Figure 1. A. Boxplot of Variable Importance Selected by Boruta Algorithm: This boxplot displays the importance of variables selected by the Boruta algorithm; B. Model 
Performance in Training Set: The bar chart presents the accuracy, Brier score, and ROC AUC (Area Under the Curve) for seven models trained in the training set. These metrics 
are used to evaluate the efficacy of the models in predicting the outcome of interest; C. ROC Curves for Boost (XGBoost), RF (Random Forest), and NNT (Neural Network) 
in the validation set: The ROC curves for Boost, RF, and NNT models are shown, with the corresponding AUC values of 0.796, 0.788, and 0.779, respectively; D. Calibration 
Curves for Boost, RF, and NNT: The calibration curves for the three models are presented, which show the agreement between the predicted probabilities and the actual 
outcomes. A well-calibrated model has predicted probabilities that closely match the observed frequencies; E. Decision Curves for Boost, RF, and NNT: The decision curves for 
the three models are displayed, illustrating the net benefit of using the models at different threshold probabilities. The decision curve analysis helps to assess the clinical utility of 
the models by considering the trade-off between the benefits and harms of treatment; F, G, H. Variable Importance Based on SHAP Values for Boost, RF, and NNT Models: The 
plots show the variable importance calculated using SHAP (SHapley Additive exPlanations) values for the Boost, RF, and NNT models, respectively. Each bar represents a variable, 
with the X-axis indicating the SHAP value, which measures the impact of each variable on the model’s predictions. 
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The SHapley Additive exPlanations (SHAP) 
method was employed to compute the importance of 
variables, as illustrated in Figures 1F, 1G, and 1H. 
This analysis demonstrated the varying degrees of 
influence that each variable had on the three models. 
Although the variables differed in their rankings, “T 
stage”, “sex”, “pathology type”, “vascular invasion”, 
and “HLG” consistently emerged as the top variables 
with significant weight across the models. This 
highlights their importance in predicting the outcome 
of interest. 

Variable selection, model comparison, 
training, and validation of the T stage 1a 
cohort 

The Boruta feature selection method identified 
the following features as crucial, with ‘Sex’, ‘CA724’, 
‘Vascular invasion’, ‘CRP’, ‘Albumin’, ‘BMI’, ‘Tumor 
Diameter’, ‘LDH’, ‘Pathology’, ‘Age’, ‘HLG’, and 
‘Lauren type’ emerging as the most important in 
ascending order (Figure 2A).  

 

 
Figure 2. A. Boxplot of Variable Importance Selected by Boruta Algorithm: This boxplot displays the importance of variables selected by the Boruta algorithm; B. Model 
Performance in Training Set: The bar chart presents the accuracy, Brier score, and ROC AUC (Area Under the Curve) for seven models trained in the training set. These metrics 
are used to evaluate the efficacy of the models in predicting the outcome of interest; C. ROC Curves for LM (Logistics Models), RF (Random Forest) in the validation set: The 
ROC curves for LM and RF are shown, with the corresponding AUC values of 0.710, and 0.636, respectively; D. Calibration Curves for LM and RF: The calibration curves for the 
three models are presented, which show the agreement between the predicted probabilities and the actual outcomes. A well-calibrated model has predicted probabilities that 
closely match the observed frequencies; E. Decision Curves for LM and RF: The decision curves for the three models are displayed, illustrating the net benefit of using the models 
at different threshold probabilities. The decision curve analysis helps to assess the clinical utility of the models by considering the trade-off between the benefits and harms of 
treatment; F, G. Variable Importance Based on SHAP Values for LM and RF models: The plots show the variable importance calculated using SHAP (SHapley Additive 
exPlanations) values for the LM and RF models, respectively. Each bar represents a variable, with the X-axis indicating the SHAP value, which measures the impact of each variable 
on the model’s predictions. 
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Models evaluated and ranked based on 
accuracy, Brier score, and Area Under the Curve 
(AUC), as shown in Figure 2B, selected the logistics 
models (LM) and RF. The corresponding AUC values 
of which were 0.710 and 0.636, respectively, in the 
validation set (Figure 2B). 

The calibration plot (Figure 2D) revealed the 
similar reliability of the two models, and the decision 
curve analysis (Figure 2E) indicated that the two 
models only worked effectively in a specific range of 
area to the threshold probability. 

The SHapley Additive exPlanations (SHAP) 
method, illustrated in Figures 2F and 2G, 
demonstrated “Lauren type”, “Pathology type”, 
“sex”, “Albumin”, “Vascular invasion”, and “CA 724” 
as the variables with significant weight across both 
models, while the RF models considered more 
variables significantly in the prediction. 

