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Abstract 

Background: Pancreatic cancer (PaC) is characterized by poor prognosis. This study aimed to identify 
mitophagy-related clusters and develop a prognostic model for PaC.  
Methods: Differentially expressed genes (DEGs) between PaC and normal tissues were identified from 
the TCGA and GTEx cohorts. Mitophagy-related genes (MRGs) were sourced from Reactome, GO, and 
KEGG databases. The intersection of DEGs and MRGs identified differentially expressed MRGs 
(DeMRGs). Consensus clustering identified PaC subtypes based on DeMRG expression. Univariate Cox 
analysis was used to find prognosis-related genes, and LASSO regression analysis was employed to 
develop the prognostic model. A nomogram was constructed to predict survival probabilities.  
Results: A total of 7,240 DEGs were identified between PaC tissues and normal controls. From these, 12 
DeMRGs were identified, and consensus clustering revealed three distinct molecular clusters. A 
prognostic model based on six significant genes (PAPPA, NBPF12, CXCL11, CKLF-CMTM1, CCDC6, 
AHNAK) was developed using LASSO regression analysis. This model demonstrated good predictive 
performance for overall survival in the TCGA cohort, with AUC values of 0.78, 0.74, and 0.82 for 1-, 2-, 
and 3-year survival in the training set, and 0.73, 0.82, and 0.73 in the validation set. External validation in 
independent GEO cohorts demonstrated moderate predictive performance. The nomogram 
demonstrated good calibration and accuracy in predicting survival. Significant correlations were found 
between the risk model and immune cell infiltration. High-risk patients showed higher sensitivity to 
dasatinib and staurosporine.  
Conclusions: The study identified mitophagy-related molecular clusters and developed a prognostic 
model for PaC. This model may help predict overall survival and guide personalized treatment strategies 
for PaC patients. 
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Introduction 
Pancreatic cancer (PaC) is a highly lethal 

malignancy originating in the tissues of the pancreas, 
characterized by a poor prognosis, with a 5-year 
relative survival rate of 12% for diagnoses made 
between 2012 and 2018 in the United States[1]. 
Despite being the sixth leading cause of cancer-related 
deaths worldwide[2], PaC often evades early 
detection due to the absence of distinctive clinical 
symptoms and its aggressive nature[3]. The current 
therapeutic approaches, primarily systemic 
chemotherapy and surgical resection, are limited and 

largely ineffective, contributing to high mortality 
rates[4]. These challenges underscore the critical need 
for novel prognostic markers and tailored treatment 
strategies to improve clinical outcomes for PaC 
patients. 

Mitophagy, a selective form of autophagy 
targeting mitochondria for degradation, operates via 
ubiquitin-dependent (e.g., PINK1-PRKN pathway) 
and ubiquitin-independent (e.g., BNIP3L/NIX, 
FUNDC1) mechanisms, playing a crucial role in 
maintaining mitochondrial quality and cellular 
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homeostasis[5]. In PaC, mitophagy exhibits a dual 
role in tumorigenesis and treatment response. The 
PINK1/PRKN pathway inhibits tumorigenesis by 
reducing inflammation and immune suppression. 
Conversely, the BNIP3L pathway promotes 
tumorigenesis by enhancing antioxidant capacity and 
metabolic adaptation. Therapeutically, mitophagy 
influences chemoresistance and sensitivity to 
metformin in PaC stem cells, underscoring its 
significance in treatment strategies[6]. Recent studies 
highlight the pivotal role of mitophagy-related genes 
(MRGs) in predicting PaC prognosis and identifying 
gene signatures and subtypes associated with survival 
outcomes, immune activity, and chemotherapy 
response[7, 8]. However, these models are limited by 
heterogeneity and require validation in diverse 
cohorts to develop reliable predictive tools for 
personalized treatment based on mitophagy-related 
molecular clusters. 

In this study, we identified differentially 
expressed MRGs (DeMRGs) in PaC using data from 
The Cancer Genome Atlas (TCGA) and 
Genotype-Tissue Expression (GTEx) cohorts. We used 
consensus clustering to define distinct molecular 
subtypes of PaC based on DeMRG expression. A 
prognostic model based on DEGs between these 
subtypes was developed to predict overall survival 
(OS). The constructed nomogram was validated for 
accuracy and clinical utility. Our findings may 
enhance the understanding of PaC biology and 
contribute to more effective and individualized 
treatment approaches. 

Materials and Methods 
Study cohorts and data sources 

The raw count data for the TCGA PaC cohort 
(including cancer and adjacent normal tissues) and 
GTEx normal pancreatic tissues were downloaded 
from the UCSC Xena Browser 
(https://xenabrowser.net/). The raw counts were 
converted to TPM expression values using the 
"count2tpm" function from the R package "IOBR". 
When a gene had multiple expression values, the 
median was used as the expression value. The 
processed expression profiles from the TCGA cohort 
and the GTEx cohort were then merged, and batch 
effects were removed using the "ComBat" function 
from the "sva" package. PaC cohorts GSE71729 and 
GSE21501 were downloaded from the Gene 
Expression Omnibus database (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) for validation 
purposes. OS time was recorded in days. Sample 
information is summarized in Table 1. A total of 61 
mitophagy-related genes (MRGs) were identified 

using the keyword "mitophagy" in the Reactome, 
Gene Ontology (GO), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) databases[9-11].  

