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Abstract

Objective: Lymph node metastasis (LNM) plays a crucial role in informing treatment decisions and
prognosis for early gastric cancer (EGC). This study aimed to offer a practical approach to predict LNM
in EGC by using machine learning algorithms.

Methods: This study collected data from 1085 patients with EGC who underwent radical gastrectomy
with DI+ or D2 lymph node resection. Seven machine-learning algorithms were compared, and
hyperparameters were fine-tuned to identify the model with the best accuracy, Brier class and Area
Under the Curve (AUC). The efficacy of the selected model was evaluated.

Results: Following comparison, the Random Forest (RF), Extreme Gradient Boosting (Boost), and
Neural Network (NNT) models exhibited exemplary performance on the training dataset, with AUC
values of 0.796, 0.788, and 0.779, respectively, on the validation set. We conducted parallel analyses
within the Tla and T1b subgroups, where Logistics Models (LM) and RF yielded AUCs of 0.710 and 0.636
in the T1a validation set, and LM, RF, and Boost achieved AUCs of 0.666, 0.658, and 0.558, respectively in
the T1b validation set. Variable importance analysis utilizing SHAP revealed distinct values for lymph node
metastasis (LNM) in EGC patients, as well as in those stratified into T1a and T1b groups.

Conclusion: The machine learning model holds the potential to guide more effective treatment
strategies for early gastric cancer (EGC), specifically in addressing lymph node metastasis (LNM). The
identified risk factors contribute valuable insights for personalized decision-making in the management of
EGC patients.

Keywords: machine learning, gastric cancer, lymph node metastasis, prognosis, prediction model

Introduction

Gastric cancer (GC) stands as one of the most
frequently diagnosed malignant tumors and ranks as
the third leading cause of cancer-related fatalities in
China [1,2]. Gastric cancer remains a significant global
health concern, and the identification of reliable
prognostic  indicators is crucial for guiding
appropriate therapeutic interventions [3]. Lymph

node metastasis (LNM) plays a crucial role in
determining the prognosis and guiding treatment
decisions for gastric cancer, especially in the context
of early-stage disease [4-6].

Comprehending the clinical and endoscopic
features linked to the probability of LNM is essential
for crafting effective risk stratification models and
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refining patient management strategies [7]. It assumes
a pivotal role in the preliminary assessment of gastric
cancer, offering valuable insights into the tumor's
biological behavior and the likelihood of metastatic
spread. Recognizing specific features associated with
an elevated risk of LNM is crucial for refining
treatment strategies [8,9].

Several models have been  proposed,
incorporating factors such as tumor size, depth of
invasion, histological type, lymphatic invasion, and
molecular markers to predict the probability of lymph
node involvement in early gastric cancer. Among
these, the nomogram appears to be the most popular,
offering a straightforward process yet demonstrating
effective predictive capabilities [10-13].

Recently, with advancements in machine
learning, more effective methods have been
implemented in the field of predicting lymph node
involvement in gastric cancer [11,14]. Efforts are
underway to seamlessly integrate machine learning
predictions into the clinical workflow, thereby
facilitating real-time decision support for healthcare
providers [15,16]. Machine learning holds immense
promise in revolutionizing the prediction of LNM in
EGC. As technology advances and more data becomes
available, the collaboration between medical
professionals and machine learning experts becomes
essential to harness the full potential of these
innovative approaches, ultimately improving patient
outcomes.

This study aims to delve into the intricate
interplay  between clinical and endoscopic
characteristics and their relationship with the
propensity for lymph node involvement in gastric
cancer. Through a comprehensive evaluation of
nuanced features that may indicate a higher risk of
LNM, clinicians can enhance their ability to identify
patients who would benefit most from aggressive
therapeutic approaches. Moreover, integrating
advanced endoscopic techniques allows for a detailed
examination of mucosal and submucosal changes,
offering an opportunity to refine risk stratification
and guide decisions regarding endoscopic resection
versus more extensive surgical interventions. The
findings of this study hold promise for advancing our
understanding of predictive factors, ultimately
contributing to the development of more precise risk
assessment tools and fostering personalized treatment
strategies for patients with gastric cancer.

Methods
Study design
We retrieved records of EGC patients who

underwent radical gastrectomy for gastric cancer with
D1+ or D2 lymph node resection at Sun Yat-Sen

Cancer Center (Guangzhou, China) from January 2012
to March 2021. After screening, 1085 records were
identified, with pathologically confirmed Tla/T1b
stage cases included. Clinical data were extracted
from the electronic health records system at Sun
Yat-Sen University Cancer Center (SYSUCC).

Population and definition

Clinicopathological ~evaluations entailed a
comprehensive review of pertinent medical records,
specifically blood analysis, gastroscopy, and
pathological reports for each participant. Tumor
markers, namely A carcinoma embryonic antigen
(CEA), CA199, CA125, CA153, and alpha-fetoprotein
(AFP), were extracted from the blood analyses.
Gastroscopy data, inclusive of tumor localization,
were extracted from the respective reports.
Pathological outcomes furnished critical information
concerning invasion depth (T1la/T1b), histological
type, Lauren classification, tumor dimensions, and
ulcerative status. The clinical attributes of
participants, encompassing gender, age, body mass
index (BMI), and personal pathological history, were
systematically documented.

