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Abstract

Despite significant advancements in cardiopulmonary resuscitation (CPR) techniques, the global
burden of sudden cardiac death remains high, with post-CPR survival rates persistently below 8%.
Hypoxic-ischemic brain injury (HIBI) is the predominant cause of mortality, accounting for 68% of
fatalities following resuscitation. Hyperbaric oxygen (HBO) therapy, which enhances oxygen
dissolution in plasma, has demonstrated efficacy in focal cerebral ischemia conditions such as stroke.
However, its potential in addressing global cerebral ischemia following CPR—a condition
pathophysiologically distinct due to the absence of a salvageable ischemic penumbra and
characterized by pan-cerebral energy failure—remains insufficiently explored. This review
synthesizes emerging evidence from both focal and global ischemia models, highlighting the role of
HBO in modulating key injury mechanisms common to both conditions, including oxidative stress,
neuroinflammation, and ferroptosis. By integrating findings on HBO-induced upregulation of
endogenous antioxidants, suppression of pro-inflammatory cytokines, and stabilization of
mitochondrial function, we propose a combined therapeutic strategy that incorporates HBO with
advanced CPR techniques and adjunctive therapies to mitigate HIBI.
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1. Introduction

Cardiopulmonary resuscitation (CPR) is a critical
life-saving intervention for patients experiencing
early cardiac arrest (CA), as it facilitates the rapid
restoration of respiratory and circulatory functions[1].
Despite its critical role, global outcomes remain poor,
with sudden cardiac death claiming over 3 million
lives annually and post-CPR survival rates below 8%.
In China, where approximately 540,000 cases of
cardiac arrest occur each year, survival rates are
particularly alarming at less than 1%.

Hypoxic-ischemic brain injury (HIBI) is the
principal determinant of poor prognosis after cardiac

arrest, resulting from global cerebral ischemia during
circulatory collapse and subsequent reperfusion
injury upon flow restoration[2]. The neuronal damage
in HIBI involves a spectrum of regulated cell death
pathways. Apoptosis is a programmed, genetically
controlled process crucial for eliminating damaged
cells under physiological conditions, characterized by
cell shrinkage and nuclear condensation[3]. However,
under ischemic conditions, this process becomes
dysregulated due to severe metabolic stress and
mitochondrial dysfunction. The loss of metabolic
homeostasis triggers sustained apoptotic signaling,
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which escalates uncontrollably and becomes a leading
factor contributing to neuronal death, thereby
exacerbating brain injury[4, 5]. This pathological shift
underscores the critical role of uncontrolled apoptosis
in HIBI pathogenesis.

Notably, more recently identified forms of
regulated necrosis, such as ferroptosis—an iron-
dependent pathway driven by lethal lipid peroxide
accumulation—exhibit  distinct mechanisms and
contribute  significantly to HIBI  pathology.
Furthermore, HIBI progression is exacerbated by
dysfunction of the brain’s protective barriers. The
blood-brain barrier (BBB), formed by brain
endothelial cells, regulates solute passage between
blood and brain parenchyma, while the
blood-cerebrospinal fluid barrier (BCSFB) at the
choroid plexus controls exchange with cerebrospinal
fluid; both are compromised during ischemia,
facilitating neuronal injuryl[6, 7].

Hyperbaric oxygen (HBO) therapy has emerged
as a promising neuroprotective intervention. By
delivering 100% oxygen at increased atmospheric
pressures (typically 2-3 ATA), HBO dramatically
enhances plasma oxygen solubility, elevating tissue
oxygenation even in poorly perfused areas[8]. This
mechanism supports cellular respiration and ATP
production in ischemic tissues while simultaneously
mitigating multiple injury pathways. Clinical
applications already extend to various ischemic
conditions, including stroke, traumatic brain injury,
and carbon monoxide poisoning[9].

It is important to note that cardiac arrest (CA)
and the subsequent restoration of spontaneous
circulation initiate a systemic ischemia-reperfusion
process[10-12]. A pivotal characteristic of CA-induced
cerebral injury is global ischemia, resulting from the
abrupt cessation of systemic blood flow. This
contrasts fundamentally with the focal ischemia
typical of stroke, primarily due to the absence of a
classical ischemic penumbra—a salvageable tissue
region enabled by collateral circulation that is a target
for revascularization therapies in stroke. The
simultaneous cessation of global cerebral perfusion
during CA precludes such collateral compensation[13,
14]. The core injury mechanism in CA-induced
hypoxic-ischemic brain injury (HIBI) is pan-cerebral
energy failure. This failure triggers rapid ATP
depletion, leading to a cascade of events including
cytotoxic edema, profound calcium overload, and
severe mitochondrial dysfunction. This
pathophysiology is distinct from stroke, where the
injury is spatially heterogeneous and centered on a
vascular occlusion site. Despite these macro-level
pathological differences, significant convergence
occurs at the molecular and cellular level. Both global

ischemia post-CA and focal ischemia in stroke share
key injury pathways, including excitotoxicity (e.g.,

NMDA  receptor-mediated  glutamate surge),
oxidative stress from reactive oxygen species
generation, and pronounced neuroinflammation

involving microglial activation and cytokine
release[15]. These initial insults collectively trigger
downstream programmed apoptosis, which is
characterized by mitochondrial dysfunction and
caspase activation, ultimately leading to neuronal
death[16, 17]. This mechanistic overlap provides a
rationale for cautiously extrapolating insights from
focal ischemia models to inform on HBO's potential
mechanisms in post-CA global HIBI Figure 1.

