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Abstract 

Background: Pre-existing atrial fibrillation (AF) and postoperative new-onset AF (NOAF) are independent 
perioperative risk factors associated with increased short-term mortality and adverse events. This study aimed 
to develop and validate an artificial intelligence (AI) model capable of detecting hidden AF, including both 
pre-existing AF and NOAF, from sinus rhythm electrocardiograms, to improve perioperative risks assessment.  
Methods: We trained and validated an AI model to detect hidden AF. Subsequent analysis confirmed the 
prognostic relevance of both pre-existing AF and NOAF in patients receiving non-cardiac surgery. The AI 
model was applied to patients without known AF to evaluate its predictive capability for NOAF and to stratify 
short-term clinical outcomes. 
Results: The AI model demonstrated an area under the receiver operating characteristic curve of 0.87 during 
the development phase for predicting AF. In an independent validation cohort, pre-existing AF and 
postoperative NOAF were significantly correlated with increased 30-day all-cause mortality. Patients without 
pre-existing AF who were classified as high-risk by the AI model had substantially higher 30-day all-cause 
mortality than their low-risk counterparts (HR 17.33, 95% CI 5.29–56.75). Furthermore, the model scores 
surpassed conventional clinical risk scores in predicting NOAF and 30-day all-cause mortality. 
Conclusions: This AI-based approach facilitated the accurate identification of patients with elevated 
perioperative AF-related risk. It will facilitate focused interventions that may enhance clinical outcomes. 

Keywords:  atrial fibrillation, artificial intelligence, Mortality Risk 

Introduction 
Atrial fibrillation (AF) is the most common and 

underdiagnosed arrhythmia, and it is associated with 
elevated risks of mortality, ischemic stroke, heart 
failure, and dementia.[1-3] As a progressive 
condition, AF develops through a sequence of 

electrical, structural, and autonomic remodeling.[4-6] 
Given that “AF begets AF,” early diagnosis has 
become essential in managing arrhythmia.[7] 
Adequate treatment can slow disease progression, 
reduce complication risks, and minimize healthcare 
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costs.[8-10] 
Despite ongoing efforts, the underdiagnosis of 

AF is estimated at approximately 15%, with half of 
these patients having moderate-to-high risk of AF.[11] 
Several studies showed that patients with new-onset 
AF (NOAF) have atrial substrate and autonomic 
remodeling similar to those with established AF.[5, 
12-15] Among patients undergoing surgery, 
preoperative pre-existing AF (pre-AF) and 
postoperative NOAF are independent risk factors that 
increase the risks of short-term mortality, ischemic 
stroke, myocardial infarction, and heart failure.[16-20] 
However, undiagnosed pre-AF and the unpredictable 
nature of postoperative NOAF present significant 
challenges for anticipating or mitigating AF-related 
surgical risks. 

Several risk schemes have been developed to 
accurately predict NOAF.[21-24] All these scores 
require detailed clinical information and are limited to 
predicting long-term NOAF. In recent years, several 
deep learning models (DLM) have been developed to 
predict NOAF using a current sinus rhythm (SR) 
electrocardiogram (ECG), demonstrating impressive 
predictive capabilities.[25-28] These studies have 
demonstrated that elevated AI-ECG predicted AF 
score are independently associated with higher risk of 
mortality and adverse cardiovascular outcomes, even 
in patients without a clinical diagnosis of AF at 
baseline. 

 Focusing on postoperative NOAF, existing 
model specifically have showed limited performance. 
A possible reasons is under diagnosis of postoperative 
NOAF, which makes the model training inaccurate. 
Therefore, we developed a DLM, AI-ECG, to detect 
patients with hidden AF, defined as those currently in 
SR who have pre-AF and those at risk of short-term 
NOAF in general population. In the study, we apply 
our AI-ECG to identify patients who were unaware of 
their AF-related perioperative risks and explore the 
short-term clinical outcomes. 

