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Abstract

Background: Pancreatic cancer (PaC) is characterized by poor prognosis. This study aimed to identify
mitophagy-related clusters and develop a prognostic model for PaC.

Methods: Differentially expressed genes (DEGs) between PaC and normal tissues were identified from
the TCGA and GTEx cohorts. Mitophagy-related genes (MRGs) were sourced from Reactome, GO, and
KEGG databases. The intersection of DEGs and MRGs identified differentially expressed MRGs
(DeMRGs). Consensus clustering identified PaC subtypes based on DeMRG expression. Univariate Cox
analysis was used to find prognosis-related genes, and LASSO regression analysis was employed to
develop the prognostic model. A nomogram was constructed to predict survival probabilities.

Results: A total of 7,240 DEGs were identified between PaC tissues and normal controls. From these, 12
DeMRGs were identified, and consensus clustering revealed three distinct molecular clusters. A
prognostic model based on six significant genes (PAPPA, NBPF12, CXCLI1, CKLF-CMTMI, CCDCS,
AHNAK) was developed using LASSO regression analysis. This model demonstrated good predictive
performance for overall survival in the TCGA cohort, with AUC values of 0.78, 0.74, and 0.82 for 1-, 2-,
and 3-year survival in the training set, and 0.73, 0.82, and 0.73 in the validation set. External validation in
independent GEO cohorts demonstrated moderate predictive performance. The nomogram
demonstrated good calibration and accuracy in predicting survival. Significant correlations were found
between the risk model and immune cell infiltration. High-risk patients showed higher sensitivity to
dasatinib and staurosporine.

Conclusions: The study identified mitophagy-related molecular clusters and developed a prognostic
model for PaC. This model may help predict overall survival and guide personalized treatment strategies
for PaC patients.
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Introduction

Pancreatic cancer (PaC) is a highly lethal
malignancy originating in the tissues of the pancreas,
characterized by a poor prognosis, with a 5-year
relative survival rate of 12% for diagnoses made
between 2012 and 2018 in the United States[1].
Despite being the sixth leading cause of cancer-related
deaths worldwide[2], PaC often evades early
detection due to the absence of distinctive clinical
symptoms and its aggressive nature[3]. The current
therapeutic =~ approaches,  primarily = systemic
chemotherapy and surgical resection, are limited and

largely ineffective, contributing to high mortality
rates[4]. These challenges underscore the critical need
for novel prognostic markers and tailored treatment
strategies to improve clinical outcomes for PaC
patients.

Mitophagy, a selective form of autophagy
targeting mitochondria for degradation, operates via
ubiquitin-dependent (e.g., PINK1-PRKN pathway)
and ubiquitin-independent (e.g., BNIP3L/NIX,
FUNDC1) mechanisms, playing a crucial role in
maintaining mitochondrial quality and cellular
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homeostasis[5]. In PaC, mitophagy exhibits a dual
role in tumorigenesis and treatment response. The
PINK1/PRKN pathway inhibits tumorigenesis by
reducing inflammation and immune suppression.
Conversely, the BNIP3L pathway promotes
tumorigenesis by enhancing antioxidant capacity and
metabolic adaptation. Therapeutically, mitophagy
influences chemoresistance and sensitivity to
metformin in PaC stem cells, underscoring its
significance in treatment strategies[6]. Recent studies
highlight the pivotal role of mitophagy-related genes
(MRGs) in predicting PaC prognosis and identifying
gene signatures and subtypes associated with survival
outcomes, immune activity, and chemotherapy
response[7, 8]. However, these models are limited by
heterogeneity and require validation in diverse
cohorts to develop reliable predictive tools for
personalized treatment based on mitophagy-related
molecular clusters.

In this study, we identified differentially
expressed MRGs (DeMRGs) in PaC using data from
The Cancer Genome Atlas (TCGA) and
Genotype-Tissue Expression (GTEx) cohorts. We used
consensus clustering to define distinct molecular
subtypes of PaC based on DeMRG expression. A
prognostic model based on DEGs between these
subtypes was developed to predict overall survival
(OS). The constructed nomogram was validated for
accuracy and clinical utility. Our findings may
enhance the understanding of PaC biology and
contribute to more effective and individualized
treatment approaches.