The tumors were classified histologically
according to the World Health Organization's
Classification of Tumors. Differentiated gastric cancer
included well-differentiated adenocarcinoma,
moderately differentiated adenocarcinoma, and
papillary adenocarcinoma. Undifferentiated gastric
cancer included poorly differentiated
adenocarcinoma, signet-ring cell carcinoma, and
mucinous adenocarcinoma [17]. The macroscopic
types of the tumor were classified according to the
Japanese classification of gastric carcinoma. Special
pathological types, such as Gastric Fundic Gland
Adenocarcinoma, were categorized and summarized
under the designation “others.”

The delineated exclusion criteria encompassed 1.
patients with antecedent history of neoadjuvant
therapy, 2. individuals manifesting two or more
primary cancer types, inclusive of gastric and/or
other malignancies, 3. patients with antecedent
history of cancer or remnant gastric cancer, 4. patients
presenting with distant metastasis, and 5. those with
incomplete preoperative evaluations (variables
demonstrating > 25% information deficit), clinical
parameters such as blood analysis, gastroscopy
pathological reports, and/or pathological outcomes.
These exclusion criteria were systematically applied
to the implementation of machine learning (ML)
models.

Clinicopathological ~evaluations entailed a
comprehensive review of pertinent medical records,
specifically blood analysis, gastroscopy, and
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pathological reports for each participant. Tumor
markers, namely CEA, CA199, CA125, CA153, and
AFP, were extracted from the blood analyses.
Gastroscopy data, inclusive of tumor localization,
were extracted from the respective reports.
Pathological outcomes furnished critical information
concerning invasion depth (Tla/T1b), histological
type, Lauren classification, tumor dimensions, and
ulcerative status. The clinical attributes of
participants, encompassing gender, age, body mass
index (BMI), and personal pathological history, were
systematically documented.

Statistical analysis

Descriptive  statistics were employed to
summarize the characteristics of the study population.
Mean and standard deviation were utilized for
continuous variables demonstrating a normal
distribution, whereas median and interquartile range
(IQR) were employed for non-normally distributed
variables. Categorical variables were presented as
frequencies and percentages. Two-sided P values less
than 0.05 were considered statistically significant.
Variables with a p-value less than 0.1 were selected
for inclusion in the multivariable analysis.

As not all variables exhibited an effect in
predicting LNM, we conducted variable and feature
selection using the Boruta method. This method
employs an algorithm wrapper built around the
random forest classifier and was implemented using
the R package Boruta [18]. The Boruta method
generated a corresponding “shadow” attribute, where
values were obtained by shuffling the values of the
original attribute across objects, and non-zero values
could only result from random fluctuations.
Subsequently, the importance of all variables was
computed, and the set of importance higher than the
shadow was considered confirmed as important,
while those lower were rejected. This process aids in
distinguishing genuinely important features from
those that could arise by chance.

The imbalance in our dataset, with a majority of
NO patients, posed a challenge for model
performance, particularly in identifying high-risk
LNM positive (N+) patients. To address this, we
employed the Synthetic Minority Over-sampling
Technique (SMOTE) using the “themis” package in R.
Specifically, we utilized the step_smotenc function,
setting the over_ratio parameter to 0.25. This
approach effectively increased the number of N+
samples to 25% of the NO sample count, thereby
balancing the dataset.

The statistical analyses and machine learning
models encompassed association analyses and the
application of seven supervised ML classifiers. These

classifiers included logistic regression with lasso or
elastic net regularization (Logistic), support vector
classifier (SVC), extreme gradient boosting (XGBoost),
random forest classification (RF), K-Nearest
Neighbors (KNN), decision trees (DT), and neural
network models (NNET). The models were trained
using the aforementioned algorithms, each subjected
to a number of tuning parameters, and were
subsequently evaluated based on the Receiver
Operating Characteristic Area Under the Curve
(ROC-AUC). Subsequently, the data was partitioned
into a training set and a validation set with a 3:1 ratio.
The model with the highest AUC was selected for
training on the training set and validation on the
validation set. ROC curve, calibration plot, and
decision curve analyses were then conducted to
evaluate the model. To determine the order of
importance in the model, the SHAP (SHapley
Additive exPlanations) method [19] was employed to
compute the importance score.

The data analysis was conducted using the R
language version 4.3.2.

Results

The baseline characteristics of the patients

The baseline clinical characteristics of the entire
patient cohort are detailed in Table 1, including
findings from both univariable and multivariable
analyses. Female patients with early-stage gastric
cancer showed a higher propensity for lymph node
metastasis (LNM), with this trend being statistically
significant in both univariable and multivariable
analyses (p < 0.001). Patients with LNM (Group N+)
tended to be slightly younger than those without
metastasis (Group NO), with mean ages of 54+12 years
and 5611 years, respectively. This age difference was
evident in the univariable analysis (p=0.006) and was
further confirmed in the multivariable analysis (p =
0.007). Although the tumor diameter in the NO group
was smaller compared to the N+ group (2.43+1.96 cm
vs. 2.64+1.93 cm, p = 0.022), this difference did not
attain statistical significance in the logistic regression
analysis. Significant differences were also noted in the
macroscopic classification between the two groups,
with the 0-Ila type being less likely to exhibit LNM
compared to the O-I type (OR 0.17, 95% CI 0.02 to
0.90). Additionally, CA 199, HLG, pathological type,
Lauren classification, T stage, lymphovascular
invasion (LVI), and perineural invasion (PI) showed
significant differences in the univariable analysis. Of
these, the differences in pathological type, T stage,
LVI, and PI were further confirmed to be significant in
the logistic regression analysis.
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Table 1. Baseline characteristics of the total patients with both T stage 1a and 1b.