2. Overview of the mechanisms of HIBI
after CPR

After CPR, patients may experience a range of
neurological complications, including shock, coma,
seizures, neurocognitive dysfunction, memory
impairment, and, in severe cases, brain death.
Prolonged CA results in impaired cardiac muscle
function and apnea, leading to a significant reduction
in cerebral oxygenation and blood flow. Although
CPR can restore respiratory and circulatory function,
the brain may continue to suffer from localized
ischemia and focal infarction. This persistent
impairment in cerebral perfusion and oxygen delivery
contributes to the development of HIBI. The main
pathophysiological processes are shown in the
following Figure 2.

2.1. Ischemia-reperfusion injury (IRI)

Cerebral hypoperfusion often occurs during the
early stages after CPR, and cerebral vascular
autoregulation is typically impaired within the first 24
hours. This dysfunction, combined with congestive
blood flow during the recovery phase, exacerbates
cerebral hypoxia and contributes to further
neurological damage. In the later stages after CPR, as
cerebral blood flow is restored, tissues may undergo
IRI, which can lead to delayed and progressive
neurological impairment[18]. However, the
pathological ~mechanisms underlying cerebral
ischemia reperfusion injury (CIRI) after CPR are very
complex and involve calcium overload, mitochondrial
dysfunction, inflammatory responses, apoptosis, the
accumulation of oxygen free radicals, and the
excessive release of excitatory amino acids[19].

During cerebral ischemia-reperfusion injury
(CIRI), the interruption of oxygen and glucose
delivery triggers a critical shift from aerobic
metabolism to inefficient anaerobic glycolysis,
culminating in ATP depletion and failure of ionic
homeostasis[20]. This energy crisis impairs
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Na*/K*-ATPase and Ca*"-ATPase function, leading to
intracellular accumulation of Na* and Ca?". The
overactivation of N-methyl-D-aspartate (NMDA)
receptors after ischemic insult initiates a pathological
cascade driven primarily by excessive calcium ion
(Ca?") influx into neurons. This sustained Ca?* entry
disrupts cellular energy homeostasis by over
whelming ATP-dependent ion pumps, including the
Na*/K*-ATPase and plasma membrane Ca?*-
ATPases, which are critical for maintaining ionic
balance. The resulting membrane depolarization
facilitates additional Ca?* influx through voltage-
gated channels, further exacerbating intracellular Ca?*
loading. In response to cytosolic Ca?* overload,
mitochondria sequester calcium via the mitochondrial
calcium uniporter (MCU). Under physiological
conditions, this buffering mechanism is protective;
however, under excitotoxic conditions, excessive
MCU-mediated Ca?* uptake induces mitochondrial
permeability transition pore (mPTP) opening,
uncouples oxidative phosphorylation, and elevates
reactive oxygen species (ROS) production[21, 22].
These alterations impair electron transport chain
function, leading to severe ATP depletion. The

Oxidative Stress/Nrf2
Pathway

ensuing energy deficit, combined with oxidative
stress, perpetuates a self-sustaining cycle of metabolic
dysfunction, ultimately driving neuronal death
through necrotic and apoptotic pathways[23].

Within the mitochondria, excessive Ca?* disrupts
the electron transport chain, impairing ATP synthesis
and stimulating the generation of reactive oxygen
species  (ROS), thereby inducing profound
mitochondrial dysfunction[24]. The ensuing oxidative
stress further exacerbates the initial insult, creating a
vicious cycle of metabolic failure and neuronal
injury[25].

Moreover, CIRI activates resident immune cells
in the brain, including microglia and astrocytes, as
well as infiltrating macrophages. These immune cells
release a cascade of pro-inflammatory cytokines such
as tumor necrosis factor-alpha (TNF-a), interleukin-6
(IL-6), and interleukin-1 beta (IL-1p), which contribute
to mitochondrial damage, endothelial injury, and
increased blood-brain barrier (BBB) permeability. The
resulting breakdown of the BBB exacerbates brain
tissue damage and worsens the mneurological
outcome[26].
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Figure 1. Integrated Flowchart of HBO Neuroprotective Mechanisms. This diagram synthesizes key pathways, including anti-inflammatory, antioxidant, and

anti-ferroptosis mechanisms.
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Figure 2. Major pathophysiologic processes in cerebral ischemia-reperfusion injury. IL: interleukin; TNF: tumor necrosis factor; ATP: adenosine triphosphate; ROS:
reactive oxygen species; RNS: Reactive nitrogen species; Glu: glutamate; NMDA: N-methyl-d-aspartate.

2.2. Apoptosis and necrosis

Several hours to days after CA, regions of the
brain with high metabolic demands—such as the
hippocampus, white matter centers, and basal
ganglia—are among the first to sustain damage due to
their critical reliance on adequate oxygen and blood
supply. Histopathological examination of these
regions typically reveals hallmark features of cellular
injury, including mitochondrial and endoplasmic
reticulum swelling, nuclear chromatin condensation,
and evidence of both necrosis and apoptosis in
neuronal cells. Apoptosis plays a central role in
CIRI[27] and is a major contributor to neuronal death.
The B-cell lymphoma-2 (BCL-2) protein family,
particularly the pro-apoptotic protein Bax and the
anti-apoptotic protein BCL-2, are key regulators of the
mitochondrial apoptotic pathway. Upon activation of
apoptotic signaling, Bax interacts with BCL-2[28],
disrupting mitochondrial membrane integrity. This
disruption facilitates the release of cytochrome c into
the cytoplasm, triggering caspase[29] activation and
leading to apoptotic cell death.