Materials and Methods

Study cohorts and data sources

The raw count data for the TCGA PaC cohort
(including cancer and adjacent normal tissues) and
GTEx normal pancreatic tissues were downloaded
from the ucsC Xena Browser
(https:/ /xenabrowser.net/). The raw counts were
converted to TPM expression values using the
"count2tpm" function from the R package "IOBR".
When a gene had multiple expression values, the
median was used as the expression value. The
processed expression profiles from the TCGA cohort
and the GTEx cohort were then merged, and batch
effects were removed using the "ComBat" function
from the "sva" package. PaC cohorts GSE71729 and
GSE21501 were downloaded from the Gene
Expression Omnibus database (GEO,
https:/ /www.ncbi.nlm.nih.gov/geo/) for validation
purposes. OS time was recorded in days. Sample
information is summarized in Table 1. A total of 61
mitophagy-related genes (MRGs) were identified

using the keyword "mitophagy" in the Reactome,
Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) databases[9-11].

Table 1. Sample information.

ID Platform Sample type Sample size Data type
()
TCGA Cancer and adjacent normal ~ 177:4 RNAseq
tissues (Case:Ctrl)
GTEx Normal pancreatic tissues 167 RNAseq
GSE71729 GPL20769 Cancer tissues 125 mRNA
array

GSE21501 GPL4133 Cancer tissues 102 mRNA

array

Identification of DeMRGs

Differentially expressed genes (DEGs) between
PaC and normal controls were identified in the
merged TCGA and GTEx cohorts using the R package
"limma"[12]. Genes with adj.P.Val < 0.05 and log2
|fold change (FC)| > 1 were considered DEGs[13].
The intersection of DEGs and MRGs identified by a
Venn diagram was identified as DeMRGs.

Consensus clustering

PaC molecular subtypes were identified based
on the expression of DeMRGs in TCGA patients with
the R package "ConsensusClusterPlus"[14]. Clustering
was performed 500 times using 80% of the samples
per iteration. Euclidean distance was employed as the
metric (reps=500, pltem=0.8, distance="euclidean").
The optimal number of subtypes (k) was determined
based on tendencies and smoothness of the
cumulative distribution function (CDF) curve,
consistency scores, and the consensus matrix. The R
packages "Rtsne" and principal component analysis
(PCA) were utilized to visualize the distribution of
different subtypes. Differential expression analysis
between subtypes was conducted using the R package
"limma", with DEGs identified by the criteria |logFC |
> 1 and adjP.Val < 0.05. The intersecting DEGs
between subtypes underwent subsequent analyses.

Functional enrichment analysis

Function enrichment of the DEGs was conducted
through GO and KEGG analyses using the R package
"clusterProfiler"[15]. P-values were adjusted using the
Benjamini-Hochberg method, and the enrichment
results with adjusted p-values were presented.

Construction of a prognostic model

Prognosis-related genes (p < 0.05) were
identified among the DEGs between PaC subtypes
using a univariate COX analysis with survival data
from the TCGA cohort. Patients from the TCGA
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cohort were then randomly divided into a training set
and a validation set in a 7:3 ratio. LASSO regression
analysis was conducted on the expression profiles of
the prognosis-related genes in the training set using
the R package "glmnet"[16]. The penalty parameter A
that optimizes the minimum criterion was
determined, and genes with non-zero coefficients
were identified as the model genes. LASSO was
selected because it simultaneously performs variable
selection and regularization, thereby reducing
overfitting and enhancing model interpretability[17].
The weight coefficients were integrated with the
expression levels of the model genes to calculate the
risk score using the following formula:

RiskScore = RiskScore = ).} coef X gene

Protein-protein interaction (PPI) network

A PPI network was constructed for the model
genes to identify proteins that potentially exhibit
shared functions using GeneMANIA[18]
(http:/ /www.genemania.org).

Construction and evaluation of a nomogram

Cox regression analysis was conducted on
multiple risk factors, including risk score, age, sex,
stage, and other clinical information. The results were
visualized using forest plots generated by the R
package "forestplot'. A nomogram was constructed
based on prognostic factors using the R package
"rms". Its clinical decision-making performance was
assessed through calibration curves produced by the
"calibrate" function in the R package "rms".

Immunotherapy response prediction

The response of the TCGA cohort to
anti-PD-1/PD-L1 and anti-CTLA4 treatments was
predicted using the Tumor Immune Dysfunction and
Exclusion (TIDE) tool (http:/ /tide.dfci.harvard.edu).