Univariable Multivariable
Characteristic NO, N = 8681 N+, N = 2171 p-value? OR3 95% CI3 p-value
Sex <0.001 <0.001
F 304 (35%) 116 (53%) - -
M 564 (65%) 101 (47%) 0.43 0.30, 0.63
Age 56111 54+12 0.006 0.98 0.96, 0.99 0.007
Diameter 2.43+1.96 2.64+1.93 0.022 1.05 0.97,1.14 0.20
Tumor type 0.012 0.043
0-I 20 (2.3%) 8 (3.7%) - —
0-Ila 34 (3.9%) 2(0.9%) 0.17 0.02, 0.90
0-1Tb 185 (21%) 34 (16%) 0.48 0.18,1.37
0-Ilc 4 (0.5%) 0(0%) 0.00
0-I1T 34 (3.9%) 5(2.3%) 0.51 0.10, 2.35
Borrmann I 60 (6.9%) 15 (6.9%) 0.64 0.21,2.02
Borrmann IT 444 (51%) 116 (53%) 1.28 0.28,5.74
Borrmann III 70 (8.1%) 32 (15%) 2.35 0.48,11.4
Borrmann IV 17 (2.0%) 5(2.3%) 0.36 0.07, 1.64
Ulcer 0.063 0.32
No 331 (38%) 68 (31%) - -
Ulcer 537 (62%) 149 (69%) 0.54 0.17,1.85
Location 0.7
L 549 (63%) 131 (60%)
M 244 (28%) 67 (31%)
U 75 (8.6%) 19 (8.8%)
CEA 247+3.22 2.83+6.04 0.090 1.02 0.99, 1.06 0.20
CA199 261216 384227 0.037 1.00 1.00, 1.00 0.82
CA724 3.1249.78 3.55+7.10 0.7
LDH 162430 164136 >0.9
Albumin 43.7+19.2 42.5+3.7 0.10 0.97 0.92,1.00 0.11
CRP 4.8+384 13.0+137.0 0.3
HLG 134421 129420 <0.001 1.00 0.99,1.01 0.82
Pathology <0.001 0.043
Poor 589 (68%) 177 (82%) - -
Special 15 (1.7%) 7 (3.2%) 1.78 0.61,4.79
Well 264 (30%) 33 (15%) 0.53 0.30,0.92
Lauren <0.001 0.15
Intestinal 363 (42%) 66 (30%) - -
Mix 187 (22%) 73 (34%) 1.18 0.70,1.98
Diffuse 318 (37%) 78 (36%) 0.78 0.46,1.32
T stage <0.001 <0.001
Tla 440 (51%) 56 (26%) - -
Tib 428 (49%) 161 (74%) 2.44 1.70,3.54
Vascular Invasion <0.001 <0.001
Present 13 (1.5%) 37 (17%) - -
Absent 855 (99%) 180 (83%) 0.12 0.06, 0.24
Nerve Invasion <0.001 0.025
Present 6(0.7%) 9 (4.1%) - -
Absent 862 (99%) 208 (96%) 0.24 0.07, 0.83
BMI 22.6+13.1 23.7+31.8 0.4

n (%); Mean£SD; 2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test; 30OR = Odds Ratio, CI = Confidence Interval

Among the 496 patients with T stage 1a disease,
56 had positive lymph nodes. A significant trend was
observed among female patients with T stage 1a, who
had a higher prevalence of LNM in both univariate (p
< 0.001) and multivariate (p = 0.011) analyses. In
contrast, patients without LNM were significantly
older, with a mean age of 55+12 years compared to

51+12 years (p = 0.012), although this age difference
did not remain statistically significant in the
multivariate analysis. The impact of pathology type
on LNM was also noted, with poorly differentiated
gastric cancer being the predominant type associated
with LNM in the univariable analysis (p < 0.001), but
this association was not sustained in the multivariate
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analysis (p = 0.19). In a comprehensive analysis, both
the Lauren classification and the presence of vascular
invasion were identified as independent risk factors
for LNM in both univariable and multivariate
analyses.

In the analysis of 589 patients with T stage 1b
disease, 161 of whom had LNM (Table 3), it was
found that female patients were more predominantly

multivariable analyses. Younger age emerged (58+11
vs 55+12) as an independent risk factor for LNM in
patients in both univariable (p = 0.014) and
multivariable analyses (p = 0.029), as did the presence
of vascular and nerve invasions. However, despite
significant differences in CA199, HLG, and
differentiation type in the univariable analysis, the
multivariable analysis did not reveal these factors to

affected by LNM

in both univariable

be statistically significant.