Methods 
Study Design 

This retrospective cohort study was conducted at 
the Tri-Service General Hospital and its Tingjhou 
Branch in Taipei, Taiwan. We developed a DLM, 
referred to as the AI-ECG, to detect hidden AF using a 
12-lead SR-ECG without the need for additional 
patient data. The development and validation 
processes for the AI-ECG are detailed in the 
supplementary materials. As shown in 
Supplementary Figure S2 and S3, the model 
demonstrated excellent performance in detecting 
hidden AF, pre-AF and NOAF, with AUCs 0.87-0.88, 

0.87 and 0.89-0.91, respectively.  
We assessed the AF-related perioperative risk in 

patients receiving non-cardiac surgery. Thereafter, we 
applied the AI-ECG to their preoperative 
sinus-rhythm ECGs to predict postoperative NOAF 
and stratify AF-related perioperative risk. This study 
was approved by the Institutional Review Board (IRB) 
of the Tri-Service General Hospital, National Defence 
Medical Centre (IRB no. C202105049). 

Study Population for Perioperative Risk 
Analysis 

The study population comprised internal and 
external validation cohorts. Patients who did not 
undergo surgery, those who had cardiac surgery, and 
individuals without a 10-second, 12-lead SR ECG 
recorded within 3 days pre-surgery were excluded. 
Patients who were aware of AF-related perioperative 
risks and those receiving anticoagulant therapy, 
irrespective of the underlying reason, were also 
excluded. The study sample was stratified into three 
groups: patients with untreated pre-AF prior to 
surgery (pre-AF group), patients with NOAF within 
30 days post-surgery (NOAF group), and the 
remaining patients categorized as the control group.  

Risk of hidden AF and associated perioperative 
risk were assessed by the AI-ECG model using the 
preoperative 10-second, 12-lead SR ECG as input. The 
AI-ECG “high-risk” was defined by the cutoff point 
corresponding to a high positive predictive value (p > 
0.994, Figure S3), while the “medium-risk” was 
defined by the cutoff point associated with high 
sensitivity (p > 0.047, Figure S2). Details of the cutoff 
selection are described in the Model Performance 
section of the Supplementary Materials. Clinical 
outcomes in the pre-AF, NOAF and control groups 
were evaluated according to the AI-ECG risk 
stratification.  

Clinical Outcomes and Variables 
The primary outcome was 30-day all-cause 

mortality following surgery, while the secondary 
outcomes included new-onset ischemic stroke, acute 
myocardial infarction, and heart failure within the 
same 30-day period. Baseline characteristics, 
underlying diseases, and preoperative laboratory data 
were obtained from the electronic health records of all 
enrolled patients. The relevant preoperative data used 
for calculating the CHA2DS2-VASc score[29] 
(congestive heart failure, hypertension, age, diabetes 
mellitus, stroke or transient ischemic stroke, vascular 
disease, and sex) and revised cardiac risk index 
(RCRI)[30] (ischemic heart disease, congestive heart 
failure, cerebrovascular disease, insulin treatment, 
creatinine > 2 mg/dL, and elevated-risk surgery) 
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were identified. Data necessary for calculating the 
C2HEST score and Taiwan AF score (TWAFS) were 
collected to facilitate a comparison between AI-ECG 
performance and current AF prediction scores using 
data specific to the Asian population.[21, 22]  

Statistical Analysis 
For baseline characteristics, categorical variables 

are reported as numbers and percentages, while 
continuous variables are presented as means and 
standard deviations. Student’s t-test or chi-squared 
test were used for comparisons, with p-values of < 
0.05 deemed statistically significant. ROC curves and 
AUCs were employed to evaluate the performances of 
the AI-ECG model, C2HEST, and TWAFS scores. The 
Kaplan–Meier method was applied to manage 
censored data and calculate the cumulative incidence 
test, and the Cox proportional hazards model was 
used to estimate hazard ratios (HRs) with 95% 
confidence intervals (CIs). 

Given the baseline characteristic differences 
among the three groups, logistic regression analysis 
was performed, incorporating variables such as 
surgery type, sex, age, CHA2DS2-VASc score, and 
RCRI to estimate the propensity score. The inverse 
probability weighting of propensity scores (IPWPS) 
approach was then applied to mitigate potential 
confounding bias while retaining the full sample.  

Code Availability 
The code may be provided by the authors upon 

reasonable request, subject to permission and 
approval from the corresponding organizations and 
institutional review boards. 