These different factors interact with each other at
multiple points in the development of HIBI, and

together, they lead to neuronal cell damage, necrosis,
or apoptosis in brain tissues. Notably, HIBI typically
manifests in the later stages following CPR and results
from a combination of primary ischemic insult and
secondary injury processes. Therefore, effective
treatment of HIBI after CPR requires not only the
prompt restoration of cerebral perfusion but also the
mitigation of ongoing neurological damage.
Emerging evidence suggests that HBO therapy may
offer neuroprotective benefits in this context. By
increasing arterial oxygen partial pressure and
enhancing oxygen solubility in plasma, HBO
promotes cellular respiration and ATP synthesis in
ischemic and hypoxic tissues. This mechanism helps
to correct cerebral hypoxia and reduce the extent of
brain injury[30].

3. Mechanism underlying the protective
effect of HBO on HIBI

Hyperbaric oxygen therapy involves the
administration of 100% oxygen in a pressurized
environment, typically at two to three times the
atmospheric pressure at sea level[31]. This treatment
modality has been increasingly recognized for its
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ability to alleviate cerebral ischemic-hypoxic injury
caused by various pathological Figure 3.

3.1. HBO preconditioning induces tissue
ischemic tolerance

Hyperbaric oxygen (HBO) preconditioning
involves the short-term application of HBO (e.g., 2.0-
2.5 ATA) prior to an anticipated ischemic insult. This
strategy aims to enhance intrinsic cellular defense
mechanisms, thereby increasing tissue resilience[31].
The protective effects are mediated through the
upregulation of key endogenous factors, including
hypoxia-inducible factor-1 alpha (HIF-1la) and heat
shock protein 70 (HSP70)[32]. The apparent
discrepancy regarding HIF-la regulation—wherein
HBO preconditioning upregulates it, while post-
injury HBO therapy may downregulate it—can be

the cyclic nature of HBO exposure (intermittent
hyperoxia followed by a return to normoxia) creates a
state of controlled relative hypoxia within the tissue
Table 1. This transient relative hypoxia stabilizes
HIF-1a, leading to its accumulation and the
subsequent activation of adaptive genes such as
erythropoietin  (EPO)[33], which promotes cell
survival and angiogenesis. This process mimics the
protective effects of ischemic preconditioning.
Furthermore, the wupregulation of HSP72 is a
well-documented response to HBO preconditioning.
HSP?72 facilitates the stabilization and transcriptional
activity of HIF-la, «creating a synergistic
cytoprotective loop. Numerous animal studies have
confirmed that this adaptive response significantly
increases the threshold for neuronal damage
following subsequent ischemic-hypoxic events.

explained by the temporal context and the distinct
oxygen dynamics involved. During preconditioning,
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Figure 3. Schematic showing the primary mechanisms of HBO's protective effect on HIBI. It is described that HBO can play a protective role during cerebral
ischemia and hypoxia by protecting the blood-brain barrier, inhibiting oxidative stress, attenuating the inflammatory response, inhibiting apoptosis, and regulating the brain-gut
axis. Inhibition of inflammatory response and anti-oxidative stress are the main protective mechanisms of HBO against cerebral ischemia-hypoxia injury. Inflammatory response
is one of the important factors inducing cerebral ischemia, which is prone to cause cerebrovascular circulatory disorders, triggering a series of cascade reactions such as apoptosis
and oxidative stress, so inhibiting the inflammatory response improves neurological function injury. In the regulatory mechanism of HBO-mediated inflammatory response, the
expression of upstream targets and inflammatory factors is regulated through the NF-kB core signaling pathway to inhibit the release of pro-inflammatory factors involved in the
inflammatory response. In the anti-oxidative stress regulatory network, Nrf2 is the upstream pathway, which is involved in regulating the expression of various antioxidant
enzymes such as CAT, SOD, NQO-1, HO-I, etc., and decreasing the intracellular reactive oxygen species and malondialdehyde content. However, the research on HBO in
protecting the blood-brain barrier and regulating the cerebral-intestinal axis is insufficient. The brain-gut axis is the bridge between the nervous system and the intestine. After
cardiopulmonary resuscitation, cerebral ischemia and hypoxia will rapidly trigger intestinal flora disorders, and intestinal flora dysregulation can further aggravate brain injury by
regulating the immune system.
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Table 1. Context-Dependent Regulation of HIF-1a by HBO Therapy

Context Oxygen Dynamics Primary Effect on

HIF-1a

Key Molecular Consequences Functional Outcome

Preconditioning
(Pre-insult)

Cyclic hyperoxia-normoxia, creating
controlled relative hypoxia

Upregulation &
Stabilization
Acute Treatment
(Post-insult)

Sustained hyperoxia Downregulation &

Degradation

Induces ischemic tolerance;
primes cellular defenses

Activation of adaptive genes (e.g., EPO, VEGF);
enhanced cell survival pathways[32, 33]

Inhibition of HIF-1a-mediated pathological processes Mitigates reperfusion injury
(e.g., excessive autophagy, inflammation)[31, 75] and secondary damage