Table 2. Baseline characteristics of the patients with T stage of la.

Univariable Multivariable
Characteristic Overall, N = 496! 0, N = 4401 1, N =561 p-value2 OR3 95% CI3 p-value
Sex <0.001 0.011
F 214 (43%) 178 (40%) 36 (64%) - -
M 282 (57%) 262 (60%) 20 (36%) 0.38 0.17,0.80
Age 55412 55412 51+12 0.012 0.98 0.95,1.01 0.24
Diameter 2.34+1.55 2.33+1.60 2.43+1.09 0.12 0.97 0.76,1.21 0.79
Tumor type 0.22 0.067
0-1 14 (2.8%) 13 (3.0%) 1(1.8%) — —
0-Ila 26 (5.2%) 26 (5.9%) 0(0%) 0.00 NA
0-IIb 124 (25%) 109 (25%) 15 (27%) 249 0.37,50.2
0-Ilc 3(0.6%) 3(0.7%) 0(0%) 0.00 NA
0-I1T 25 (5.0%) 23 (5.2%) 2 (3.6%) 0.71 0.02,25.4
Borrmann I 25 (5.0%) 24 (5.5%) 1(1.8%) 1.07 0.04,31.5
Borrmann II 226 (46%) 198 (45%) 28 (50%) 2.10 0.09, 68.9
Borrmann III 42 (8.5%) 33 (7.5%) 9 (16%) 4.89 0.18,179
Borrmann IV 11 (2.2%) 11 (2.5%) 0 (0%) 0.00 NA
Ulcer 0.089 0.78
No 212 (43%) 194 (44 %) 18 (32%) - -
Ulcer 284 (57%) 246 (56%) 38 (68%) 1.36 0.18,19.4
Location 0.6
L 335 (68%) 297 (68%) 38 (68%)
M 138 (28%) 121 (28%) 17 (30%)
U 23 (4.6%) 22 (5.0%) 1(1.8%)
CEA 2.4043.71 2.4613.91 1.88+1.32 0.054 0.93 0.70,1.14 0.55
CA199 25+202 274215 1349 0.6 0.99 0.96, 1.00 0.40
CA724 3.13+8.96 3.1549.40 2.99+4.27 0.7
LDH 162431 162430 163438 0.9
Albumin 42.9+3.2 43.043.3 426125 0.2 0.94 0.85,1.05 0.30
CRP 9.24+102.76 5.45+51.98 39.07+269.15 0.9
HLG 133420 133420 130£15 0.053 1.00 0.98,1.02 0.79
Pathology <0.001 0.19
Poor 345 (70%) 296 (67 %) 49 (88%) - -
Special 11 (2.2%) 8 (1.8%) 3(5.4%) 241 0.47,9.70
Well 140 (28%) 136 (31%) 4(7.1%) 0.34 0.06, 1.50
Lauren <0.001 <0.001
Intestinal 175 (35%) 169 (38%) 6 (11%) — —
Mix 100 (20%) 74 (17%) 26 (46%) 491 1.51,19.9
Diffuse 221 (45%) 197 (45%) 24 (43%) 1.34 0.40, 5.61
Vascular Invasion 0.013 <0.001
Present 2(0.4%) 0(0%) 2(3.6%) - -
Absent 494 (100%) 440 (100%) 54 (96%) 0.00
Nerve Invasion >0.9 0.57
Present 1(0.2%) 1(0.2%) 0(0%) — —
Absent 495 (100%) 439 (100%) 56 (100%) 20,442,763 0.00, NA
BMI 21.756.39 21.7846.71 21.47+3.01 0.5

n (%); Mean£SD; 2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test; OR = Odds Ratio, CI = Confidence Interval
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Table 3. Baseline characteristics of the patients with T stage of 1b.