Variable selection, model comparison, 
training, and validation of the T stage 1b 
cohort 

The Boruta feature selection method identified 
‘CEA’, ‘Sex’, ‘Nerve invasion’, ‘CRP’, ‘Lauren type’, 
‘Pathology’, ‘HLG’, and ‘Vascular invasion’ as the 
most crucial features for predicting gastric cancer 
prognosis, ranked in ascending order of importance 
(Figure 3A). 

Models were evaluated and ranked based on 
accuracy, Brier score, and Area Under the Curve 
(AUC). As depicted in Figure 3B, the Random Forest 
(RF), Boosting, and Logistics Model (LM) were 
selected. Their corresponding AUC values in the 
validation set were 0.658 for RF, 0.558 for Boosting, 
and 0.666 for LM (Figure 3B). 

The calibration plot (Figure 3D) revealed that the 
reliability of the three models was similar, with none 
performing exceptionally well. The decision curve 
analysis (Figure 3E) indicated that the RF model was 
more effective over a wider range of threshold 
probabilities. 

The SHapley Additive exPlanations (SHAP) 
method, illustrated in Figures 3F, 3G, and 3H, 
demonstrated that the weight of the variables was 
quite different between the LM and the RF and Boost 
models. This suggests that each model considered 
different factors or interactions among factors in 
making predictions.  

Discussion 
Early gastric cancer is linked to the risk of lymph 

node metastasis (LNM), a crucial factor in 
determining prognosis and guiding treatment 
strategies. Various clinical and pathological factors 
play a role in evaluating the probability of lymph 

node involvement in cases of early gastric cancer. 
Based on our findings in the current study, sex, age, 
macroscopic type, tumor depth, lympho-vascular 
invasion (LVI), and perineural invasion (PI) 
demonstrated significance in both univariable and 
multivariable analyses. The results confirmed that 
these factors are independent risk factors for lymph 
node metastasis (LNM) in patients with early gastric 
cancer (EGA). In our study, it was observed that 
female patients encountered greater challenges 
related to lymph node metastasis, consistent with 
previous reports [20,21]. This underscores clinicians' 
importance in prioritizing female patients and 
considering adopting a potentially more aggressive 
treatment strategy. 

Additionally, for the whole cohort, our analysis 
identified age as an independent risk factor, with 
younger patients appearing to have a higher risk of 
lymph node metastasis (LNM), aligning with findings 
from previous literature [22]. This observation can be 
attributed to the higher likelihood of younger patients 
having aggressive tumor characteristics. Specifically, 
gastric cancer in younger individuals often presents 
with poorly differentiated tumors and is commonly of 
the mixed or diffuse Lauren type, in contrast to the 
more differentiated tumors and Lauren intestinal type 
typically observed in older patients [23,24]. 
Furthermore, the macroscopic type, as for the 
Japanese classification of gastric carcinoma, emerged 
as an independent risk factor, indicating its close 
association with prognosis and, consequently, its 
potential influence on treatment strategy [25]. Tumor 
depth exhibited a significant correlation with lymph 
node metastasis (LNM) [26]. As the tumor progresses 
in depth, there is an increased likelihood of breaching 
the lymphatic vessels, facilitating the dissemination of 
cancer cells to regional lymph nodes. 
Lymphovascular invasion (LVI) and perineural 
invasion (PI) were established as independent risk 
factors through various analyses [8,10,27]. The 
lymphatic vessels act as a conduit for cancer cells to 
migrate from the primary tumor site to adjacent 
lymph nodes, providing these cells with entry into the 
lymphatic system and facilitating their dissemination 
to regional lymph nodes. The presence of 
lymphovascular invasion (LVI) indicates a more 
aggressive tumor behavior and a heightened risk of 
systemic spread. Perineural invasion (PI) entails the 
infiltration of cancer cells into the perineural space, 
enabling them to utilize nerve fibers as a pathway for 
local spread [28]. When cancer cells invade nerves, 
they may follow nerve pathways to reach nearby 
lymph nodes. PI is often regarded as a marker of more 
aggressive tumor behavior. Conversely, the 
microenvironment surrounding nerves contains 
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neurotrophic factors that may attract and support the 
growth of cancer cells. 