 

Table 1. Sample information. 

ID Platform Sample type Sample size 
(n) 

Data type 

TCGA  Cancer and adjacent normal 
tissues 

177:4 
(Case:Ctrl) 

RNAseq 

GTEx  Normal pancreatic tissues 167 RNAseq 
GSE71729 GPL20769

  
Cancer tissues 125 mRNA 

array 
GSE21501 GPL4133

  
Cancer tissues 102 mRNA 

array 

 

Identification of DeMRGs 
Differentially expressed genes (DEGs) between 

PaC and normal controls were identified in the 
merged TCGA and GTEx cohorts using the R package 
"limma"[12]. Genes with adj.P.Val < 0.05 and log2 
|fold change (FC)| > 1 were considered DEGs[13]. 
The intersection of DEGs and MRGs identified by a 
Venn diagram was identified as DeMRGs.  

Consensus clustering  
PaC molecular subtypes were identified based 

on the expression of DeMRGs in TCGA patients with 
the R package "ConsensusClusterPlus"[14]. Clustering 
was performed 500 times using 80% of the samples 
per iteration. Euclidean distance was employed as the 
metric (reps=500, pItem=0.8, distance="euclidean"). 
The optimal number of subtypes (k) was determined 
based on tendencies and smoothness of the 
cumulative distribution function (CDF) curve, 
consistency scores, and the consensus matrix. The R 
packages "Rtsne" and principal component analysis 
(PCA) were utilized to visualize the distribution of 
different subtypes. Differential expression analysis 
between subtypes was conducted using the R package 
"limma", with DEGs identified by the criteria |logFC| 
> 1 and adj.P.Val < 0.05. The intersecting DEGs 
between subtypes underwent subsequent analyses.  

Functional enrichment analysis 
Function enrichment of the DEGs was conducted 

through GO and KEGG analyses using the R package 
"clusterProfiler"[15]. P-values were adjusted using the 
Benjamini-Hochberg method, and the enrichment 
results with adjusted p-values were presented. 

Construction of a prognostic model 
Prognosis-related genes (p < 0.05) were 

identified among the DEGs between PaC subtypes 
using a univariate COX analysis with survival data 
from the TCGA cohort. Patients from the TCGA 
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cohort were then randomly divided into a training set 
and a validation set in a 7:3 ratio. LASSO regression 
analysis was conducted on the expression profiles of 
the prognosis-related genes in the training set using 
the R package "glmnet"[16]. The penalty parameter λ 
that optimizes the minimum criterion was 
determined, and genes with non-zero coefficients 
were identified as the model genes. LASSO was 
selected because it simultaneously performs variable 
selection and regularization, thereby reducing 
overfitting and enhancing model interpretability[17]. 
The weight coefficients were integrated with the 
expression levels of the model genes to calculate the 
risk score using the following formula: 

RiskScore = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛
𝑖𝑖  

Protein-protein interaction (PPI) network 
A PPI network was constructed for the model 

genes to identify proteins that potentially exhibit 
shared functions using GeneMANIA[18] 
(http://www.genemania.org). 

Construction and evaluation of a nomogram 
Cox regression analysis was conducted on 

multiple risk factors, including risk score, age, sex, 
stage, and other clinical information. The results were 
visualized using forest plots generated by the R 
package "forestplot". A nomogram was constructed 
based on prognostic factors using the R package 
"rms". Its clinical decision-making performance was 
assessed through calibration curves produced by the 
"calibrate" function in the R package "rms". 

Immunotherapy response prediction 
The response of the TCGA cohort to 

anti-PD-1/PD-L1 and anti-CTLA4 treatments was 
predicted using the Tumor Immune Dysfunction and 
Exclusion (TIDE) tool (http://tide.dfci.harvard.edu).  

Immune cell infiltration analysis 
The abundance of 21 types of immune cells in 

TCGA patient samples was determined using the 
"CIBERSORT" algorithm[19]. Samples with a p-value 
less than 0.05 were selected for further analysis. 
Immune cells with zero abundance across all samples 
were excluded. The infiltration of the remaining 
immune cells was examined in patients stratified by 
different risk levels. 

Gene set enrichment analysis (GSEA) 
The TCGA cohort was divided into high-risk and 

low-risk groups based on the median risk score. A 
differential gene expression analysis was performed 

on all genes between the two groups and ranked 
accordingly. A GSEA analysis was then conducted 
based on the ranking of all genes using the R package 
"clusterProfiler". Pathway enrichment was specifically 
investigated in high-risk patient cohorts, with a 
p.adjust value of less than 0.05. 

Drug sensitivity prediction 
The "calcPhenotype" function in the 

"oncoPredict" package was used to analyze data from 
the Genomics of Drug Sensitivity in Cancer (GDSC2) 
and CTRP V2 databases. The expression matrix and 
drug treatment data from the training set were 
utilized to analyze the TCGA cohort. A lower 
predicted drug response score (PreScore) indicates a 
higher sensitivity to the drug.  