Univariable Multivariable
Characteristic Overall, N = 5891 0, N = 4281 1, N =1611 p-value2 OR3 95% CI3 p-value
Sex <0.001 <0.001
F 206 (35%) 126 (29%) 80 (50%) — -
M 383 (65%) 302 (71%) 81 (50%) 0.44 0.28, 0.68
Age 57411 58411 55412 0.014 0.98 0.96, 1.00 0.029
Diameter 2.58+2.24 2.53+2.27 2724215 0.2 1.06 0.97,1.16 017
Tumor type 0.11 0.12
0-1 14 (2.4%) 7 (1.6%) 7 (4.3%) — -
0-1la 10 (1.7%) 8 (1.9%) 2 (1.2%) 0.21 0.02,1.58
0-1Ib 95 (16%) 76 (18%) 19 (12%) 0.22 0.06, 0.81
0-Ilc 1(0.2%) 1(0.2%) 0(0%) 0.00
0-I11 14 (2.4%) 11 (2.6%) 3 (1.9%) 0.47 0.05, 3.39
Borrmann I 50 (8.5%) 36 (8.4%) 14 (8.7%) 0.46 0.12,1.77
Borrmann IT 334 (57%) 246 (57%) 88 (55%) 1.33 0.17,10.5
Borrmann IIT 60 (10%) 37 (8.6%) 23 (14%) 226 0.27,19.3
Borrmann IV 11 (1.9%) 6(1.4%) 5(3.1%) 0.26 0.04,1.70
Ulcer 0.8 0.19
No 187 (32%) 137 (32%) 50 (31%) — -
Ulcer 402 (68%) 291 (68%) 111 (69%) 0.32 0.06,1.74
Location 0.8
L 345 (59%) 252 (59%) 93 (58%)
M 173 (29%) 123 (29%) 50 (31%)
U 71 (12%) 53 (12%) 18 (11%)
CEA 2.67+4.13 2.48+2.31 3.17+6.94 0.2 1.05 1.0,1.12 0.083
CA199 314231 254217 461263 0.028 1.00 1.00, 1.00 0.80
CA724 3.319.6 3.1+10.2 3.7¢7.9 0.5
LDH 164132 163431 164435 0.9
Albumin 44.04£23.3 4454272 424440 0.3 0.98 0.93,1.00 0.24
CRP 4.1413.6 4.1414.7 4.019.9 0.5
HLG 133422 134422 129421 0.002 1.00 0.99,1.01 0.74
Pathology 0.009 0.17
Poor 421 (71%) 293 (68%) 128 (80%) — —
Special 11 (1.9%) 7 (1.6%) 4(2.5%) 1.39 0.31,5.54
Well 157 (27%) 128 (30%) 29 (18%) 0.56 0.30, 1.04
Lauren 0.2 0.64
Intestinal 254 (43%) 194 (45%) 60 (37%) — —
Mix 160 (27 %) 113 (26%) 47 (29%) 0.77 0.42,1.40
Diffuse 175 (30%) 121 (28%) 54 (34%) 0.77 0.42,1.42
Vascular Invasion <0.001 <0.001
Present 48 (8.1%) 13 (3.0%) 35 (22%) — -
Absent 541 (92%) 415 (97%) 126 (78%) 0.15 0.07,0.30
Nerve Invasion 0.004 0.013
Present 14 (24%) 5(1.2%) 9(5.6%) - -
Absent 575 (98%) 423 (99%) 152 (94%) 0.20 0.05,0.71
BMI 23.8424.2 23.5+17.3 24.5+36.8 0.3

n (%); Mean£SD; 2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test; 30OR = Odds Ratio, CI = Confidence Interval

Variable selection, model comparison,
training, and validation of the total cohort

The Boruta feature selection method confirmed
the following features as crucial, with “"HLG”, “SEX”,
“Nerve invasion”, “T stage”, “Lauren type”,
“Pathology”, and “Vascular invasion” emerging as
the most important in ascending order (Figure 1A).
Importantly, these selected variables consistently
demonstrated greater significance in each iteration

compared to the shadow variables, which are used as
a control to assess the importance of the original
features.

A multitude of models, incorporating various
parameters and machine learning algorithms, were
developed using the training datasets. These models
were evaluated and ranked based on their accuracy,
Brier score, and Area Under the Curve (AUC), as
shown in Figure 1B. Notably, three models stood out
as the most effective: Extreme Gradient Boosting
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(Boost), Random Forest (RF), and Neural Network
(NNT). The corresponding AUC values for the Boost,
RF, and NNT models were 0.796, 0.788, and 0.779,
respectively (Figure 1C) in the validation set,
indicating considerable predictive performance.

The calibration plot (Figure 1D) revealed that the
NNT and RF models exhibited better reliability,