3.2. Improvement of brain tissue oxygen
supply and metabolic recovery

Under hyperbaric conditions, the physical
solubility of oxygen in the blood increases
approximately 17 to 20 times compared to that under
normobaric atmospheric pressure. This substantial
increase in dissolved oxygen significantly enhances
the oxygen-carrying capacity of the blood, allowing it
to meet the metabolic demands of the body more
effectively[34]. Moreover, elevated oxygen levels
facilitate the rapid diffusion of oxygen across the
blood-cerebrospinal fluid barrier, enabling oxygen
delivery to injured brain tissue. This process helps
reduce mitochondrial dysfunction in ischemic
regions, prevents a shift to anaerobic metabolism, and
alleviates hypoxia in affected brain cells[35]. Although
cardiac arrest induces global cerebral ischemia rather
than focal ischemia, the restoration of oxygen supply
and metabolic homeostasis represents a core
component of mitigating neuronal injury. Research
conducted in a middle cerebral artery occlusion
(MCAO) model of focal ischemia demonstrated that
both normobaric oxygen therapy (NBO; 100% O,) and
hyperbaric oxygen therapy (HBO; 3 ATA of 100% O,
for 60 minutes) effectively attenuated tissue acidosis,
as measured by umbelliferone fluorescence, and
significantly improved energy metabolism in the
ischemic regions. These findings suggest that by
targeting this shared mechanism of correcting
hypoxia and metabolic dysfunction, HBO may exert
similar protective effects in the context of global
cerebral ischemia following cardiac arrest, although
further validation is required[36, 37].

3.3. Inhibition of apoptosis and necrosis

Apoptosis typically begins several hours after
the onset of cerebral ischemia and is primarily
localized to the ischemic penumbra. This form of
programmed cell death is largely regulated by
mitochondrial pathways involving the Bcl-2 family of
proteins and the cysteine-aspartate protease (caspase)
family, both of which contribute to neuronal
apoptosis in ischemic brain regions[38]. While cardiac
arrest induces global ischemia, it shares neuronal
apoptosis pathways with focal ischemia. A study
demonstrated that HBO therapy (2.5 ATA, 2 hours)
significantly suppressed caspase-3 activation in

NeuN-positive neurons and reduced DNA
fragmentation in the ischemic cortex of MCAO/R
model rats, indicating that HBO confers
neuroprotection by attenuating neuronal apoptosis
[39]. Critically, the therapeutic efficacy of HBO may
involve the modulation of the transcription factor p53,
a central regulator of apoptosis activated under
ischemic stress. Research indicates that hypoxic
conditions can induce a conformational change in
p53[40], rendering it transcriptionally inactive.
Notably, re-oxygenation strategies, which share the
core aim of HBO to alleviate tissue hypoxia, have been
shown to restore the wild-type conformation and
transcriptional activity of p53. This reactivation
promotes the expression of pro-apoptotic genes,
thereby facilitating the elimination of damaged
neurons. Consequently, HBO therapy may ameliorate
cognitive deficits not only by directly modulating the
Bcl-2/Bax balance and reducing caspase-3 activity but
also potentially through this p53-dependent pathway,
collectively promoting neuronal survival.
Additionally, the improvement in cognitive
function observed following hyperbaric oxygen
(HBO) therapy is a downstream effect of its core
ability to provide broad neuroprotection and halt the
progression of brain injury. This protective action is
mediated by a network of interconnected
mechanisms: it suppresses neuronal apoptosis by
modulating key regulators like the Bax/Bcl-2 balance
and reducing caspase-3 activity; it facilitates the
clearance of pathogenic protein aggregates such as
B-amyloid; and it attenuates cellular senescence by
lowering the expression of markers including p16,
p21, and p53[41]. In parallel, HBO therapy fosters an
environment conducive to neural repair, exemplified
by the upregulation of neurotrophic factors like
brain-derived neurotrophic factor (BDNF) in the
hippocampus. Consequently, the amelioration of

cognitive  deficits directly results from this
coordinated mitigation of the initial brain
injury[42-44].

Furthermore, HBO has been found to activate
the phosphatidylinositol 3-kinase (PI3K) /Akt/
mammalian target of the rapamycin (mTOR)
signaling pathway. This activation increases the
expression of PI3K, mTOR, and Bcl-2, as well as the
ratio of phosphorylated Akt to total Akt, while
concurrently downregulating Bax expression. These
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molecular changes result in reduced apoptosis in
basilar artery endothelial cells and contribute to
improved neurological outcomes[45].  Several
studies[46, 47] have confirmed that HBO plays a role
in attenuating brain damage by inhibiting apoptosis
and necrosis.

3.4. Anti-oxidative stress and mitochondrial
protection

The major pathophysiological component of
cerebral ischemic-hypoxic injury is the production of
large amounts of free radicals, which further damage
lipids, proteins, and deoxyribonucleic acid (DNA),
thereby inducing neuronal cell death[48]. During
ischemic-hypoxic events, large quantities of ROS—
including superoxide (O;7), hydrogen peroxide
(H20,), peroxynitrite (ONOO™), and hydroxyl
radicals—are generated. These reactive species
promote lipid peroxidation, disrupt cell membrane
integrity, increase malondialdehyde (MDA) release,
and cause DNA damage, collectively contributing to
cell dysfunction and death[49].

Hyperbaric oxygen (HBO) therapy mitigates
reactive oxygen species (ROS) accumulation primarily
by activating the nuclear factor erythroid 2-related
factor 2 (Nrf2) signaling pathway Figure 3. Upon
activation, Nrf2 translocates to the nucleus and
coordinates the upregulation of a suite of
cytoprotective genes[50]. Key downstream effectors
include heme oxygenase-1 (HO-1), NAD(P)H quinone
oxidoreductase 1 (NQOL1), and the catalytic subunit of
glutamate-cysteine ligase (GCLC), which is the
rate-limiting enzyme in glutathione (GSH) synthesis.
This transcriptional program enhances cellular
antioxidant capacity through a dual mechanism: it
boosts the activity of enzymes like superoxide
dismutase (SOD) and facilitates the synthesis of
crucial non-enzymatic antioxidants such as GSH[51,
52]. Consequently, this coordinated response
effectively reduces biomarkers of oxidative damage
like malondialdehyde (MDA), underpinning the
neuroprotective effects of HBO[53].