Results 
Study Population and Baseline Characteristics 

Figure 1 shows the flowchart for the selection of 
our study sample. Of the 107,903 screened patients, 
17,640 had medical records of admission and had 
undergone surgery. After excluding 3,236 patients 
without preoperative ECGs within 3 days, 363 
patients who underwent cardiac surgery, 363 patients 
who received anticoagulant treatment, 13,687 patients 
remained eligible for study analysis. According to our 
classification, the pre-AF group (untreated pre-AF 
before surgery) comprised 98 patients, the NOAF 
group (NOAF within 30 days post-surgery) 
comprised 54 patients, and the control group (all 
other patients) comprised 13,526 patients. Table 1 
presents the baseline characteristics of the three 
groups. Patients in the control group were 
significantly younger, had lower AF stroke risk scores 
(CHA2DS2-VASc scores), and had fewer 

comorbidities.  
Focusing on NOAF occurring within 30 days 

post-surgery, the overall incidence was 0.4% in our 
study. A detailed analysis, including surgical 
characteristics and stratified results, is summarized in 
Table 2. The incidence of NOAF was notably higher in 
the high-risk surgery group (0.7%) compared to the 
low-risk group (0.3%). Stratification by surgical 
specialty revealed that cardiovascular surgery 
(excluded cardiac surgery) had the highest NOAF 
incidence at 1.8%, followed by chest surgery at 1.2%. 
Additionally, within the NOAF cohort, early-onset 
NOAF (defined as ≤  48 hours post-surgery) 
accounted for 40.7%, whereas late-onset NOAF 
constituted 59.3% (median 12 days; interquartile 
range 4.4–16.7 days).  

Perioperative Clinical Outcomes in a 
Population with Hidden AF 

To balance baseline characteristic differences, we 
applied inverse probability weighting of propensity 
scores (IPWPS) for adjustment. Detailed process is 
described in the Supplementary Materials under the 
section “Propensity Score Modelling and Covariate 
Adjustment”. After adjustment, compared with the 
control group, the patients in pre-AF and NOAF 
groups had significantly higher 30-day all-cause 
mortality rates, with HRs of 17.21 (95% CI 7.45–39.75) 
and 31.43 (95% CI 13.31–74.20), respectively (Figure 
2A). Sensitivity analysis with adjustments for only age 
and sex revealed that patients in the pre-AF and 
NOAF groups continued to show significantly higher 
30-day all-cause mortality rates than those in the 
control group (Supplementary Figure S8). These 
findings support the clinical evidence that AF, 
whether in patients with a history of AF or those 
developing postoperative AF, significantly increases 
mortality risk. 

AI-ECG Identification of Hidden AF and 
Associated Perioperative Outcomes 

We applied the AI-ECG model to all 13,580 
patients without pre-existing AF (the NOAF and 
control groups) and stratified them into high-, 
medium-, and low-risk categories for hidden AF. 
There were 178 patients (1.3%) classified as high risk 
and 1,592 patients (11.7%) as medium-risk. In the 
high-risk group, 10 patients (5.6%) developed 
postoperative NOAF within one month. Among the 
remaining 168 high-risk patients without documented 
postoperative NOAF within one month, 26 patients 
(15.5%) were diagnosed with AF within one year, and 
an additional 19 patients (11.3%) were diagnosed 
thereafter. Detailed was shown in Table 3. 
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Table 1. Baseline characteristics stratified by observed atrial fibrillation. 

 Pre-existing AF (Pre-AF 
Group, n = 98) 

New-onset AF within 30 days after 
operation (NOAF Group, n = 54) 

Other patients (Control 
Group, n = 13526) 