Immune cell infiltration analysis

The abundance of 21 types of immune cells in
TCGA patient samples was determined using the
"CIBERSORT" algorithm[19]. Samples with a p-value
less than 0.05 were selected for further analysis.
Immune cells with zero abundance across all samples
were excluded. The infiltration of the remaining
immune cells was examined in patients stratified by
different risk levels.

Gene set enrichment analysis (GSEA)

The TCGA cohort was divided into high-risk and
low-risk groups based on the median risk score. A
differential gene expression analysis was performed

on all genes between the two groups and ranked
accordingly. A GSEA analysis was then conducted
based on the ranking of all genes using the R package
"clusterProfiler". Pathway enrichment was specifically
investigated in high-risk patient cohorts, with a
p-adjust value of less than 0.05.

Drug sensitivity prediction

The  '"calcPhenotype" function in  the
"oncoPredict" package was used to analyze data from
the Genomics of Drug Sensitivity in Cancer (GDSC2)
and CTRP V2 databases. The expression matrix and
drug treatment data from the training set were
utilized to analyze the TCGA cohort. A lower
predicted drug response score (PreScore) indicates a
higher sensitivity to the drug.

Statistical analysis

Statistical analysis was conducted using R
(v4.3.0). Survival analysis was performed using
"survival" and visualized using "survminer". ROC
analysis was conducted using "timeROC" and
presented using "pROC". Heatmaps were generated
using "pheatmap". Result diagrams were generated
using "ggplot2" or "plot". Pearson's method was
employed for correlation analysis, and the t-test was
utilized for comparing differences between two
groups. A p-value less than 0.05 was considered
statistically significant.

Results

Identification and functional enrichment
analysis of DeMRGs

Differential expression analysis using the
merged TCGA and GTEx cohorts revealed 7,240
DEGs (5,704 upregulated and 1,536 downregulated)
in PaC tissues compared to normal controls (Fig. 1A,
Table S1). The top 40 DEGs with the most significant
changes in expression levels were displayed in the
heatmap (Fig. 1B). The intersection of 61 MRGs and
7,240 DEGs identified 12 DeMRGs (Fig. 1C). GO
functional enrichment analysis revealed that the
major enriched biological processes consisted of 15
categories, including "autophagy of mitochondrion", "
mitochondrion  disassembly", and '"organelle
disassembly". The enriched cellular components
comprised five categories, such as "autophagosome", "
mitochondrial outer membrane", and "organelle outer
membrane". The molecular functions included six
categories, such as "phospholipid binding", amide
binding", and "CARD domain binding" (Fig. 1D,
Table S2).
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Figure 1. Identification and characterization of differentially expressed mitophagy-related genes (DeMRGs) in pancreatic cancer (PaC). (A) A volcano plot illustrates the
differentially expressed genes (DEGs) from the merged TCGA and GTEx cohorts. Red dots represent upregulated genes, and blue dots represent downregulated genes. The top 20 genes with
the most significant changes in expression levels are labeled. (B) A heatmap displays the top 40 DEGs. Each row represents a gene, and each column represents a sample. The color gradient
indicates the level of gene expression, with red representing higher expression and blue representing lower expression. (C) A Venn diagram depicts the intersection of DEGs and MRGs,
identifying 12 DeMRGs. (D) Gene Ontology (GO) functional enrichment analysis of the DeMRGs. The bar graph categorizes the enriched GO terms into biological processes (orange), cellular
components (green), and molecular functions (blue). The length of each bar represents the number of genes associated with each GO term.

Identification of PaC subtypes based on
DeMRGs

To identify DeMRG-related PaC subtypes, we
conducted consensus clustering on 177 PaC patients
in the TCGA cohort using the expression profiles of 12
DeMRGs. The consensus matrix heatmap revealed
three distinct clusters with high consensus scores,
indicating a clear separation between the groups (Fig.
2A). The CDF plot (Figure 2B) and the delta area plot
(Fig. 2C) supported the stability and optimality of
clustering at k = 3. The cluster-consensus bar plot