In a study utilizing a specific hyperbaric oxygen
(HBO) regimen (2.5 ATA, 1-hour sessions, twice daily
for 2 consecutive days), treatment was found to
activate the Nrf2 signaling pathway in neonatal rat
brain tissue subjected to hypoxic-ischemic insult. This
activation led to the upregulation of key downstream
antioxidant proteins, including heme oxygenase-1
(HO-1) and glutathione S-transferase (GST). The
consequent enhancement of the cellular antioxidant
defense system effectively alleviated oxidative stress,
which was associated with a significant reduction in
cerebral infarct volume and neuronal apoptosis,
thereby contributing to improved mneurological

function[54]. Therefore, the antioxidant and
mitochondrial protective effects of HBO therapy,
demonstrated in focal ischemia models via
mechanisms such as Nrf2 pathway activation, may
also hold significant relevance for global cerebral
ischemia following cardiac arrest and
cardiopulmonary resuscitation (CPR), given the
central role of oxidative stress and bioenergetic failure
in both conditions. This mechanistic synergy suggests
that HBO could potentially ameliorate CPR-related
brain injury by countering the pervasive oxidative
damage and mitochondrial dysfunction characteristic
of post-cardiac arrest syndrome[55].

3.5. Inhibition of the inflammatory response

Several studies®®have demonstrated that HBO
improves neurological outcomes[56] in animal
models of brain injury by modulating the activation of
microglia and astrocytes through multiple signaling
pathways[57]. This modulation leads to a reduction in
the release of pro-inflammatory cytokines such as
IL-6, IL-1P, and TNF-a, mitigates damage to the BBB,
and promotes both angiogenesis and neurogenesis
[58]. It has been found that the inflammatory response
is mediated by many signaling pathways, among
which, nuclear factor-xB (NF-xB) is a key factor in the
inflammatory response signaling pathway[59]. Upon
activation during ischemic events, NF-xB facilitates
the polarization of microglia toward the
pro-inflammatory M1 phenotype, thereby enhancing
the production of cytokines such as IL-1p and
TNE-a[60], as well as reactive oxygen species. This
cascade amplifies the inflammatory response and
exacerbates neuronal injury[61]. HBO therapy has
been shown to regulate proteins upstream of NF-«B,
inhibit its activation, and consequently suppress
downstream inflammatory responses. Liu et al.[57].
proposed an alternative mechanism underlying the
neuroprotective  effects of HBO  therapy,
demonstrating through in vitro cell-based experiments
that HBO  attenuates brain injury-induced
inflammatory responses by significantly down
regulating the expression of the key chemokine
CXCL1 and its receptor CXCR2. This effect is achieved
through inhibition of the lipopolysaccharide
(LPS)-induced  NF-xB/mitogen-activated protein
kinase (MAPK)-mediated CXCR2/CXCL1 signaling
pathway. CXCL1 is predominantly expressed in
astrocytes, whereas its receptor, CXCR2, is mainly
found in neurons. In the context of traumatic brain
injury, HBO has been shown to reduce neuronal
apoptosis and mitigate secondary injury via this same
pathway[62].  Additionally, =~ HBO  modulates
neuroinflammation = by  downregulating  the
expression of C-C chemokine ligand 2 (CCL2), its
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receptor CCL2, and phosphorylated p38 through the
p38-MAPK-CCL2 signaling axis[63]. Xue et al. further
reported that HBO therapy at 2.5 ATA was more
effective than treatment at 1.5 ATA in enhancing
memory performance and reducing inflammatory
responses in rats, suggesting a pressure-dependent
therapeutic effect[64]. Previous studies have shown
that silencing regulator protein 1 (sirtuin 1, SIRT1), a
NAD*-dependent deacetylase, plays a crucial role in
inhibiting inflammatory responses[65], attenuating
cerebral ischemia-reperfusion injury, and promoting
neurological recovery[66]. Experimental knockdown
of SIRT1 has been found to induce
neuroinflammatory damage in cells. In contrast, HBO
therapy activates SIRT1 expression, leading to a
reduction in the release of inflammatory factors such
as TNF-a, IL-1B, and IL-6. Additionally, HBO
ameliorates ischemic-hypoxic brain injury by
regulating SIRT1-induced deacetylation of High
mobility group Box 1 (HMGB1), which inhibits matrix
metalloproteinase-9 ~ (MMP-9)[67]. The study
conducted in a spinal cord injury (SCI) model
demonstrated that hyperbaric oxygen therapy
administered at 2-3 ATA not only upregulates the
plasma anti-inflammatory cytokine interleukin-4 but
also enhances the expression of SIRT1 and the
mitochondrial marker voltage-dependent
anion-selective channel (VDAC). This upregulation
promotes mitochondrial biogenesis, reduces apoptotic
signaling, and inhibits inflammatory cascade
responses, highlighting a mechanism through which
HBO attenuates inflammation[68], By modulating
these conserved cascades—notably via SIRT1
activation and regulation of apoptosis—HBO therapy
contributes to improved functional recovery
following central nervous system injuries, suggesting
its potential to mitigate post-cardiac arrest
encephalopathy by targeting shared inflammatory
and apoptotic pathways in global cerebral
ischemia[69, 70].