p-value 

Surgery type*    < 0.001 
High risk 37 (37.8%) 17 (31.5%) 2556 (18.9%)  
Low risk 61 (62.2%) 37 (68.5%) 10970 (81.1%)  
Hospital    0.487 
 Academic medical center 68 (69.4%) 42 (77.8%) 9531 (70.5%)  
 Community hospital 30 (30.6%) 12 (22.2%) 3995 (29.5%)  
Sex (male) 61 (62.2%) 32 (59.3%) 6385 (47.2%) 0.003 
Age (y/o, mean ± SD) 71.8±12.4 70.0±13.2 58.2±14.7 < 0.001 
CHA2DS2-VASc (mean ± SD) 4.5±2.0 3.2±2.0 1.8±1.7 < 0.001 
CHA2DS2-VASc group    < 0.001 
 0 3 (3.1%) 2 (3.7%) 2683 (19.8%)  
 1 2 (2.0%) 12 (22.2%) 4668 (34.5%)  
 2 9 (9.2%) 7 (13.0%) 2425 (17.9%)  
 3 18 (18.4%) 12 (22.2%) 1632 (12.1%)  
 4 21 (21.4%) 8 (14.8%) 1040 (7.7%)  
 5 13 (13.3%) 5 (9.3%) 560 (4.1%)  
 6 17 (17.3%) 6 (11.1%) 303 (2.2%)  
 7-9 15 (15.3%) 2 (3.7%) 215 (1.6%)  
RCRI (mean ± SD) 2.0±1.1 1.3±1.2 0.5±0.8 < 0.001 
RCRI group    < 0.001 
 0 5 (5.1%) 17 (31.5%) 8615 (63.7%)  
 1 31 (31.6%) 18 (33.3%) 3675 (27.2%)  
 2 30 (30.6%) 10 (18.5%) 893 (6.6%)  
 3 23 (23.5%) 6 (11.1%) 266 (2.0%)  
 4-5 9 (9.2%) 3 (5.6%) 77 (0.6%)  
Diabetes mellitus 51 (52.0%) 17 (31.5%) 2897 (21.4%) < 0.001 
Diabetes mellitus requiring insulin 13 (13.3%) 3 (5.6%) 404 (3.0%) < 0.001 
Serum creatinine ≥ 2 mg/dL 55 (56.1%) 17 (31.5%) 846 (6.3%) < 0.001 
End stage renal disease 46 (46.9%) 11 (20.4%) 637 (4.7%) < 0.001 
Hypertension 79 (80.6%) 23 (42.6%) 4303 (31.8%) < 0.001 
Coronary artery disease 60 (61.2%) 15 (27.8%) 1600 (11.8%) < 0.001 
Peripheral arterial occlusion disease 22 (22.4%) 1 (1.9%) 332 (2.5%) < 0.001 
Heart failure 42 (42.9%) 8 (14.8%) 608 (4.5%) < 0.001 
Transient ischemic attack 9 (9.2%) 3 (5.6%) 450 (3.3%) 0.007 
Ischemic stroke 23 (23.5%) 10 (18.5%) 633 (4.7%) < 0.001 
Hemorrhagic stroke 13 (13.3%) 4 (7.4%) 385 (2.8%) < 0.001 
Chronic obstructive pulmonary disease 30 (30.6%) 7 (13.0%) 1250 (9.2%) < 0.001 
Alcoholism 3 (3.1%) 4 (7.4%) 271 (2.0%) 0.023 

* High-risk surgery is defined as major vascular, intraperitoneal, and intrathoracic surgeries. Surgeries not meeting these criteria are classified as low-risk. The p-value was 
two-sided, with no adjustment for multiple comparison. 
Abbreviations: AF, atrial fibrillation; RCRI, revised cardiac risk index; SD, standard deviation. 

 

Table 2. Incidence of Post-operative NOAF within 30 Days and Surgical Characteristics  

 Total Patient Number (n=13678) New-onset AF within 30 days after operation 
(NOAF Group, n = 54) 

Incidence of NOAF 

Surgery type*    
High risk 2610 (19.1%) 17 (31.5%) 0.7% 
Low risk 11068 (80.9%) 37 (68.5%) 0.3% 
Surgical Specialty    
Cardiovascular Surgery 399 (2.9%) 7 (13.0%) 1.8% 
 Chest Surgery 696 (5.1%) 8 (14.8%) 1.2% 
Plastic Surgery 839 (6.1%) 5 (9.3%) 0.6% 
Neurosurgery 2615 (19.1%) 15 (27.8%) 0.6% 
General Surgery 2329 (17.0%) 12 (22.2%) 0.5% 
Orthopedics 2689 (19.7%) 5 (9.3%) 0.2% 
Gynecology 1169 (8.6%) 1 (1.9%) 0.1% 
Genitourinary Surgery 1351 (9.9%) 1 (1.9%) 0.1% 
Other surgery 1591 (11.6%) 0 (0%) 0.1% 