suggesting that their predicted probabilities were
more closely aligned with the observed outcomes. In
contrast, the decision curve analysis (Figure 1E)
indicated that the Boost model was more
cost-effective across a wider range of threshold
probabilities, suggesting its potential clinical utility in
decision-making.
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Figure 1. A. Boxplot of Variable Importance Selected by Boruta Algorithm: This boxplot displays the importance of variables selected by the Boruta algorithm; B. Model
Performance in Training Set: The bar chart presents the accuracy, Brier score, and ROC AUC (Area Under the Curve) for seven models trained in the training set. These metrics
are used to evaluate the efficacy of the models in predicting the outcome of interest; C. ROC Curves for Boost (XGBoost), RF (Random Forest), and NNT (Neural Network)
in the validation set: The ROC curves for Boost, RF, and NNT models are shown, with the corresponding AUC values of 0.796, 0.788, and 0.779, respectively; D. Calibration
Curves for Boost, RF, and NNT: The calibration curves for the three models are presented, which show the agreement between the predicted probabilities and the actual
outcomes. A well-calibrated model has predicted probabilities that closely match the observed frequencies; E. Decision Curves for Boost, RF, and NNT: The decision curves for
the three models are displayed, illustrating the net benefit of using the models at different threshold probabilities. The decision curve analysis helps to assess the clinical utility of
the models by considering the trade-off between the benefits and harms of treatment; F, G, H. Variable Importance Based on SHAP Values for Boost, RF, and NNT Models: The
plots show the variable importance calculated using SHAP (SHapley Additive exPlanations) values for the Boost, RF, and NNT models, respectively. Each bar represents a variable,
with the X-axis indicating the SHAP value, which measures the impact of each variable on the model’s predictions.
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The SHapley Additive exPlanations (SHAP)
method was employed to compute the importance of
variables, as illustrated in Figures 1F, 1G, and 1H.
This analysis demonstrated the varying degrees of
influence that each variable had on the three models.
Although the variables differed in their rankings, “T
stage”, “sex”, “pathology type”, “vascular invasion”,
and “HLG” consistently emerged as the top variables
with significant weight across the models. This
highlights their importance in predicting the outcome
of interest.
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The Boruta feature selection method identified
the following features as crucial, with ‘Sex’, ‘CA724’,
“Vascular invasion’, ‘CRP’, ‘Albumin’, ‘BMI’, ‘“Tumor
Diameter’, ‘LDH’, ‘Pathology’, ‘Age’, 'HLG’, and
‘Lauren type’ emerging as the most important in
ascending order (Figure 2A).
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Figure 2. A. Boxplot of Variable Importance Selected by Boruta Algorithm: This boxplot displays the importance of variables selected by the Boruta algorithm; B. Model
Performance in Training Set: The bar chart presents the accuracy, Brier score, and ROC AUC (Area Under the Curve) for seven models trained in the training set. These metrics
are used to evaluate the efficacy of the models in predicting the outcome of interest; C. ROC Curves for LM (Logistics Models), RF (Random Forest) in the validation set: The
ROC curves for LM and RF are shown, with the corresponding AUC values of 0.710, and 0.636, respectively; D. Calibration Curves for LM and RF: The calibration curves for the
three models are presented, which show the agreement between the predicted probabilities and the actual outcomes. A well-calibrated model has predicted probabilities that
closely match the observed frequencies; E. Decision Curves for LM and RF: The decision curves for the three models are displayed, illustrating the net benefit of using the models
at different threshold probabilities. The decision curve analysis helps to assess the clinical utility of the models by considering the trade-off between the benefits and harms of
treatment; F, G. Variable Importance Based on SHAP Values for LM and RF models: The plots show the variable importance calculated using SHAP (SHapley Additive
exPlanations) values for the LM and RF models, respectively. Each bar represents a variable, with the X-axis indicating the SHAP value, which measures the impact of each variable
on the model’s predictions.
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Models evaluated and ranked based on
accuracy, Brier score, and Area Under the Curve
(AUC), as shown in Figure 2B, selected the logistics
models (LM) and RF. The corresponding AUC values
of which were 0.710 and 0.636, respectively, in the
validation set (Figure 2B).

The calibration plot (Figure 2D) revealed the
similar reliability of the two models, and the decision
curve analysis (Figure 2E) indicated that the two
models only worked effectively in a specific range of
area to the threshold probability.

The SHapley Additive exPlanations (SHAP)
method, illustrated in Figures 2F and 2G,
demonstrated “Lauren type”, “Pathology type”,
“sex”,“ Albumin”, “Vascular invasion”, and “CA 724"
as the variables with significant weight across both
models, while the RF models considered more
variables significantly in the prediction.

Variable selection, model comparison,
training, and validation of the T stage 1b
cohort

The Boruta feature selection method identified
‘CEA’, ‘Sex’, ‘Nerve invasion’, “CRP’, ‘Lauren type’,
‘Pathology’, "HLG’, and ‘Vascular invasion’ as the
most crucial features for predicting gastric cancer
prognosis, ranked in ascending order of importance
(Figure 3A).

Models were evaluated and ranked based on
accuracy, Brier score, and Area Under the Curve
(AUC). As depicted in Figure 3B, the Random Forest
(RF), Boosting, and Logistics Model (LM) were
selected. Their corresponding AUC values in the
validation set were 0.658 for RF, 0.558 for Boosting,
and 0.666 for LM (Figure 3B).

The calibration plot (Figure 3D) revealed that the
reliability of the three models was similar, with none
performing exceptionally well. The decision curve
analysis (Figure 3E) indicated that the RF model was
more effective over a wider range of threshold
probabilities.

The SHapley Additive exPlanations (SHAP)
method, illustrated in Figures 3F, 3G, and 3H,
demonstrated that the weight of the variables was
quite different between the LM and the RF and Boost
models. This suggests that each model considered
different factors or interactions among factors in
making predictions.

Discussion

Early gastric cancer is linked to the risk of lymph
node metastasis (LNM), a crucial factor in
determining prognosis and guiding treatment

strategies. Various clinical and pathological factors
play a role in evaluating the probability of lymph

node involvement in cases of early gastric cancer.
Based on our findings in the current study, sex, age,
macroscopic type, tumor depth, lympho-vascular
invasion (LVI), and perineural invasion (PI)
demonstrated significance in both univariable and
multivariable analyses. The results confirmed that
these factors are independent risk factors for lymph
node metastasis (LNM) in patients with early gastric
cancer (EGA). In our study, it was observed that
female patients encountered greater challenges
related to lymph node metastasis, consistent with
previous reports [20,21]. This underscores clinicians'
importance in prioritizing female patients and
considering adopting a potentially more aggressive
treatment strategy.