Statistical analysis  
Statistical analysis was conducted using R 

(v4.3.0). Survival analysis was performed using 
"survival" and visualized using "survminer". ROC 
analysis was conducted using "timeROC" and 
presented using "pROC". Heatmaps were generated 
using "pheatmap". Result diagrams were generated 
using "ggplot2" or "plot". Pearson's method was 
employed for correlation analysis, and the t-test was 
utilized for comparing differences between two 
groups. A p-value less than 0.05 was considered 
statistically significant. 

Results 
Identification and functional enrichment 
analysis of DeMRGs 

Differential expression analysis using the 
merged TCGA and GTEx cohorts revealed 7,240 
DEGs (5,704 upregulated and 1,536 downregulated) 
in PaC tissues compared to normal controls (Fig. 1A, 
Table S1). The top 40 DEGs with the most significant 
changes in expression levels were displayed in the 
heatmap (Fig. 1B). The intersection of 61 MRGs and 
7,240 DEGs identified 12 DeMRGs (Fig. 1C). GO 
functional enrichment analysis revealed that the 
major enriched biological processes consisted of 15 
categories, including "autophagy of mitochondrion", " 
mitochondrion disassembly", and "organelle 
disassembly". The enriched cellular components 
comprised five categories, such as "autophagosome", " 
mitochondrial outer membrane", and "organelle outer 
membrane". The molecular functions included six 
categories, such as "phospholipid binding", amide 
binding", and "CARD domain binding" (Fig. 1D, 
Table S2). 
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Figure 1. Identification and characterization of differentially expressed mitophagy-related genes (DeMRGs) in pancreatic cancer (PaC). (A) A volcano plot illustrates the 
differentially expressed genes (DEGs) from the merged TCGA and GTEx cohorts. Red dots represent upregulated genes, and blue dots represent downregulated genes. The top 20 genes with 
the most significant changes in expression levels are labeled. (B) A heatmap displays the top 40 DEGs. Each row represents a gene, and each column represents a sample. The color gradient 
indicates the level of gene expression, with red representing higher expression and blue representing lower expression. (C) A Venn diagram depicts the intersection of DEGs and MRGs, 
identifying 12 DeMRGs. (D) Gene Ontology (GO) functional enrichment analysis of the DeMRGs. The bar graph categorizes the enriched GO terms into biological processes (orange), cellular 
components (green), and molecular functions (blue). The length of each bar represents the number of genes associated with each GO term.  

 
 

Identification of PaC subtypes based on 
DeMRGs 

To identify DeMRG-related PaC subtypes, we 
conducted consensus clustering on 177 PaC patients 
in the TCGA cohort using the expression profiles of 12 
DeMRGs. The consensus matrix heatmap revealed 
three distinct clusters with high consensus scores, 
indicating a clear separation between the groups (Fig. 
2A). The CDF plot (Figure 2B) and the delta area plot 
(Fig. 2C) supported the stability and optimality of 
clustering at k = 3. The cluster-consensus bar plot 

demonstrated uniform clustering consistency across 
different clusters (Fig. 2D). PCA (Fig. 2E) and t-SNE 
(Fig. 2F) analyses further validated the distinct 
separation between the three subtypes. The bar graph 
(Fig. 2G) and heatmap (Fig. 2H) showed significant 
variations in expression of the 12 DeMRGs across 
different subtypes. Examination of the immune 
microenvironment revealed notable differences in the 
abundance of three immune cell types, including 
memory B cells, M2 macrophages, and CD8 T cells 
(Fig. 2I).  
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Figure 2. Consensus clustering of PaC patients based on DeMRGs. (A) Consensus matrix for k=3, showing distinct clustering into three groups with high consensus scores. (B) A 
consensus cumulative distribution function (CDF) plot depicts the cumulative distribution for different values of k ranging from 2 to 9. (C) A delta area plot shows the relative change in area 
under the CDF curve for different values of k, with a notable decrease indicating the stability of the clustering at k=3. (D) A cluster-consensus bar plot indicates the clustering consistency for 
each cluster. (E) A principal component analysis (PCA) scatter plot shows the distribution of the three identified clusters. (F) A t-SNE plot illustrates the clustering of the PaC patients into 
three distinct subtypes. Each point represents a patient and is colored according to the assigned cluster. (G, H) A box plot (G) and heatmap (H) illustrate the expression patterns of 12 
DeMRGs across the identified subtypes. (I) A box plot shows differences in the abundance of 21 immune cell types among the three clusters. *p < 0.05, **p < 0.01, ns, non-significant.  
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Identification and enrichment analysis of DEGs 
among PaC subtypes 

 We identified 469 DEGs common across three 
PaC subtypes by Venn diagram analysis of genes 
exhibiting differential expression in cancerous versus 
adjacent non-cancerous tissues (Fig. 3A). GO 
functional enrichment analysis (Fig. 3B, Table S3) 
revealed enrichment in 12 biological processes, 
including "macroautophagy", "protein 
dephosphorylation, " and "endosomal vesicle fusion". 