demonstrated uniform clustering consistency across
different clusters (Fig. 2D). PCA (Fig. 2E) and t-SNE
(Fig. 2F) analyses further validated the distinct
separation between the three subtypes. The bar graph
(Fig. 2G) and heatmap (Fig. 2H) showed significant
variations in expression of the 12 DeMRGs across
different subtypes. Examination of the immune
microenvironment revealed notable differences in the
abundance of three immune cell types, including
memory B cells, M2 macrophages, and CD8 T cells
(Fig. 21).
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Figure 2. Consensus clustering of PaC patients based on DeMRGs. (A) Consensus matrix for k=3, showing distinct clustering into three groups with high consensus scores. (B) A
consensus cumulative distribution function (CDF) plot depicts the cumulative distribution for different values of k ranging from 2 to 9. (C) A delta area plot shows the relative change in area
under the CDF curve for different values of k, with a notable decrease indicating the stability of the clustering at k=3. (D) A cluster-consensus bar plot indicates the clustering consistency for
each cluster. (E) A principal component analysis (PCA) scatter plot shows the distribution of the three identified clusters. (F) A t-SNE plot illustrates the clustering of the PaC patients into
three distinct subtypes. Each point represents a patient and is colored according to the assigned cluster. (G, H) A box plot (G) and heatmap (H) illustrate the expression patterns of 12
DeMRGs across the identified subtypes. (I) A box plot shows differences in the abundance of 21 immune cell types among the three clusters. *p < 0.05, “p < 0.01, ns, non-significant.
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Identification and enrichment analysis of DEGs
among PaC subtypes

We identified 469 DEGs common across three
PaC subtypes by Venn diagram analysis of genes
exhibiting differential expression in cancerous versus
adjacent non-cancerous tissues (Fig. 3A). GO
functional enrichment analysis (Fig. 3B, Table S3)
revealed enrichment in 12 biological processes,
including "macroautophagy", "protein
dephosphorylation, " and "endosomal vesicle fusion".

regulation of protein catabolic...-
macroautophagy
protein dephosphorylation -
positive regulation of mR...
protein acetylation -
receptor internalization -
negative regulation of autophagy -
regulation of phosphatase activity
mitotic sister chromatid cohesion -
canonical inflammasome complex assembly
regulation of nuclear-transcribed mR...-
endosomal vesicle fusion -

Sluster1-Cluster

Iytic vacuole membrane -

The analysis also identified enrichment in 9 cellular
components, such as "the ATPase complex",
"autophagosome", and ‘"phosphatase complex".
Additionally, 6 molecular functions were enriched,
including "ATP hydrolysis activity",
"ubiquitin-protein transferase activity", and "GTPase
binding". KEGG pathway analysis (Fig. 3C, Table S4)
showed enrichment in 13 pathways, including the
"PI3K-Akt signaling pathway", "oocyte meiosis", and
"phagosome".
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Figure 3. Identification and prognostic analysis of DEGs in PaC subtypes. (A) A Venn diagram identified 469 DEGs common across three PaC subtypes. (B, C) GO (B) and KEGG
(C) functional enrichment analyses of the 469 DEGs. (D) A trace plot for the LASSO COX regression shows the coefficient paths for each variable as a function of the regularization parameter
lambda. (E) Ten-fold cross-validation curve for LASSO COX regression. Dashed lines indicate minimum lambda and optimal lambda. (F) Bar plot of the weight coefficients of the six selected
genes. (G) Forest plot of the multivariate COX regression analysis for the model genes. Hazard ratios (HR) and 95% confidence intervals (Cl) are shown. (H) Protein-protein interaction
network of the model genes and other related proteins. Nodes represent proteins, and edges represent interactions. (I) Box plots comparing the expression of levels of the model genes

between PaC tissues and normal tissues.“p < 0.05, ***p < 0.0001.
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Construction of a prognostic risk model based
on DEGs among PaC subtypes

To identify model genes among the 469 DEGs,
we conducted univariate COX analysis in the TCGA
cohort and obtained 101 potential prognostic genes
(Table S5). We divided the TCGA cohort into a
training set and a validation set in a 7:3 ratio. LASSO
COX analysis was then performed on the training set,
and six genes (PAPPA, NBPF12, CXCL11,
CKLF-CMTM1, CCDC6, and AHNAK) were selected
based on the model's minimum lambda (Fig. 3D and
3E). The weight coefficients of these genes are shown
in Fig. 3F. The risk score was calculated using the
formula: RiskScore = (0.129) x PAPPA + (-2.035) x
NBPF12+ (0.684) x CXCL11 + (0.575) x CKLF-CMTM1
+(0.411) x CCDC6 + (1.125) x AHNAK. Subsequently,
a multivariate COX analysis was conducted on these
genes (Fig. 3G), and a PPI network was constructed
(Fig. 3H). NBPF12  exhibited  significant
downregulation in cancer tissues compared to
adjacent normal tissues, while the other five model
genes exhibited significant upregulation (Fig. 3I).