Additionally, for the whole cohort, our analysis
identified age as an independent risk factor, with
younger patients appearing to have a higher risk of
lymph node metastasis (LNM), aligning with findings
from previous literature [22]. This observation can be
attributed to the higher likelihood of younger patients
having aggressive tumor characteristics. Specifically,
gastric cancer in younger individuals often presents
with poorly differentiated tumors and is commonly of
the mixed or diffuse Lauren type, in contrast to the
more differentiated tumors and Lauren intestinal type
typically observed in older patients [23,24].
Furthermore, the macroscopic type, as for the
Japanese classification of gastric carcinoma, emerged
as an independent risk factor, indicating its close
association with prognosis and, consequently, its
potential influence on treatment strategy [25]. Tumor
depth exhibited a significant correlation with lymph
node metastasis (LNM) [26]. As the tumor progresses
in depth, there is an increased likelihood of breaching
the lymphatic vessels, facilitating the dissemination of
cancer cells to regional lymph nodes.
Lymphovascular invasion (LVI) and perineural
invasion (PI) were established as independent risk
factors through various analyses [8,10,27]. The
lymphatic vessels act as a conduit for cancer cells to
migrate from the primary tumor site to adjacent
lymph nodes, providing these cells with entry into the
lymphatic system and facilitating their dissemination
to regional lymph nodes. The presence of
lymphovascular invasion (LVI) indicates a more
aggressive tumor behavior and a heightened risk of
systemic spread. Perineural invasion (PI) entails the
infiltration of cancer cells into the perineural space,
enabling them to utilize nerve fibers as a pathway for
local spread [28]. When cancer cells invade nerves,
they may follow nerve pathways to reach nearby
lymph nodes. Pl is often regarded as a marker of more
aggressive  tumor behavior. Conversely, the
microenvironment surrounding nerves contains
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neurotrophic factors that may attract and support the  validation dataset. Utilizing SHapley Additive
growth of cancer cells. exPlanations (SHAP), we elucidated the substantial

In the T1a group, historically regarded as having ~ impact of Lauren classification and pathology on both
a low probability of lymph node metastasis (LNM), the logistic regression (LM) and random forest (RF)
the observed LNM rate was 11.2% (56 out of 496  models. Multivariable analysis indicated an odds ratio
cases), challenging the previous understanding. The  of 4.91 (95% confidence interval: 1.51, 19.9) for
model demonstrated robust performance in the  mixed-type tumors versus intestinal-type tumors,
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Figure 3. A. Boxplot of Variable Importance Selected by Boruta Algorithm: This boxplot displays the importance of variables selected by the Boruta algorithm; B. Model
Performance in Training Set: The bar chart presents the accuracy, Brier score, and ROC AUC (Area Under the Curve) for seven models trained in the training set. These metrics
are used to evaluate the efficacy of the models in predicting the outcome of interest; C. ROC Curves for LM, RF and Boost in the validation set: The ROC curves for LM, RF and
Boost models are shown, with the corresponding AUC values of 0.666, 0.658 and 0.558, respectively;D. Calibration Curves for LM, RF, and Boost: The calibration curves for the
three models are presented, which show the agreement between the predicted probabilities and the actual outcomes. A well-calibrated model has predicted probabilities that
closely match the observed frequencies; E. Decision Curves for LM, RF and Boost: The decision curves for the three models are displayed, illustrating the net benefit of using the
models at different threshold probabilities. The decision curve analysis helps to assess the clinical utility of the models by considering the trade-off between the benefits and harms
of treatment; F, G, H. Variable Importance Based on SHAP Values for Boost, RF, and NNT Models: The plots show the variable importance calculated using SHAP (SHapley
Additive exPlanations) values for the Boost, RF, and NNT models, respectively. Each bar represents a variable, with the X-axis indicating the SHAP value, which measures the
impact of each variable on the model’s predictions.
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affirming the elevated risk associated with
mixed-type tumors, in line with previous findings
[29], Similarly, poorly differentiated carcinomas also
exhibited an increased risk, [30]. Lymphovascular
invasion (LVI) was observed infrequently in the Tla
group (2 out of 496 cases), reflecting a low incidence
of LVI in patients with cancer limited to the mucosal
layer. Notably, both Tla patients with positive LVI
were subsequently confirmed to have lymph node
metastasis (N+) following surgery. This finding
underscores LVI as a potent risk factor for Tla
patients. Despite its clinical significance, LVI did not
carry substantial weight in the SHAP analysis,
revealing a discrepancy between its actual risk and
the model's representation. A technical explanation
for the discrepancy between the clinical significance
of Lymphovascular Invasion (LVI) and its low
importance in the SHAP analysis was due to the
limited number of LVI+ cases, which may not provide
enough examples for the model to learn the pattern
associated with LVI as a strong predictor of LNM.
Additionally, SHAP values were based on the average
marginal contribution of a feature, which may not
fully capture the impact of rare events like LVI. This
affected the model’s reliability in guiding critical
decisions, such as refining risk stratification for
endoscopic resection versus surgical intervention.
Clinicians should be cautious when interpreting the
model’s predictions, especially in cases involving rare
events with strong clinical significance. Further
research is needed to develop models that can better
handle rare events and their clinical significance.