The analysis also identified enrichment in 9 cellular 
components, such as "the ATPase complex", 
"autophagosome", and "phosphatase complex". 
Additionally, 6 molecular functions were enriched, 
including "ATP hydrolysis activity", 
"ubiquitin-protein transferase activity", and "GTPase 
binding". KEGG pathway analysis (Fig. 3C, Table S4) 
showed enrichment in 13 pathways, including the 
"PI3K-Akt signaling pathway", "oocyte meiosis", and 
"phagosome".  

 
 

 
Figure 3. Identification and prognostic analysis of DEGs in PaC subtypes. (A) A Venn diagram identified 469 DEGs common across three PaC subtypes. (B, C) GO (B) and KEGG 
(C) functional enrichment analyses of the 469 DEGs. (D) A trace plot for the LASSO COX regression shows the coefficient paths for each variable as a function of the regularization parameter 
lambda. (E) Ten-fold cross-validation curve for LASSO COX regression. Dashed lines indicate minimum lambda and optimal lambda. (F) Bar plot of the weight coefficients of the six selected 
genes. (G) Forest plot of the multivariate COX regression analysis for the model genes. Hazard ratios (HR) and 95% confidence intervals (CI) are shown. (H) Protein-protein interaction 
network of the model genes and other related proteins. Nodes represent proteins, and edges represent interactions. (I) Box plots comparing the expression of levels of the model genes 
between PaC tissues and normal tissues. *p < 0.05, ****p < 0.0001.  

 



Int. J. Med. Sci. 2026, Vol. 23 
 

 
https://www.medsci.org 

626 

Construction of a prognostic risk model based 
on DEGs among PaC subtypes 

To identify model genes among the 469 DEGs, 
we conducted univariate COX analysis in the TCGA 
cohort and obtained 101 potential prognostic genes 
(Table S5). We divided the TCGA cohort into a 
training set and a validation set in a 7:3 ratio. LASSO 
COX analysis was then performed on the training set, 
and six genes (PAPPA, NBPF12, CXCL11, 
CKLF-CMTM1, CCDC6, and AHNAK) were selected 
based on the model's minimum lambda (Fig. 3D and 
3E). The weight coefficients of these genes are shown 
in Fig. 3F. The risk score was calculated using the 
formula: RiskScore = (0.129) × PAPPA + (-2.035) × 
NBPF12+ (0.684) × CXCL11 + (0.575) × CKLF-CMTM1 
+ (0.411) × CCDC6 + (1.125) × AHNAK. Subsequently, 
a multivariate COX analysis was conducted on these 
genes (Fig. 3G), and a PPI network was constructed 
(Fig. 3H). NBPF12 exhibited significant 
downregulation in cancer tissues compared to 
adjacent normal tissues, while the other five model 
genes exhibited significant upregulation (Fig. 3I). 

Prognostic evaluation of the risk model in 
training and validation sets of the TCGA 
cohort 

To evaluate the prognostic value of the risk 
model, we conducted survival analyses on both the 
training and validation sets of the TCGA cohort. 
Patients were stratified into high-risk and low-risk 
groups based on their risk scores, with high-risk 
patients showing a higher prevalence of death (Fig. 
4A and 4B). Kaplan-Meier survival curves confirmed 
that high-risk patients had significantly worse OS in 
both the training set (p < 0.0001; Fig. 4C) and the 
validation set (p = 0.0021; Fig. 4D). The 
time-dependent ROC analysis demonstrated high 
predictive accuracy in the training set, with AUCs of 
0.78, 0.74, and 0.82 for 1-year, 2-year, and 3-year 
survival, respectively (Fig. 4E). In the validation set, 
the AUC values were 0.73, 0.82, and 0.73 for 1-year, 
2-year, and 3-year survival, respectively, indicating 
consistent predictive accuracy (Fig. 4F). These 
findings suggest that the risk model effectively 
stratifies patients by prognosis and demonstrates 
reliable predictive accuracy in both the training and 
validation sets. 

Additionally, the t-SNE plot demonstrated a 
clear separation among the three clusters (Fig. S1A). 

Cluster 3 exhibited significantly higher risk scores 
compared to Cluster 1 (**p < 0.01) and Cluster 2 (*p < 
0.05; Fig. S1B), suggesting that patients in Cluster 3 
are at higher risk. Furthermore, a Sankey diagram 
illustrated the distribution of patients from each 
cluster into high-risk and low-risk groups and their 
corresponding survival status (Fig. S1C). Most 
patients in Cluster 3 were classified as high-risk and 
had a higher proportion of deaths, while patients in 
Clusters 1 and 2 were predominantly low-risk and 
had better survival outcomes. This analysis reinforces 
the prognostic significance of the clustering. 

Validation of the prognostic value of the risk 
model in independent datasets and diverse 
clinical subgroups 

To validate the prognostic value of the risk 
model, we conducted survival analyses using two 
independent datasets. Patients were stratified into 
high-risk and low-risk groups based on their risk 
scores. The survival status plot indicated that 
high-risk patients had a higher incidence of death 
(Fig. S2A and S2B). Kaplan-Meier survival analysis 
confirmed that high-risk patients had significantly 
worse OS compared to low-risk patients (p = 0.01 for 
GSE21501, p = 0.04 for GSE71729; Fig. S2C and S2D). 
The time-dependent ROC analysis indicated 
moderate predictive accuracy at various time points, 
with AUC values at 1-year, 2-year, and 3-year being 
0.66, 0.54, and 0.62 for GSE21501, and 0.59, 0.57, and 
0.65 for GSE71729 (Fig. S2E and S2F). These results 
provide supportive external evidence for the 
prognostic stratification ability of the risk model. 