Prognostic evaluation of the risk model in
training and validation sets of the TCGA
cohort

To evaluate the prognostic value of the risk
model, we conducted survival analyses on both the
training and validation sets of the TCGA cohort.
Patients were stratified into high-risk and low-risk
groups based on their risk scores, with high-risk
patients showing a higher prevalence of death (Fig.
4A and 4B). Kaplan-Meier survival curves confirmed
that high-risk patients had significantly worse OS in
both the training set (p < 0.0001; Fig. 4C) and the
validation set (p = 0.0021; Fig. 4D). The
time-dependent ROC analysis demonstrated high
predictive accuracy in the training set, with AUCs of
0.78, 0.74, and 0.82 for 1-year, 2-year, and 3-year
survival, respectively (Fig. 4E). In the validation set,
the AUC values were 0.73, 0.82, and 0.73 for 1-year,
2-year, and 3-year survival, respectively, indicating
consistent predictive accuracy (Fig. 4F). These
findings suggest that the risk model effectively
stratifies patients by prognosis and demonstrates
reliable predictive accuracy in both the training and
validation sets.

Additionally, the t-SNE plot demonstrated a
clear separation among the three clusters (Fig. S1A).

Cluster 3 exhibited significantly higher risk scores
compared to Cluster 1 ("p < 0.01) and Cluster 2 ("p <
0.05; Fig. S1B), suggesting that patients in Cluster 3
are at higher risk. Furthermore, a Sankey diagram
illustrated the distribution of patients from each
cluster into high-risk and low-risk groups and their
corresponding survival status (Fig. S1C). Most
patients in Cluster 3 were classified as high-risk and
had a higher proportion of deaths, while patients in
Clusters 1 and 2 were predominantly low-risk and
had better survival outcomes. This analysis reinforces
the prognostic significance of the clustering.

Validation of the prognostic value of the risk
model in independent datasets and diverse
clinical subgroups

To validate the prognostic value of the risk
model, we conducted survival analyses using two
independent datasets. Patients were stratified into
high-risk and low-risk groups based on their risk
scores. The survival status plot indicated that
high-risk patients had a higher incidence of death
(Fig. S2A and S2B). Kaplan-Meier survival analysis
confirmed that high-risk patients had significantly
worse OS compared to low-risk patients (p = 0.01 for
GSE21501, p = 0.04 for GSE71729; Fig. S2C and S2D).
The time-dependent ROC analysis indicated
moderate predictive accuracy at various time points,
with AUC values at 1-year, 2-year, and 3-year being
0.66, 0.54, and 0.62 for GSE21501, and 0.59, 0.57, and
0.65 for GSE71729 (Fig. S2E and S2F). These results
provide supportive external evidence for the
prognostic stratification ability of the risk model.

To further validate the risk model, we conducted
survival analyses across different clinical and
demographic  subgroups.  High-risk  patients
consistently had worse OS compared to low-risk
patients in those aged < 65, aged > 65, females, males,
well-differentiated tumors (G1-G2),
poorly-differentiated tumors (G3-G4), early-stage
disease (I-II), smaller tumors (T1-T2), larger tumors
(T3-T4), no metastasis (MO), no lymph node
involvement (NO), and lymph node involvement
(N1-N3) (all p < 0.05), except for advanced-stage
disease (III-IV) and metastasis (M1) (both p > 0.05)
(Fig. S3A-H and S4A-F). Boxplots (Fig. S4G) showed
that high-risk scores were associated with higher
tumor grades, advanced stages, and lymph node
involvement statuses.
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Construction and evaluation of nomogram

To provide individualized survival predictions,
we developed a nomogram that integrates multiple
clinical variables and the risk score. The univariate
Cox regression analysis revealed that risk score, T
stage, and N stage were significant predictors of OS
(Fig. 5A). In the multivariate Cox regression analysis,
the risk score remained a significant predictor,
highlighting its independent prognostic value (Fig.
5B). A nomogram was developed to predict 1-, 2-, and