In the T1b subgroup, the observed lymph node
metastasis (LNM) rate was 27.3% (161 out of 589
cases). The models developed for this group
demonstrated less efficacy compared to those for the
Tla group and the overall cohort. There was
considerable variation in the rankings of variable
importance among the boosting, logistic regression
(LM), and random forest (RF) models. Notably, while
lymphovascular invasion (LVI) and perineural
invasion (PI) were both identified as independent risk
factors in both univariate and multivariate analyses,
the relative importance of LVI varied across the
different models. Furthermore, PI was not
consistently ranked as a high-importance variable
across all models.

The observed lack of efficacy in the T1b
subgroup models, as compared to the Tla group and
overall cohort models, may be attributed to several
factors. Machine learning methods provide predictive
model weights from a computational perspective.
However, due to limitations such as sample size
constraints and data heterogeneity, variables that are
clinically considered more relevant may not exert as

significant an influence on model predictions as those
deemed less relevant. This underscores the need for
further validation of the selected model variables
through molecular biology.

The variability in variable importance rankings,
particularly for lymphovascular invasion (LVI) and
perineural invasion (PI), across different models in the
T1b subgroup suggests that these factors may have
different levels of impact on LNM in this specific
subgroup. This variability could stem from the
inherent complexity and heterogeneity of the Tlb
subgroup, as well as the differences in model
algorithms and feature selection methods used. While
LVI and PI are highly correlated with LNM risk, as
confirmed in both univariate and multivariate
analyses, their weights in the predictive model may be
lower due to sample size and data heterogeneity.
Therefore, further research is necessary to identify
more clinically valuable predictive variables.

The advancements in machine learning have led
to the development of more accurate and efficient
models for diagnosing specific clinical issues.
Although its application has been predominantly in
the fields of omics and artificial intelligence [31], it has
also demonstrated promising efficacy in traditional
clinical research [32]. Particularly, the application of
explainable machine learning allows us to understand
the importance of various variables within a model,
enabling a better comprehension of the relationship
between variables and phenotypes.

Boruta is a feature selection method employed in
machine learning, specifically designed to identify
and choose crucial features within a dataset by
comparing them to shadow attributes [33]. This
method proves valuable when dealing with
high-dimensional datasets, where not all features
significantly contribute to the model's performance.
Utilizing a random forest classifier, Boruta is a
non-linear approach capable of capturing complex
relationships and interactions between features,
aspects that may be overlooked by linear methods
such as Lasso Regression. One notable strength of
Boruta lies in its enhanced robustness to
multicollinearity, a condition of high correlation
between features. In contrast, Lasso Regression may
arbitrarily select one variable over another in the
presence of high correlation, potentially leading to
instability in variable selection. Additionally, Boruta
adopts a model-agnostic approach, refraining from
assuming a specific form of the relationship between
features and the target variable. This flexibility
enables its application across various types of models.

It is crucial to acknowledge that while Boruta is a
powerful tool, it may exhibit overfitting tendencies on
the training data. Multiple iterations were employed
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to thoroughly assess its effectiveness in the present
study to avoid this problem.

As  the machine learning  algorithm
demonstrated dataset agnosticism, the performance of
a specific model could vary across different scenarios.
To address this, we systematically evaluated the
performance of various algorithms and fine-tuned the
hyperparameters of selected models. The goal was to
identify the model with the highest Area Under the
Curve (AUC) during the ROC curve analysis.

Although the ROC curve analysis indicated
satisfactory performance of these models on the test
set, further examination through calibration plots
revealed discrepancies, with several predictions
deviating from the observed outcomes in both the
training and test sets. This discrepancy may be
attributed to the fact that the sensitivities were
relatively low while specificities were high.

An analysis of the imbalance in the dataset sheds
light on a potential cause for the discrepancy. The
majority of the dataset comprised NO patients, leading
the model to adopt a strategy that predicted more
patients in the NO group. This strategy aimed to
enhance the AUC, implying that the model prioritized
correctly predicting the majority of NO patients.
However, this strategy might have contributed to
lower sensitivities, impacting the overall predictive
accuracy. The computed importance of variables by
the Boruta method and the SHA methods exhibited
notable differences. SHAP is a model-agnostic
algorithm used to explain the output of any machine
learning model. It assigns each feature an importance
value for a particular prediction, which helps in
understanding the model’s decision-making process.

Although machine learning models are
frequently regarded as opaque, the integration of
SHAP offers a crucial layer of interpretability. This
feature is especially vital in clinical settings, where it
assists in pinpointing which risk factors require
heightened focus. By comprehending these subtleties,
healthcare professionals can concentrate on pivotal
variables and make well-informed decisions informed
by the model’s predictions.

Nevertheless, our research  successfully
developed effective models that prioritized risk
factors significantly correlated with lymph node
metastasis in patients with early gastric cancer (EGC),
encompassing stages Tla, T1b, and the entire cohort.
This advancement offers clinicians invaluable
insights, enhancing their understanding of the
determinants of lymph node metastasis and assisting
in the formulation of targeted treatment strategies.

Conclusion

The machine learning model holds the potential

to guide more effective treatment strategies for early
gastric cancer (EGC), specifically in addressing lymph
node metastasis (LNM). The identified risk factors
contribute valuable insights for personalized
decision-making in the management of EGC patients.
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