To further validate the risk model, we conducted 
survival analyses across different clinical and 
demographic subgroups. High-risk patients 
consistently had worse OS compared to low-risk 
patients in those aged ≤ 65, aged > 65, females, males, 
well-differentiated tumors (G1-G2), 
poorly-differentiated tumors (G3-G4), early-stage 
disease (I-II), smaller tumors (T1-T2), larger tumors 
(T3-T4), no metastasis (M0), no lymph node 
involvement (N0), and lymph node involvement 
(N1-N3) (all p < 0.05), except for advanced-stage 
disease (III-IV) and metastasis (M1) (both p > 0.05) 
(Fig. S3A–H and S4A–F). Boxplots (Fig. S4G) showed 
that high-risk scores were associated with higher 
tumor grades, advanced stages, and lymph node 
involvement statuses. 
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Figure 4. Prognostic evaluation of the risk model in the TCGA cohort. (A, B) Risk score distribution and survival status of patients in the training (A) and validation (B) sets. The top 
panel shows patients stratified into high-risk (red) and low-risk (gray) groups based on their risk scores. The bottom panel illustrates the survival status of patients, with red dots representing 
deceased patients and gray dots representing surviving patients. (C, D) Kaplan-Meier survival curves for the training (C) and validation (D) cohorts, comparing overall survival (OS) between 
high-risk (red line) and low-risk (gray line) patients. (E, F) Time-dependent ROC curves for the training (E) and validation (F) sets at 1 year, 2 years, and 3 years.  
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Construction and evaluation of nomogram 
To provide individualized survival predictions, 

we developed a nomogram that integrates multiple 
clinical variables and the risk score. The univariate 
Cox regression analysis revealed that risk score, T 
stage, and N stage were significant predictors of OS 
(Fig. 5A). In the multivariate Cox regression analysis, 
the risk score remained a significant predictor, 
highlighting its independent prognostic value (Fig. 
5B). A nomogram was developed to predict 1-, 2-, and 

3-year OS probabilities, integrating age, grade, T 
stage, N stage, and risk score (Fig. 5C). The calibration 
curves for 1-, 2-, and 3-year OS demonstrated good 
agreement between the predicted and observed 
outcomes, indicating the model's accuracy (Fig. 5D–
F). The time-dependent ROC analysis showed ideal 
predictive accuracy with AUC values of 0.81, 0.67, and 
0.71 for 1-, 2-, and 3-year survival, respectively (Fig. 
5G). These findings suggest that the risk model is a 
potential independent predictor of OS. 

 
 

 
Figure 5. Nomogram construction and evaluation. (A, B) Forest plots of univariate and multivariate COX analyses for risk score and clinical factors. (C) A nomogram was developed 
to provide individualized survival predictions, integrating age, grade, T stage, N stage, and the risk score for 1-, 2-, and 3-year OS. (D–F) The calibration curve for 1-year OS demonstrates good 
agreement between predicted and observed outcomes. (G) The ROC curves for nomogram-predicted 1-, 2-, and 3-year survival.  
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The correlation between immune cell 
infiltration and risk score 

To investigate the immune microenvironment 
and the clinical relevance of the risk model, we 
performed various analyses. The comparison of 
immune cell infiltration between high-risk and 
low-risk groups revealed significant differences in the 
proportions of naive B cells, M1 macrophages, M2 
macrophages, and resting mast cells, suggesting an 
altered tumor microenvironment (TME) in high-risk 
patients (Fig. 6A). The Chi-squared test showed that 
high-risk patients had a lower response rate to 
therapy compared to low-risk patients, suggesting the 
prognostic value of the risk score (Fig. 6B). The 
analysis of TME scores demonstrated that high-risk 
patients had significantly higher StromalScore and 
ESTIMATEScore, but no significant difference in 
ImmuneScore, suggesting a more pronounced stromal 
component within the tumor (Fig. 6C). Correlation 
analysis identified significant associations between 
the expression of the model genes and immune 
checkpoints (Fig. 6D). The bubble plot showed 
significant correlations among the model genes (Fig. 
6E). Additionally, comparisons of various 
immune-related scores between high-risk and 
low-risk groups showed significant differences (Fig. 
6F). These findings suggest the potential of the risk 
model to stratify patients based on their immune 
microenvironment and may help predict their 
response to immunotherapy. 

GSEA enrichment analysis and drug sensitivity 
in patients with different risks 

To further elucidate the biological pathways 
associated with the risk model, we conducted GSEA 
in the TCGA cohort. The analysis identified several 
hallmark pathways that were significantly enriched in 
high-risk patients. Specifically, pathways such as 
allograft rejection, interferon gamma response, 
epithelial-mesenchymal transition, interferon alpha 
response, TNFA signaling via NFκB, inflammatory 
response, hypoxia, coagulation, apical junction, and 
KRAS signaling were activated in high-risk patients. 
In contrast, the pancreatic beta cells pathway was 
suppressed (Fig. 7A). The enrichment plots for 
specific pathways illustrated the distribution of 
pathway-related genes across the ranked list of all 
genes (Fig. 7B). All GSEA results are summarized in 
Table S6. This enrichment analysis provides insights 
into the molecular mechanisms underlying the poorer 
prognosis observed in high-risk patients, highlighting 
potential therapeutic targets for intervention. 