3-year OS probabilities, integrating age, grade, T
stage, N stage, and risk score (Fig. 5C). The calibration
curves for 1-, 2-, and 3-year OS demonstrated good
agreement between the predicted and observed
outcomes, indicating the model's accuracy (Fig. 5D-
F). The time-dependent ROC analysis showed ideal
predictive accuracy with AUC values of 0.81, 0.67, and
0.71 for 1-, 2-, and 3-year survival, respectively (Fig.
5G). These findings suggest that the risk model is a
potential independent predictor of OS.
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The correlation between immune cell
infiltration and risk score

To investigate the immune microenvironment
and the clinical relevance of the risk model, we
performed various analyses. The comparison of
immune cell infiltration between high-risk and
low-risk groups revealed significant differences in the
proportions of naive B cells, M1 macrophages, M2
macrophages, and resting mast cells, suggesting an
altered tumor microenvironment (TME) in high-risk
patients (Fig. 6A). The Chi-squared test showed that
high-risk patients had a lower response rate to
therapy compared to low-risk patients, suggesting the
prognostic value of the risk score (Fig. 6B). The
analysis of TME scores demonstrated that high-risk
patients had significantly higher StromalScore and
ESTIMATEScore, but no significant difference in
ImmuneScore, suggesting a more pronounced stromal
component within the tumor (Fig. 6C). Correlation
analysis identified significant associations between
the expression of the model genes and immune
checkpoints (Fig. 6D). The bubble plot showed
significant correlations among the model genes (Fig.
6E). Additionally, comparisons of various
immune-related scores between high-risk and
low-risk groups showed significant differences (Fig.
6F). These findings suggest the potential of the risk
model to stratify patients based on their immune
microenvironment and may help predict their
response to immunotherapy.

GSEA enrichment analysis and drug sensitivity
in patients with different risks

To further elucidate the biological pathways
associated with the risk model, we conducted GSEA
in the TCGA cohort. The analysis identified several
hallmark pathways that were significantly enriched in
high-risk patients. Specifically, pathways such as
allograft rejection, interferon gamma response,
epithelial-mesenchymal transition, interferon alpha
response, TNFA signaling via NFxB, inflammatory
response, hypoxia, coagulation, apical junction, and
KRAS signaling were activated in high-risk patients.
In contrast, the pancreatic beta cells pathway was
suppressed (Fig. 7A). The enrichment plots for
specific pathways illustrated the distribution of
pathway-related genes across the ranked list of all
genes (Fig. 7B). All GSEA results are summarized in
Table S6. This enrichment analysis provides insights
into the molecular mechanisms underlying the poorer
prognosis observed in high-risk patients, highlighting
potential therapeutic targets for intervention.

To explore the potential therapeutic implications
of the risk model, we conducted a drug sensitivity

analysis (Table S7). High-risk patients showed higher
sensitivity to dasatinib and staurosporine, as
indicated by lower drug response scores (Fig. S5A).
These two drugs showed strong negative correlations
with the risk score (Fig. S5B), suggesting increased
effectiveness in high-risk patients.

To support the biological plausibility of the
prognostic model at the protein level, we examined
immunohistochemical expression patterns using data
from the Human Protein Atlas (HPA). Representative
images demonstrated detectable and heterogeneous
protein expression of PAPPA, NBPF12, CXCL11,
CCDC6, and AHNAK in normal pancreatic tissue and
PaC (Fig. 8). CKLF-CMTM]1 could not be evaluated at
the protein level due to its read-through nature and
the absence of a curated protein annotation in the
database. Although immunohistochemistry does not
provide a quantitative assessment of expression
changes, these observations indicate that the majority
of model genes are translated and expressed in
relevant pancreatic tissues, providing supportive
protein-level evidence consistent with the RNA-based
prognostic model.

Discussion

The study identified 12 DeMRGs involved in
PaC through differential expression analysis.
Consensus clustering defined three distinct PaC
subtypes based on the DeMRG expression profile,
with notable differences in immune cell abundance
and prognostic outcomes. A risk model based on six
genes among DEGs in PaC subtypes demonstrated
prognostic value, stratifying patients into high- and
low-risk groups with significant differences in OS and
drug sensitivity. Clinically, the risk model may help
with patient stratification, prognostic assessment, and
identification of potential therapeutic targets, thereby
enhancing personalized treatment approaches in PaC.