3.6. Inhibition of ferroptosis

Ferroptosis is a newly recognized mode of cell
death, characterized primarily by the activation of
iron-dependent lipid peroxidation[71], leading to the
accumulation of peroxidation products[72]. This
process is  typically accompanied by the
downregulation of the antioxidant functions of GSH
and glutathione peroxidase 4 (GPX4). Nrf2, a key
regulator of oxidative stress, acts as a negative
regulator of ferroptosis by maintaining intracellular
redox homeostasis. It achieves this by mediating the
expression of antioxidant enzyme genes, decreasing
intracellular Fe?* levels, inhibiting ROS production,
and thus preventing ferroptotic cell death.

Chen et al[73] demonstrated that hyperbaric
oxygen (HBO) therapy ameliorates cerebral
ischemia-reperfusion injury (CIRI) by suppressing
ferroptosis. In their rat model, pathological alterations
indicative of ferroptosis—including mitochondrial
cristae dissolution, vacuolization, elevated ferritin
and malondialdehyde (MDA), and reduced
glutathione (GSH) observed in untreated CIRI
controls—were significantly reversed following a
30-day regimen of 2.5 ATA HBO, underscoring its
protective role. This aligns with evidence that HBO
modulates key ferroptosis regulators, such as GPX4
and SLC7A1l1, to attenuate iron-dependent lipid

peroxidation[74]. Therefore, HBO-mediated
ferroptosis  inhibition = represents a  pivotal
neuroprotective  mechanism,  particularly  in

mitigating global cerebral injury following cardiac
arrest and cardiopulmonary resuscitation, by
preserving neuronal viability under ischemic stress.

3.7. Regulation of autophagy activation

Autophagy plays a context-dependent role in
cerebral ischemia, exhibiting a dual nature that is
critical for therapeutic targeting. While it's early,
controlled activation promotes neuroprotection by
clearing damaged organelles and misfolded proteins;
excessive or prolonged autophagic activity can
culminate in programmed cell death, thereby
exacerbating ischemic brain injury[75-77]. The
mechanistic target of rapamycin (mTOR) is a central
regulator of this process, serving as a key inhibitory
checkpoint of autophagy[78]. HBO therapy appears to
fine-tune this delicate balance by modulating the
expression of critical autophagy-related proteins,
including mTOR, phosphorylated mTOR (p-mTOR),
and the lipidated form of microtubule-associated
protein light chain 3 (LC3B-II). Furthermore, by
downregulating the upstream hypoxia-inducible
factor-la (HIF-1a), HBO may indirectly influence the
autophagic cascade, contributing to its ameliorative
effects on cerebral ischemic-hypoxic injury.
Consequently, the precise regulation of the extent and
timing of autophagy represents a promising yet
complex mechanism underpinning HBO's therapeutic
potential[42, 75, 79].

Therefore, HBO's capacity to fine-tune
autophagic activity — promoting its protective role in
cellular clearance while curtailing its detrimental
progression to programmed cell death —highlights its
potential not only in focal ischemia but also in
addressing global cerebral injury following cardiac
arrest and CPR, where dysregulated autophagy
significantly contributes to neuronal damage. This
nuanced regulation, mediated through key pathways
such as mTOR signaling and HIF-la modulation,
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warrants further investigation in physiologically
relevant models of post-cardiac arrest syndrome to
fully elucidate its translational promise[80].

3.8. Regulation of the brain-gut axis

The brain-gut axis is a bidirectional
communication pathway that connects the central
nervous system with the gastrointestinal tract.
Alterations[81] in the intestinal microbiota can lead to
abnormal immune function in the small intestine,
which mediates inflammation following brain injury
and plays a crucial role in triggering brain-gut axis
disorders[82].A recent study discovered that
pro-inflammatory the triggering receptor expressed
on myeloid cell 1 (TREM1) signaling conveyed by
gut-derived macrophages is transported to the brain
and plays a significant role in the pathophysiology of
secondary brain injury following CA/CPR[83].

In 2024, Nyam et al. demonstrated for the first
time that HBO therapy can influence the composition
of gut microbiota after traumatic brain injury. They
applied 2.0 ATA for 60 minutes at three distinct time
points: immediately after brain injury, 24 hours later,
and 48 hours later. Measurements taken three days
post-injury revealed a reduction in the volume of
brain damage and downregulation of inflammatory
factors in rats. Since the intestinal flora consists
predominantly of anaerobic bacteria (approximately
90%), the study found that five genus-level bacteria
and two species-level bacteria of the core intestinal
microbiota decreased 72 hours after brain injury
following HBO treatment. This suggests that an
increase in tissue oxygenation can directly affect
microbial composition, reducing the prevalence of
anaerobic bacteria[84].

In conclusion, while direct evidence is currently
lacking, preclinical insights suggest a compelling
possibility that HBO therapy can reduce cerebral

injury following cardiac arrest and CPR by
modulating the brain-gut axis. This potential
mechanism could involve the restoration of

microbiota balance and suppression of TREMI-
mediated neuroinflammation, but awaits direct
validation in models of global cerebral ischemia.