To explore the potential therapeutic implications 
of the risk model, we conducted a drug sensitivity 

analysis (Table S7). High-risk patients showed higher 
sensitivity to dasatinib and staurosporine, as 
indicated by lower drug response scores (Fig. S5A). 
These two drugs showed strong negative correlations 
with the risk score (Fig. S5B), suggesting increased 
effectiveness in high-risk patients.  

To support the biological plausibility of the 
prognostic model at the protein level, we examined 
immunohistochemical expression patterns using data 
from the Human Protein Atlas (HPA). Representative 
images demonstrated detectable and heterogeneous 
protein expression of PAPPA, NBPF12, CXCL11, 
CCDC6, and AHNAK in normal pancreatic tissue and 
PaC (Fig. 8). CKLF-CMTM1 could not be evaluated at 
the protein level due to its read-through nature and 
the absence of a curated protein annotation in the 
database. Although immunohistochemistry does not 
provide a quantitative assessment of expression 
changes, these observations indicate that the majority 
of model genes are translated and expressed in 
relevant pancreatic tissues, providing supportive 
protein-level evidence consistent with the RNA-based 
prognostic model. 

Discussion 
The study identified 12 DeMRGs involved in 

PaC through differential expression analysis. 
Consensus clustering defined three distinct PaC 
subtypes based on the DeMRG expression profile, 
with notable differences in immune cell abundance 
and prognostic outcomes. A risk model based on six 
genes among DEGs in PaC subtypes demonstrated 
prognostic value, stratifying patients into high- and 
low-risk groups with significant differences in OS and 
drug sensitivity. Clinically, the risk model may help 
with patient stratification, prognostic assessment, and 
identification of potential therapeutic targets, thereby 
enhancing personalized treatment approaches in PaC. 

The six-gene model, comprising PAPPA, 
NBPF12, CXCL11, CKLF-CMTM1, CCDC6, and 
AHNAK, along with a nomogram integrating clinical 
variables, effectively stratified patients into high- and 
low-risk groups, demonstrating significant prognostic 
value and differences in OS and drug sensitivity in 
PaC. NBPF12 is the only gene in the model that is 
downregulated in PaC tissues compared to adjacent 
normal tissues. NBPF12 encodes a member of the 
neuroblastoma breakpoint family, which plays a 
crucial role in neuroblastoma development and 
human evolution and is regulated by NF-κB[20]. 
Although no studies have directly demonstrated a 
role for NBPF12 in pancreatic biology or mitophagy, 
recurrent NBPF12 mutations have been reported in 
multiple cancer genomics studies[21-23], and 
functional work on other NBPF family members has 
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shown their involvement in cell proliferation via 
NF-κB signaling[24]. Data from the Human Protein 
Atlas further confirm that NBPF12 is downregulated 
in PaC tissues compared to normal tissues 
(https://v19.proteinatlas.org/ENSG00000268043-NB
PF12/pathology/pancreatic+cancer). Our bioinfor-

matic analysis therefore represents a novel finding, 
identifying NBPF12 for the first time as a prognostic 
biomarker in PaC and revealing its negative 
correlation with immune checkpoint expression, 
suggesting a potential role in immune modulation. 

 
 

 
Figure 6. Correlation between risk score and immune infiltration. (A) The comparison of immune cell infiltration between high-risk and low-risk groups shows significant differences 
in the proportions of various immune cells. (B) The Chi-squared test reveals that high-risk patients have a lower response rate to therapy compared to low-risk patients. (C) Analysis of tumor 
microenvironment (TME) scores demonstrates that high-risk patients have significantly higher StromalScore and ESTIMATEScore. (D) Correlation analysis identifies significant associations 
between the expression of model genes and immune checkpoints. (E) The bubble plot shows significant correlations among the model genes. (F) Comparisons of various immune-related 
scores between high-risk and low-risk groups show significant differences. *p < 0.05, ***p < 0.001, ****p < 0.0001.  
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Figure 7. Gene set enrichment analysis (GSEA) of high-risk PaC patients in the TCGA cohort. (A) Bubble plot illustrating the significantly enriched hallmark pathways in high-risk 
patients. The pathways are categorized into activated (left) and suppressed (right) groups. (B) Enrichment plots for specific hallmark pathways significantly enriched in high-risk patients. The 
x-axis represents the rank in the ordered dataset, and the y-axis shows the running enrichment score.  
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Figure 8. Protein expression of prognostic model genes in pancreatic tissues. Representative immunohistochemical staining images of prognostic model genes in normal pancreatic 
tissue and PaC were obtained from the Human Protein Atlas. PAPPA, NBPF12, CXCL11, CCDC6, and AHNAK show detectable protein expression with heterogeneous staining patterns 
across samples. CKLF-CMTM1 is not shown due to its read-through nature and the lack of a curated protein annotation in the database.  
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PAPPA (pregnancy-associated plasma protein- 
A) is a zinc metalloproteinase that enhances IGF 
action by cleaving inhibitory IGF-binding proteins, 
increasing IGF availability for cell processes. It 
promotes tumor growth, invasion, and metastasis by 
augmenting IGF receptor signaling, contributing to 
cell proliferation, migration, and survival. PAPPA is 
implicated in breast, ovarian, and lung cancers, as 
well as Ewing sarcoma, making it a potential 
therapeutic target[25-28]. Although the direct role of 
PAPPA in PaC remains unclear, IGF signaling is 
known to play a significant role. IGF-1 and IGF-2 
secreted by tumor-associated macrophages and 
myofibroblasts contribute to chemoresistance in PaC 
by activating insulin/IGF receptors on cancer cells. 
Inhibiting IGF-1/IGF-1R alongside chemotherapy 
could enhance treatment efficacy[29, 30]. In addition, 
IGF-1 signaling is crucial for sustaining cancer cell 
viability by stimulating mitochondrial biogenesis and 
mitophagy through the induction of BNIP3, thereby 
influencing therapy responses and cancer phenotype 
evolution[31]. These findings suggest that the 
prognostic value of PAPPA found in our study may 
stem from its role in enhancing IGF receptor 
signaling, which contributes to chemoresistance, 
cancer cell viability, mitochondrial biogenesis, and 
mitophagy. 