In the T1a group, historically regarded as having 
a low probability of lymph node metastasis (LNM), 
the observed LNM rate was 11.2% (56 out of 496 
cases), challenging the previous understanding. The 
model demonstrated robust performance in the 

validation dataset. Utilizing SHapley Additive 
exPlanations (SHAP), we elucidated the substantial 
impact of Lauren classification and pathology on both 
the logistic regression (LM) and random forest (RF) 
models. Multivariable analysis indicated an odds ratio 
of 4.91 (95% confidence interval: 1.51, 19.9) for 
mixed-type tumors versus intestinal-type tumors, 

 

 
Figure 3. A. Boxplot of Variable Importance Selected by Boruta Algorithm: This boxplot displays the importance of variables selected by the Boruta algorithm; B. Model 
Performance in Training Set: The bar chart presents the accuracy, Brier score, and ROC AUC (Area Under the Curve) for seven models trained in the training set. These metrics 
are used to evaluate the efficacy of the models in predicting the outcome of interest; C. ROC Curves for LM, RF and Boost in the validation set: The ROC curves for LM, RF and 
Boost models are shown, with the corresponding AUC values of 0.666, 0.658 and 0.558, respectively;D. Calibration Curves for LM, RF, and Boost: The calibration curves for the 
three models are presented, which show the agreement between the predicted probabilities and the actual outcomes. A well-calibrated model has predicted probabilities that 
closely match the observed frequencies; E. Decision Curves for LM, RF and Boost: The decision curves for the three models are displayed, illustrating the net benefit of using the 
models at different threshold probabilities. The decision curve analysis helps to assess the clinical utility of the models by considering the trade-off between the benefits and harms 
of treatment; F, G, H. Variable Importance Based on SHAP Values for Boost, RF, and NNT Models: The plots show the variable importance calculated using SHAP (SHapley 
Additive exPlanations) values for the Boost, RF, and NNT models, respectively. Each bar represents a variable, with the X-axis indicating the SHAP value, which measures the 
impact of each variable on the model’s predictions. 
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affirming the elevated risk associated with 
mixed-type tumors, in line with previous findings 
[29], Similarly, poorly differentiated carcinomas also 
exhibited an increased risk, [30]. Lymphovascular 
invasion (LVI) was observed infrequently in the T1a 
group (2 out of 496 cases), reflecting a low incidence 
of LVI in patients with cancer limited to the mucosal 
layer. Notably, both T1a patients with positive LVI 
were subsequently confirmed to have lymph node 
metastasis (N+) following surgery. This finding 
underscores LVI as a potent risk factor for T1a 
patients. Despite its clinical significance, LVI did not 
carry substantial weight in the SHAP analysis, 
revealing a discrepancy between its actual risk and 
the model's representation. A technical explanation 
for the discrepancy between the clinical significance 
of Lymphovascular Invasion (LVI) and its low 
importance in the SHAP analysis was due to the 
limited number of LVI+ cases, which may not provide 
enough examples for the model to learn the pattern 
associated with LVI as a strong predictor of LNM. 
Additionally, SHAP values were based on the average 
marginal contribution of a feature, which may not 
fully capture the impact of rare events like LVI. This 
affected the model’s reliability in guiding critical 
decisions, such as refining risk stratification for 
endoscopic resection versus surgical intervention. 
Clinicians should be cautious when interpreting the 
model’s predictions, especially in cases involving rare 
events with strong clinical significance. Further 
research is needed to develop models that can better 
handle rare events and their clinical significance. 

In the T1b subgroup, the observed lymph node 
metastasis (LNM) rate was 27.3% (161 out of 589 
cases). The models developed for this group 
demonstrated less efficacy compared to those for the 
T1a group and the overall cohort. There was 
considerable variation in the rankings of variable 
importance among the boosting, logistic regression 
(LM), and random forest (RF) models. Notably, while 
lymphovascular invasion (LVI) and perineural 
invasion (PI) were both identified as independent risk 
factors in both univariate and multivariate analyses, 
the relative importance of LVI varied across the 
different models. Furthermore, PI was not 
consistently ranked as a high-importance variable 
across all models. 

The observed lack of efficacy in the T1b 
subgroup models, as compared to the T1a group and 
overall cohort models, may be attributed to several 
factors. Machine learning methods provide predictive 
model weights from a computational perspective. 
However, due to limitations such as sample size 
constraints and data heterogeneity, variables that are 
clinically considered more relevant may not exert as 

significant an influence on model predictions as those 
deemed less relevant. This underscores the need for 
further validation of the selected model variables 
through molecular biology. 