3.9. Regulation of blood-brain barrier
permeability, improvement of collateral
circulation establishment, and neuronal cell
regeneration

HBO therapy significantly attenuates brain
edema in rats with early brain injury (EBI) following
subarachnoid hemorrhage (SAH). It also alleviates
BBB permeability and ultrastructural damage by
inhibiting the Toll-like receptor 4 (TLR4)/NF-xB
signaling pathway, thereby preventing the initiation

of the innate immune response and inflammation-
related gene transcription. Hao et al. demonstrated
that HBO upregulated the expression of connexins,
such as occludin and zonula occludens-1 (ZO-1), in
hypoxic cells, suggesting that HBO helps maintain the
integrity and permeability of the BBB[85]. The
Wnt/p-catenin (P-catenin) signaling pathway plays a
critical role in the formation and maintenance of the
BBB, with its activation being essential for preserving
BBB integrity after cerebral ischemia[86].

Endothelial nitric oxide synthase (eNOS) is a key
factor in endothelium-dependent vasodilation,
responsible for the synthesis of nitric oxide (NO),
which promotes vascular smooth muscle relaxation
and increases cerebral blood flow. It has been shown
that HBO therapy can enhance nitric oxide levels by
activating nitric oxide synthase, upregulate eNOS
expression, and facilitate the recovery of injured
blood vessels after ischemic events[87]. Furthermore,
animal studies have revealed that HBO can promote
the expression of endothelial growth factors in the
vasculature of rats with acute cerebral infarction,
thereby aiding in the establishment of collateral
circulation, neovascularization, and improving
hemodynamic stability[88]. Other studies[45, 89] have
found that HBO treatment promotes the expression of
nerve growth factor in brain cells, thereby supporting
the recovery of neurological function in rats with
craniocerebral injuries. In summary, the beneficial
effects of HBO on BBB integrity, collateral circulation,
and angiogenesis, as elucidated in experimental
models including subarachnoid hemorrhage and focal
ischemia, may target shared pathways relevant to
global cerebral injury following cardiac arrest, though
validation in specific CA/CPR models remains
essential.

4. Hyperbaric Oxygen Therapy's
Protection Against Myocardial
Ischemia-Reperfusion Injury and Its
Neuroprotective Significance

Beyond the in-depth exploration of hyperbaric
oxygen's direct neuroprotective effects, its indirect
enhancement of cerebral perfusion through improved
cardiac function should not be overlooked. This
section will focus on elucidating this point to reveal
the complete pathway of heart-brain co-protection. As
the organs most sensitive to ischemia and hypoxia,
the heart and brain share a core pathophysiological
mechanism for reperfusion injury following
resuscitation, involving common pathways such as
oxidative stress, inflammatory response, and
apoptosis[90, 91]. Research indicates that hyperbaric
oxygen therapy can significantly reduce myocardial
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ischemia-reperfusion injury. For example, in a mouse
model of myocardial ischemia-reperfusion injury,
hyperbaric oxygen pretreatment reduces infarct size
and improves cardiac function by activating the
PI3K/ Akt/Nrf2 signaling pathway and upregulating
heme oxygenase-1 expression[92].

Similarly, = hyperbaric oxygen  reduces
inflammatory cytokine levels by inhibiting the TLR4/
NF-xB pathway and modulates autophagy-related
proteins such as LC3B and Beclin-1, thereby
protecting cardiomyocytes[93]. These mechanisms
closely resemble the anti-inflammatory and
antioxidant effects of hyperbaric oxygen in cerebral
ischemia-reperfusion  injury,  confirming the
universality of the intervention strategy. More
importantly, hyperbaric oxygen therapy protects the
heart by stabilizing systemic blood circulation,
thereby indirectly supporting cerebral perfusion and
neural repair. Improved cardiac function directly
enhances cardiac output and hemodynamic stability,
thereby ensuring sustained and effective oxygen
delivery to brain tissue following resuscitation[94, 95].

5. Clinical study of HBO combination
therapy for cerebral ischemic-hypoxic
injury

The multidimensional mechanisms of hyperbaric
oxygen (HBO) therapy in cerebral ischemic-hypoxic
injury are becoming increasingly elucidated. Current
therapeutic approaches have evolved beyond mere
oxygen supplementation to encompass
comprehensive strategies that leverage synergistic
mechanisms. For instance, the combination of HBO
with non-invasive neuromodulation techniques[96],
such as repetitive transcranial magnetic stimulation
(rTMS), has demonstrated enhanced efficacy in
promoting the recovery of consciousness in comatose
patients compared to HBO therapy alone,
underscoring the potential of combinatorial
regimens[97]. This highlights a broader trend towards
multimodal interventions that target distinct yet
complementary  pathological  pathways.  The
successful application of combined oxygen and
mechanical recanalization in other cerebral ischemic
conditions further illustrates this principle. Notably,
the OPENS-2 trial demonstrated that normobaric
hyperoxia (NBO)—a distinct intervention from HBO
therapy, administered at normal atmospheric
pressure—combined with endovascular therapy,
significantly improved 90-day functional outcomes
(modified Rankin Scale scores) in patients with acute
ischemic stroke due to large vessel occlusion, with a

favorable safety profile[98]. It is crucial to emphasize
that NBO and HBO, while sharing the goal of

enhancing tissue oxygenation, differ fundamentally in
their pressure parameters and physiological effects, a
distinction critical for accurate scientific discourse.
Combining hyperbaric oxygen (HBO) therapy
with targeted temperature management (TTM),
particularly =~ mild  therapeutic ~ hypothermia,
demonstrates synergistic benefits for mitigating brain
injury and enhancing neurological recovery. Clinical
evidence indicates that this combined approach yields
superior outcomes compared to monotherapies. For
instance, a clinical investigation involving patients
with severe acute carbon monoxide poisoning
demonstrated that combined therapeutic
hypothermia and hyperbaric oxygen therapy yielded
significantly better neurocognitive outcomes at the
6-month follow-up compared to hyperbaric oxygen
treatment alone[99]. The complementary mechanisms
underlie this efficacy: HBO directly ameliorates tissue
hypoxia by elevating oxygen partial pressure, while
mild hypothermia (typically maintained at 33-35°C)

reduces cerebral metabolic rate, attenuates
excitotoxicity, = and  suppresses inflammatory
cascades[100]. This multi-targeted action

synergistically delays the progression of secondary
brain injury, positioning the combination as a
promising neuroprotective strategy[101].