Other surgeries included specialties of the Ear, Nose, and Throat, Ophthalmology, and Oral and Maxillofacial Surgery. * High-risk surgery is defined as major vascular, 
intraperitoneal, and intrathoracic surgeries. Surgeries not meeting these criteria are classified as low-risk. 
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Table 3. AI-ECG Identification of Postoperative NOAF 

 Total Patients without pre-existing AF  
(n = 13580) 

New-onset AF within 30 days  
after surgery 

New-onset AF within 1 year  
(30 days to 1 year) 

New-onset AF after 1 year  

High risk 178 (178/13580; 1.3%) 10 (10/178; 5.6%) 26 (26/168; 15.5%) 19 (19/142; 13.4%) 
Medium risk 1592 (1592/13580; 11.7%) 24 (1.5%) - - 
Low risk 11810 (11810/13580; 87%) 20 (0.2%) - - 

 
 

 
Figure 1. Flow diagram. The artificial intelligence (AI) model was trained using the dataset from Hospital A, with the remaining patients not involved in the training stage of 
the AI-electrocardiogram (ECG) analysis used for subsequent validation (details are provided in Supplementary Figure S1). 

 
To validate the benefit of AI-ECG in patients 

unaware of their AF-related perioperative risk, we 
analyzed clinical outcomes stratified by the AI-ECG 
predictions. The 178 patients categorized in the 
high-risk group had significantly higher all-cause 
mortality rates than those in the low-risk group 
within 30 days postoperatively (HR 17.33, 95% CI 
5.29–56.75; Figure 2B). The medium-risk group also 
exhibited significantly higher all-cause mortality rates 
than the low-risk group (HR 6.18, 95% CI 2.70–14.13). 

Figure 2C shows the comparison of the patients with 
different risk categories based on the AI-ECG 
predictions. Within the pre-AF and NOAF groups, no 
significant differences were observed between the 
high, medium and low risk subgroups. However, 
patients with high and medium risks in the control 
group showed significantly higher all-cause mortality 
rates than those in the low-risk group, with HRs of 
14.02 (95% CI 3.75–52.43) and 5.29 (95% CI 2.22–12.62), 
respectively. 
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Figure 2. Risk of all-cause mortality after surgery. The AI-ECG-identified high-risk was defined by the cut-off point corresponding to a high positive predictive value (p > 
0.994, Figure S3), while the medium-risk was defined by the cut-off point associated with high sensitivity (p > 0.047, Figure S2). (a) A comparison of patients with and without 
observed atrial fibrillation, involving 13,678 patients to validate a previous study. The hazard ratio (HR) was adjusted using inverse probability weighting of the propensity score 
(IPWPS). (b) The relationship between AI-ECG prediction and all-cause mortality in patients without a history of atrial fibrillation, including 13,580 patients, demonstrating the 
benefits of AI-ECG. HRs were adjusted for age and sex. (c) Stratified analysis of observed atrial fibrillation, with HRs adjusted for age and sex. Abbreviations: hx, history; AF, atrial 
fibrillation; HR, hazard ratio. 

 
The secondary clinical outcomes stratified by 

AI-ECG risk categories are presented in Figure 3. 
Individuals classified as high risk for hidden AF 
exhibited the highest cumulative incidence rates of 
new-onset ischemic stroke, acute myocardial 
infarction, and heart failure within 30 days 
post-surgery, followed by those at medium and low 
risk. The comparison of patients across different risk 

categories based on AI-ECG predictions is 
summarized in the right panel of Figure 3. Consistent 
with the findings in Figure 2C, within the control 
group, patients classified as high and medium risk by 
AI-ECG also demonstrated significantly higher event 
rates of all secondary clinical outcomes compared to 
the low-risk group.  
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Figure 3. Secondary clinical outcomes stratified by AI-ECG risk categories. Individuals classified as high risk for hidden AF exhibited the highest cumulative incidence 
rates of new-onset ischemic stroke (HRs of 18.06; 95% CI 5.65 – 57.78), acute myocardial infarction (HRs of 36.06; 95% CI 5.51 – 236), and heart failure (HRs of 12.67; 95% CI 
3.45 – 46.52) within 30 days post-surgery, followed by those at medium and low risk. The comparison of patients across different risk categories based on AI-ECG predictions 
is summarized in the right panel. 
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Figure 4. Comparison of AI-ECG and clinical risk scores on identifying new-onset atrial fibrillation. Analyses included the data of 13,580 patients without 
pre-existing atrial fibrillation to validate AI-ECG benefits. (a) Receiver operating characteristic curve analysis of postoperative atrial fibrillation within 1 month, with cut-off points 
for AI-ECG, Taiwan AF scores, and C2HEST set at 0.047 (defined in Figure S2), 5.5, and 2.5, respectively. (b) One-month follow-up analyses, where the AI-ECG-identified high 
risk was defined by a high positive predictive value cut-off (p > 0.994, Figure S3) and the medium-risk by a high sensitivity cut-off (p > 0.047, Figure S2). C-indexes were calculated 
using continuous scores. Abbreviations: AF, atrial fibrillation; HR, hazard ratio. 
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Comparison of AI-ECG, C2HEST, and 
TWAFS 