The six-gene model, comprising PAPPA,
NBPF12, CXCL11, CKLF-CMTM1, CCDC6, and
AHNAK, along with a nomogram integrating clinical
variables, effectively stratified patients into high- and
low-risk groups, demonstrating significant prognostic
value and differences in OS and drug sensitivity in
PaC. NBPF12 is the only gene in the model that is
downregulated in PaC tissues compared to adjacent
normal tissues. NBPF12 encodes a member of the
neuroblastoma breakpoint family, which plays a
crucial role in neuroblastoma development and
human evolution and is regulated by NF-xB[20].
Although no studies have directly demonstrated a
role for NBPF12 in pancreatic biology or mitophagy,
recurrent NBPF12 mutations have been reported in
multiple cancer genomics studies[21-23], and
functional work on other NBPF family members has
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shown their involvement in cell proliferation via
NF-«B signaling[24]. Data from the Human Protein
Atlas further confirm that NBPF12 is downregulated

in PaC tissues compared

to normal

tissues

(https:/ /v19.proteinatlas.org/ ENSG00000268043-NB
PF12/pathology/pancreatic+cancer). Our bioinfor-

group B8 nigh_risk E low_risk

matic analysis therefore represents a novel finding,
identifying NBPF12 for the first time as a prognostic
biomarker in PaC and revealing its negative
correlation with immune checkpoint expression,
suggesting a potential role in immune modulation.
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Figure 8. Protein expression of prognostic model genes in pancreatic tissues. Representative immunohistochemical staining images of prognostic model genes in normal pancreatic
tissue and PaC were obtained from the Human Protein Atlas. PAPPA, NBPF12, CXCLI11, CCDC6, and AHNAK show detectable protein expression with heterogeneous staining patterns
across samples. CKLF-CMTMI is not shown due to its read-through nature and the lack of a curated protein annotation in the database.
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PAPPA (pregnancy-associated plasma protein-
A) is a zinc metalloproteinase that enhances IGF
action by cleaving inhibitory IGF-binding proteins,
increasing IGF availability for cell processes. It
promotes tumor growth, invasion, and metastasis by
augmenting IGF receptor signaling, contributing to
cell proliferation, migration, and survival. PAPPA is
implicated in breast, ovarian, and lung cancers, as
well as Ewing sarcoma, making it a potential
therapeutic target[25-28]. Although the direct role of
PAPPA in PaC remains unclear, IGF signaling is
known to play a significant role. IGF-1 and IGF-2
secreted by tumor-associated macrophages and
myofibroblasts contribute to chemoresistance in PaC
by activating insulin/IGF receptors on cancer cells.
Inhibiting IGF-1/IGF-1R alongside chemotherapy
could enhance treatment efficacy[29, 30]. In addition,
IGF-1 signaling is crucial for sustaining cancer cell
viability by stimulating mitochondrial biogenesis and
mitophagy through the induction of BNIP3, thereby
influencing therapy responses and cancer phenotype
evolution[31]. These findings suggest that the
prognostic value of PAPPA found in our study may
stem from its role in enhancing IGF receptor
signaling, which contributes to chemoresistance,
cancer cell viability, mitochondrial biogenesis, and
mitophagy.

CXCL11 encodes a chemokine, and functional
studies have shown that its overexpression promotes,
while siRNA-mediated knockdown suppresses,
proliferation, migration, invasion, and epithelial-
mesenchymal transition (EMT) in PaC cells via the
YY1/miR-548t-5p axis[32]. Additionally, CXCL11 is
significantly overexpressed in the serum of pretreated
PaC patients and differentially expressed in response
to gemcitabine and erlotinib treatment, indicating its
potential as both a diagnostic and predictive
biomarker for PaC[33]. Moreover, the positive
correlation between CXCL11 and immune
checkpoints in our study aligns with previous
research. CXCL11 promotes T-cell infiltration into the
TME, increasing the presence of cells that express
these immune checkpoints[34]. Specifically, CTLA4
and PD-1 (PDCD1) are upregulated in T cells as a
counter-regulatory mechanism to prevent
overactivation of the immune response. PD-L1
(CD274) and PD-L2 (PDCD1LG2) bind to PD-1,
further contributing to immune suppression[35]. This
correlation indicates that CXCL11 enhances immune
cell recruitment and subsequently the expression of
inhibitory signals within the TME, balancing immune
activation and suppression. These insights, along with
our findings that CXCL11 is a significant component
of our prognostic model, suggest that targeting
CXCL11 could improve the efficacy of immune

checkpoint blockade therapies in PaC.