CXCL11 encodes a chemokine, and functional 
studies have shown that its overexpression promotes, 
while siRNA-mediated knockdown suppresses, 
proliferation, migration, invasion, and epithelial–
mesenchymal transition (EMT) in PaC cells via the 
YY1/miR-548t-5p axis[32]. Additionally, CXCL11 is 
significantly overexpressed in the serum of pretreated 
PaC patients and differentially expressed in response 
to gemcitabine and erlotinib treatment, indicating its 
potential as both a diagnostic and predictive 
biomarker for PaC[33]. Moreover, the positive 
correlation between CXCL11 and immune 
checkpoints in our study aligns with previous 
research. CXCL11 promotes T-cell infiltration into the 
TME, increasing the presence of cells that express 
these immune checkpoints[34]. Specifically, CTLA4 
and PD-1 (PDCD1) are upregulated in T cells as a 
counter-regulatory mechanism to prevent 
overactivation of the immune response. PD-L1 
(CD274) and PD-L2 (PDCD1LG2) bind to PD-1, 
further contributing to immune suppression[35]. This 
correlation indicates that CXCL11 enhances immune 
cell recruitment and subsequently the expression of 
inhibitory signals within the TME, balancing immune 
activation and suppression. These insights, along with 
our findings that CXCL11 is a significant component 
of our prognostic model, suggest that targeting 
CXCL11 could improve the efficacy of immune 

checkpoint blockade therapies in PaC. 
CCDC6 encodes a coiled-coil domain-containing 

protein. Recent work has identified CCDC6 as a 
mitophagy subtype–specific biomarker in PaC, 
associated with poor prognosis, altered immune 
infiltration, and variable drug response[8]. In 
addition, siRNA-mediated knockdown of AHNAK in 
PaC cells has been shown to reduce proliferation and 
migration and to reverse EMT, supporting its role in 
disease progression[36]. CKLF-CMTM1 is a 
read-through transcript combining the CKLF and 
CMTM1 genes, producing a fusion protein involved 
in immune responses and potentially influencing 
cancer progression[37]. However, the role of 
CKLF-CMTM1 in PaC has not been reported, 
providing a novel avenue for further research into its 
potential implications in PaC progression and 
immune modulation. 

The risk model stratified PaC patients into 
high-risk and low-risk groups, with high-risk patients 
demonstrating significantly worse OS and distinct 
immune microenvironment characteristics, 
suggesting its predictive potential for guiding 
personalized treatment strategies. Additionally, the 
model identified high-risk patients as more likely to 
respond to dasatinib and staurosporine, highlighting 
its therapeutic relevance in predicting drug 
sensitivity. Dasatinib, a multi-targeted tyrosine kinase 
inhibitor, has been used in clinical trials for the 
treatment of various cancers, including PaC[38]. The 
combination of dasatinib with paclitaxel or 
gemcitabine significantly enhances the inhibition of 
cell viability, proliferation, migration, and colony 
formation in PaC cell lines by targeting p-SRC, 
p-STAT3, p-AKT, and p-ERK[39]. Staurosporine, a 
potent kinase inhibitor, is known for its ability to 
induce apoptosis by inhibiting various kinase 
pathways and significantly induces apoptosis in PaC 
cells by activating caspase-9 and downregulating Bcl2 
and Bad expression[40]. Our findings underscore the 
potential of incorporating dasatinib and staurosporine 
into therapeutic regimens for improving patient 
outcomes in high-risk PaC cases. 