The performance of AI-ECG compared with 
other risk scores for predicting AF was showed in 
Figure 4A. A total of 13,580 patients without pre-AF in 
our study population were eligible for the analysis. 
After excluding patients without follow-up data 
within 1 month, AI-ECG demonstrated the highest 
performance, with an AUC of 0.8107, followed by 
TWAFS with an AUC of 0.7239, and C2HEST with an 
AUC of 0.6428 for predicting NOAF within 30 days 
post-surgery.  

In Figure 4B, AI-ECG achieved the highest 
discrimination for NOAF within 30 days (C index 
0.820; 95% CI 0.767-0.874), followed by TWAFS (C 
index 0.724; 95% CI 0.660-0.787) and C2HEST (C index 
0.649; 95% CI 0.574-0.724). AI-ECG also clearly 
separated risk groups: high-risk patients experienced 
a 17-fold higher NOAF incidence (HR 17.34; 95% CI 
7.74–38.82), and medium-risk patients a nearly 
six-fold higher incidence (HR 5.94; 95% CI 3.15–11.20), 
relative to low-risk individuals.  

Decision curve analysis was performed to 
evaluate the clinical net benefit of the AI-ECG model 
compared to other models. (Figure 4C) The AI-ECG 
model demonstrated superior net benefit across most 
threshold probabilities compared to C2HEST and 
TWAFS. The increasing net benefit of AI-ECG at 
higher threshold probabilities reflects its stronger 
ability to distinguish high-risk patients. Furthermore, 
we assessed the predictive performance of TWAFS 
and C2HEST for short-term (30-day) postoperative 
mortality (Supplementary Figure S9). Both models 
exhibited modest discriminative ability, with C-index 
of 0.669 and 0.631, respectively, whereas the AI-ECG 
model achieved a substantially higher C-index of 
0.832.  

Discussion 
We developed an AI-ECG model to identify 

patients with hidden AF using SR-ECG without the 
need for additional clinical information. The model 
was validated on both internal and external datasets, 
demonstrating strong performance. The model 
demonstrated robust performance across both 
internal and external datasets. Importantly, our 
findings demonstrate that a high AI-ECG risk 
—although not directly trained on postoperative 
outcomes—can effectively stratify patients at 
increased risk of perioperative complications. Based 
on AI-ECG assessment of the perioperative risk of 
patients without pre-AF undergoing non-cardiac 
surgery, the high-risk population had significantly 
higher rates of all-cause mortality, new-onset ischemic 

stroke, new-onset acute myocardial infarction, and 
new-onset heart failure within 30 days 
postoperatively. This pioneering study represents the 
first use of AI-ECG to stratify hidden AF-related 
perioperative risks of patients undergoing 
non-cardiac surgery. 

Since the Mayo Clinic team developed the first 
AI model to identify individuals with a high 
likelihood of AF through SR-ECG, several studies 
have reported consistent results.[25, 27, 28, 31] Our 
study replicated the strong performance of the 
existing model, achieving 80% accuracy in detecting 
hidden AF in subgroups with pre-AF and NOAF. 
Several studies have shown that AI models perform 
comparably to the CHARGE-AF score in predicting 
long-term incident AF in Western populations.[25, 31, 
32] Our AI-ECG system was developed specifically 
for the Asian population. When compared with the 
Asian AF prediction score, C2HEST, and TWAFS, our 
AI-ECG model demonstrated significantly superior 
performance in predicting short-term NOAF. This 
finding reinforces the potential of AI to outperform 
traditional risk scores for predicting short-term AF 
events.[31] 