CCDC6 encodes a coiled-coil domain-containing
protein. Recent work has identified CCDC6 as a
mitophagy subtype-specific biomarker in PaC,
associated with poor prognosis, altered immune
infiltration, and variable drug response[8]. In
addition, siRNA-mediated knockdown of AHNAK in
PaC cells has been shown to reduce proliferation and
migration and to reverse EMT, supporting its role in
disease  progression[36]. CKLF-CMTM1 is a
read-through transcript combining the CKLF and
CMTML1 genes, producing a fusion protein involved
in immune responses and potentially influencing
cancer progression[37]. However, the role of
CKLF-CMTM1 in PaC has not been reported,
providing a novel avenue for further research into its
potential implications in PaC progression and
immune modulation.

The risk model stratified PaC patients into
high-risk and low-risk groups, with high-risk patients
demonstrating significantly worse OS and distinct
immune microenvironment characteristics,
suggesting its predictive potential for guiding
personalized treatment strategies. Additionally, the
model identified high-risk patients as more likely to
respond to dasatinib and staurosporine, highlighting
its therapeutic relevance in predicting drug
sensitivity. Dasatinib, a multi-targeted tyrosine kinase
inhibitor, has been used in clinical trials for the
treatment of various cancers, including PaC[38]. The
combination of dasatinib with paclitaxel or
gemcitabine significantly enhances the inhibition of
cell viability, proliferation, migration, and colony
formation in PaC cell lines by targeting p-SRC,
p-STAT3, p-AKT, and p-ERK][39]. Staurosporine, a
potent kinase inhibitor, is known for its ability to
induce apoptosis by inhibiting various kinase
pathways and significantly induces apoptosis in PaC
cells by activating caspase-9 and downregulating Bcl2
and Bad expression[40]. Our findings underscore the
potential of incorporating dasatinib and staurosporine
into therapeutic regimens for improving patient
outcomes in high-risk PaC cases.

Our findings demonstrate that the developed
risk model effectively stratifies PaC patients into
high-risk and low-risk groups, offering a promising
tool for guiding personalized treatment strategies.
However, the study has several limitations. First, it
relies on bioinformatic analyses and public
database-derived evidence, including qualitative
protein expression data, which may not fully capture
the biological complexity and interactions present in
experimental or clinical contexts. Second, although
previous studies have already investigated the
functional roles of CXCL11 and AHNAK in PaC using
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overexpression or knockdown approaches, their
specific involvement in mitophagy has not been
assessed, and comparable validation is not yet
available for CCDC6, PAPPA, NBPF12, and
CKLF-CMTM1. Future studies are required to
determine whether these genes directly regulate
mitophagy in PaC through similar models. Third,
although the 12 DeMRGs were sourced from curated
mitophagy-related gene sets and showed enrichment
in pathways such as mitochondrial autophagy and
organelle disassembly, some may primarily reflect
broader mitochondrial quality control or stress
response mechanisms rather than direct mitophagy
regulation. Distinguishing these roles requires further
mechanistic work. Fourth, the altered immune
infiltration observed between high- and low-risk
groups reflects correlation rather than causation.
Whether mitophagy-related genes directly drive
immune evasion in PaC remains unresolved. Future
mechanistic studies are essential to clarify these
potential links. Lastly, the findings require validation
in larger, independent cohorts and clinical trials, as
predictive performance in external cohorts was
modest.

Conclusions

In conclusion, we identified 12 DeMRGs in PaC
tissues and defined three distinct PaC subtypes based
on these DeMRGs, each exhibiting unique gene
expression profiles and immune cell compositions.
Our prognostic risk model, incorporating six DEGs
among subtypes, demonstrated predictive value for
OS, with high-risk patients showing significantly
poorer outcomes. We observed notable differences in
the TME of high-risk patients and identified potential
benefits from treatments like dasatinib and
staurosporine. These findings may contribute to more
personalized and targeted treatment approaches for
high-risk PaC patients. Validation in prospective
clinical cohorts is critical to establish their real-world
applicability.
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