The variability in variable importance rankings, 
particularly for lymphovascular invasion (LVI) and 
perineural invasion (PI), across different models in the 
T1b subgroup suggests that these factors may have 
different levels of impact on LNM in this specific 
subgroup. This variability could stem from the 
inherent complexity and heterogeneity of the T1b 
subgroup, as well as the differences in model 
algorithms and feature selection methods used. While 
LVI and PI are highly correlated with LNM risk, as 
confirmed in both univariate and multivariate 
analyses, their weights in the predictive model may be 
lower due to sample size and data heterogeneity. 
Therefore, further research is necessary to identify 
more clinically valuable predictive variables. 

The advancements in machine learning have led 
to the development of more accurate and efficient 
models for diagnosing specific clinical issues. 
Although its application has been predominantly in 
the fields of omics and artificial intelligence [31], it has 
also demonstrated promising efficacy in traditional 
clinical research [32]. Particularly, the application of 
explainable machine learning allows us to understand 
the importance of various variables within a model, 
enabling a better comprehension of the relationship 
between variables and phenotypes. 

Boruta is a feature selection method employed in 
machine learning, specifically designed to identify 
and choose crucial features within a dataset by 
comparing them to shadow attributes [33]. This 
method proves valuable when dealing with 
high-dimensional datasets, where not all features 
significantly contribute to the model's performance. 
Utilizing a random forest classifier, Boruta is a 
non-linear approach capable of capturing complex 
relationships and interactions between features, 
aspects that may be overlooked by linear methods 
such as Lasso Regression. One notable strength of 
Boruta lies in its enhanced robustness to 
multicollinearity, a condition of high correlation 
between features. In contrast, Lasso Regression may 
arbitrarily select one variable over another in the 
presence of high correlation, potentially leading to 
instability in variable selection. Additionally, Boruta 
adopts a model-agnostic approach, refraining from 
assuming a specific form of the relationship between 
features and the target variable. This flexibility 
enables its application across various types of models. 

It is crucial to acknowledge that while Boruta is a 
powerful tool, it may exhibit overfitting tendencies on 
the training data. Multiple iterations were employed 
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to thoroughly assess its effectiveness in the present 
study to avoid this problem. 

As the machine learning algorithm 
demonstrated dataset agnosticism, the performance of 
a specific model could vary across different scenarios. 
To address this, we systematically evaluated the 
performance of various algorithms and fine-tuned the 
hyperparameters of selected models. The goal was to 
identify the model with the highest Area Under the 
Curve (AUC) during the ROC curve analysis. 

Although the ROC curve analysis indicated 
satisfactory performance of these models on the test 
set, further examination through calibration plots 
revealed discrepancies, with several predictions 
deviating from the observed outcomes in both the 
training and test sets. This discrepancy may be 
attributed to the fact that the sensitivities were 
relatively low while specificities were high. 

An analysis of the imbalance in the dataset sheds 
light on a potential cause for the discrepancy. The 
majority of the dataset comprised N0 patients, leading 
the model to adopt a strategy that predicted more 
patients in the N0 group. This strategy aimed to 
enhance the AUC, implying that the model prioritized 
correctly predicting the majority of N0 patients. 
However, this strategy might have contributed to 
lower sensitivities, impacting the overall predictive 
accuracy. The computed importance of variables by 
the Boruta method and the SHA methods exhibited 
notable differences. SHAP is a model-agnostic 
algorithm used to explain the output of any machine 
learning model. It assigns each feature an importance 
value for a particular prediction, which helps in 
understanding the model’s decision-making process.  

Although machine learning models are 
frequently regarded as opaque, the integration of 
SHAP offers a crucial layer of interpretability. This 
feature is especially vital in clinical settings, where it 
assists in pinpointing which risk factors require 
heightened focus. By comprehending these subtleties, 
healthcare professionals can concentrate on pivotal 
variables and make well-informed decisions informed 
by the model’s predictions. 

Nevertheless, our research successfully 
developed effective models that prioritized risk 
factors significantly correlated with lymph node 
metastasis in patients with early gastric cancer (EGC), 
encompassing stages T1a, T1b, and the entire cohort. 
This advancement offers clinicians invaluable 
insights, enhancing their understanding of the 
determinants of lymph node metastasis and assisting 
in the formulation of targeted treatment strategies. 

Conclusion 
The machine learning model holds the potential 

to guide more effective treatment strategies for early 
gastric cancer (EGC), specifically in addressing lymph 
node metastasis (LNM). The identified risk factors 
contribute valuable insights for personalized 
decision-making in the management of EGC patients.  
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