The reported incidence of NOAF after 
non-cardiac surgery varies widely, ranging from 0.4% 
to 30%. In our study, the overall incidence was 0.4%, 
which is comparable to findings from other Asian 
countries but notably lower than those reported in 
Western cohorts.[33-36] This discrepancy may be 
attributed to differences in patient demographics, 
surgery types, and population health profiles. In our 
study, the low incidence may partly reflect the 
inclusion of both major and minor surgeries; however, 
insufficient systematic screening and the resultant 
underdiagnosis are likely major contributors. Our 
results were consistent with those of previous studies 
indicating that hidden AF significantly increases 
short-term all-cause mortality and adverse events 
following non-cardiac surgery.[16-20] These findings 
reinforce the clinical importance of early identification 
of patients at high risk of NOAF and the 
implementation of appropriate monitoring strategies 
to mitigate adverse outcomes. 

Given the low overt incidence yet substantial 
clinical consequences of undiagnosed AF, a proactive 
identification strategy is warranted. Several factors 
make it challenging to recognize or manage 
AF-related perioperative risk in patients undergoing 
non-cardiac surgery. Applying our AI-ECG system in 
clinical practice allows for the identification and 
targeted management of patients at risk of AF-related 
perioperative complications during hospitalization. 
Additionally, it enables the recognition and 
monitoring of patients with a high probability of 
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developing AF over long-term follow-up. 
The short-term mortality rate after non-cardiac 

surgery is approximately 1.2–1.5%.[37, 38] Numerous 
predictor scores have been developed to mitigate 
surgical risks and mortality.[39-41] However, each of 
these scoring systems has limitations, such as reliance 
on subjective intuition, complexity in application, or 
suboptimal predictive performance. Recently, several 
DLMs that accurately predict postoperative mortality 
have been introduced. One such model leverages 
objective, quantitative data from electronic medical 
record systems to predict 30-day mortality after 
non-cardiac surgery and has demonstrated potential 
for implementation across multiple hospitals.[42] 
Another model showed exceptional performance in 
discriminating postoperative mortality using a single 
perioperative ECG.[43] Although these models 
effectively identify high-risk populations, they do not 
provide insights into the exact causes of mortality or 
specific prevention strategies. While correcting 
objective data may help reduce short-term mortality, 
its efficacy remains uncertain. Our study utilized 
AI-ECG to detect hidden AF and assess perioperative 
risks linked to AF. This research also established a 
correlation between hidden AF and postoperative 
mortality, as well as various comorbidities. Notably, 
the model may capture not only AF-specific electrical 
patterns but also broader cardiovascular vulnerability 
related to AF development, which may overlap with 
factors contributing to elevated postoperative risk. 
Understanding the risks associated with AF itself or 
AF-driven risk still enables physicians to focus on 
targeted management, enhancing clinical accuracy, 
and improving patient outcomes. 

This study had several limitations. First, all 
patients were diagnosed with AF using a 12-lead ECG 
rather than continuous monitoring, making the 
underdiagnosis of AF unavoidable. Second, 
postoperative ECGs were not routinely performed in 
our hospitals. Patients who did undergo ECGs likely 
had symptoms or specific clinical indications, which 
could introduce selection bias. Those who were 
asymptomatic or lacked clinical indications had a 
high probability of missed diagnoses. It may also 
explain why all clinical outcomes were significantly 
worse in the AI-ECG high-risk group compared to the 
low-risk group in control group. Third, the AI-ECG 
model was not prospectively validated prior to its 
application. Although we conducted internal and 
external validations and obtained results consistent 
with previous studies, the accuracy of the model may 
not be fully optimal. Prospective research would help 
address these limitations, and this is a planned focus 
for future work. 

Conclusion 
We developed an AI-ECG model to accurately 

predict hidden AF (pre-AF and NOAF within 30 days) 
using a single SR-ECG. The model effectively stratifies 
AF-related perioperative risks, predicting 30-day 
all-cause mortality and new-onset ischemic stroke, 
acute myocardial infarction, and heart failure in 
individuals undergoing non-cardiac surgery. 
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