Emerging evidence indicates that combining
hyperbaric oxygen (HBO) therapy with acupuncture
can significantly improve neurological outcomes
following brain injury. A meta-analysis of 11
randomized controlled trials demonstrated that this
combination was significantly superior to HBO alone
in improving Glasgow Coma Scale (GCS) scores and
the effectiveness rate in patients with traumatic brain
injury (TBI)[102]. The neurobiological mechanisms
may involve the modulation of cortical excitability
and cerebral perfusion, as evidenced by functional
near-infrared spectroscopy (fNIRS) studies showing
that acupuncture increases oxygenated hemoglobin
(HbO) concentration in the prefrontal cortex[103].
Furthermore, adjunctive therapy with certain Chinese
herbal formulations has shown pro-awakening and
anti-inflammatory effects in patients with severe
craniocerebral injury, contributing to the overall
therapeutic efficacy within an integrated treatment
paradigm[104-106].

6. Conclusions

6.1. Clinical Evidence and Current Challenges
in HBO Therapy for Post-Cardiac Arrest Brain
Injury

The current body of evidence regarding

hyperbaric oxygen therapy for post-cardiac arrest
hypoxic-ischemic brain injury reveals a promising yet

https://www.medsci.org



Int. J. Med. Sci. 2026, Vol. 23

680

complex therapeutic profile. Preclinical studies
consistently = demonstrate that HBO confers
multimodal  neuroprotection through  distinct

molecular pathways, including a 40-60% increase in
superoxide dismutase activity, 35-50% reduction in
pro-inflammatory cytokines such as IL-1B,and 2-3
fold upregulation of glutathione peroxidase 4,

effectively mitigating oxidative stress,
neuroinflammation, and  ferroptosis. = These
mechanisms  collectively  contribute to  the

preservation of neuronal integrity and function in
global cerebral ischemia models[107]. However, the
clinical translation of these findings remains
constrained by significant methodological
heterogeneity across studies. Critical parameters such
as pressure applications (ranging from 1.5 to 3.0
ATA), treatment initiation windows (2-72 hours
post-ROSC), and outcome assessments lack
standardization, = while  existing  randomized
controlled trials are predominantly limited by small

sample sizes (the largest to date comprising
approximately 118 participants)[108]. This
heterogeneity ~ underscores three fundamental

knowledge gaps: the optimal therapeutic window
(with animal data suggesting maximal benefit within
6 hours post-ROSC), the precise pressure-dose
response relationship, and the synergistic potential of
HBO with advanced cardiopulmonary resuscitation
techniques.

6.2. Emerging Technologies and Future
Therapeutic Avenues

In addressing the latter point, our research group
has developed an Abdominal Lifting and

Compression CPR method that demonstrates
particular compatibility with subsequent HBO
therapy. This technique has shown a 25%

improvement in carotid blood flow, a 40% reduction
in intracranial pressure fluctuations, and enhanced
hemodynamic stability during compression cycles
compared to standard CPR in preliminary
investigations[109-112].

These physiological improvements may create a
more favorable substrate for HBO's neuroprotective
effects by optimizing cerebral perfusion prior to
oxygen administration, though further validation is
required. Future research priorities should focus on
conducting Phase III multicenter randomized
controlled trials with sufficient statistical power
(recommended sample size >500), incorporating
biomarker-guided therapy approaches that monitor
GFAP, NSE, and S100B kinetics to personalize
treatment intensity. Simultaneously, mechanistic
studies exploring interactions between HBO and
cellular recovery pathways, including potential

synergies with mitochondrial protection and astrocyte
modulation, are needed. Standardized protocol
development should establish optimal pressure
parameters (2.0-2.5 ATA appears favorable based on
current evidence), treatment duration (60-90
minutes/session), and session frequency (daily versus
alternate day) while addressing implementation
challenges such as cost-effectiveness analyses and
specialized training requirements for combined
CPR-HBO delivery systems (Figure 4).

[ )

Time Points Post-ROSC:0~2h

Optimal Therapeutic Window: Apoptosis Inhibition Rate
>80%
- J

.

Time Points Post-ROSC:2~6h
Effective Window: Inflammatory Factors Reduction
250%
G J
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~ N\
Time Points Post-ROSC:>6h

Diminishing Returns: Oxidative Damage Improvement
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Temporal Relationship Between HBO Intervention Timing Post-ROSC and Neuroprotective Efficacy

Figure 4. Temporal Relationship Between HBO Intervention Timing
Post-ROSC and Neuroprotective Efficacy. Efficacy metrics: Apoptosis
inhibition rate (Bcl-2/Bax), inflammatory reduction (TNF-a/IL-1B), oxidative damage
improvement (MDA).

In conclusion, while HBO represents a
promising therapeutic approach for post-cardiac
arrest brain injury, its successful integration into
clinical practice requires a more rigorous evidence

base that specifically addresses the unique
pathophysiology of global cerebral ischemia
following CPR. By addressing these research

priorities, we can better elucidate HBO's potential to
improve neurological outcomes in this devastating
condition.
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