Our findings demonstrate that the developed 
risk model effectively stratifies PaC patients into 
high-risk and low-risk groups, offering a promising 
tool for guiding personalized treatment strategies. 
However, the study has several limitations. First, it 
relies on bioinformatic analyses and public 
database-derived evidence, including qualitative 
protein expression data, which may not fully capture 
the biological complexity and interactions present in 
experimental or clinical contexts. Second, although 
previous studies have already investigated the 
functional roles of CXCL11 and AHNAK in PaC using 
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overexpression or knockdown approaches, their 
specific involvement in mitophagy has not been 
assessed, and comparable validation is not yet 
available for CCDC6, PAPPA, NBPF12, and 
CKLF-CMTM1. Future studies are required to 
determine whether these genes directly regulate 
mitophagy in PaC through similar models. Third, 
although the 12 DeMRGs were sourced from curated 
mitophagy-related gene sets and showed enrichment 
in pathways such as mitochondrial autophagy and 
organelle disassembly, some may primarily reflect 
broader mitochondrial quality control or stress 
response mechanisms rather than direct mitophagy 
regulation. Distinguishing these roles requires further 
mechanistic work. Fourth, the altered immune 
infiltration observed between high- and low-risk 
groups reflects correlation rather than causation. 
Whether mitophagy-related genes directly drive 
immune evasion in PaC remains unresolved. Future 
mechanistic studies are essential to clarify these 
potential links. Lastly, the findings require validation 
in larger, independent cohorts and clinical trials, as 
predictive performance in external cohorts was 
modest. 

Conclusions 
In conclusion, we identified 12 DeMRGs in PaC 

tissues and defined three distinct PaC subtypes based 
on these DeMRGs, each exhibiting unique gene 
expression profiles and immune cell compositions. 
Our prognostic risk model, incorporating six DEGs 
among subtypes, demonstrated predictive value for 
OS, with high-risk patients showing significantly 
poorer outcomes. We observed notable differences in 
the TME of high-risk patients and identified potential 
benefits from treatments like dasatinib and 
staurosporine. These findings may contribute to more 
personalized and targeted treatment approaches for 
high-risk PaC patients. Validation in prospective 
clinical cohorts is critical to establish their real-world 
applicability. 

Abbreviations  
PaC: Pancreatic cancer 
DEGs: Differentially expressed genes 
MRGs: Mitophagy-related genes 
TCGA: The Cancer Genome Atlas 
GTEx: Genotype-Tissue Expression 
OS: overall survival 
TME: tumor microenvironment 

Supplementary Material 
Supplementary figures and tables.  
https://www.medsci.org/v23p0620s1.zip 

Acknowledgements 
Funding 

The study was supported by National Science 
and Technology Major Project (2023ZD0500902), 
National Science and Technology Major Project 
(2023ZD0500904), National High Level Hospital 
Clinical Research Funding (Interdepartmental 
Research Project of Peking University First Hospital) 
2024IR01 and 2024IR23. 

Availability of data and materials 
All data generated or analysed during this study 

are included in this published article. 

Author contributions 
Writing-original draft: Yunlong Cai  
Writing- review & editing: Yunlong Cai, Taohua 

Yue 
Software: Taohua Yue  
Data curation: Guanyi Liu 
Methodology: Yongchen Ma 
Project administration: Long Rong 
Funding acquisition: Jixin Zhang 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA: a cancer 

journal for clinicians. 2023; 73. 
2. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. 

Global cancer statistics 2022: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for 
clinicians. 2024; 74: 229-63. 

3. Placido D, Yuan B, Hjaltelin JX, Zheng C, Haue AD, Chmura PJ, et al. A deep 
learning algorithm to predict risk of pancreatic cancer from disease 
trajectories. Nature medicine. 2023; 29: 1113-22. 

4. Kolbeinsson HM, Chandana S, Wright GP, Chung M. Pancreatic cancer: a 
review of current treatment and novel therapies. Journal of Investigative 
Surgery. 2023; 36: 2129884. 

5. Dikic I, Elazar Z. Mechanism and medical implications of mammalian 
autophagy. Nature reviews Molecular cell biology. 2018; 19: 349-64. 

6. Xie Y, Liu J, Kang R, Tang D. Mitophagy in pancreatic cancer. Frontiers in 
Oncology. 2021; 11: 616079. 

7. Zhuo Z, Lin H, Liang J, Ma P, Li J, Huang L, et al. Mitophagy-related gene 
signature for prediction prognosis, immune scenery, mutation, and 
chemotherapy response in pancreatic cancer. Frontiers in Cell and 
Developmental Biology. 2022; 9: 802528. 

8. Chen H, Zhang J, Sun X, Wang Y, Qian Y. Mitophagy-mediated molecular 
subtypes depict the hallmarks of the tumour metabolism and guide precision 
chemotherapy in pancreatic adenocarcinoma. Frontiers in Cell and 
Developmental Biology. 2022; 10: 901207. 

9. Oh SC, Sohn BH, Cheong J-H, Kim S-B, Lee JE, Park KC, et al. Clinical and 
genomic landscape of gastric cancer with a mesenchymal phenotype. Nature 
communications. 2018; 9: 1777. 

10. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. 
Nucleic acids research. 2000; 28: 27-30. 

11. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
et al. Gene set enrichment analysis: a knowledge-based approach for 
interpreting genome-wide expression profiles. Proceedings of the National 
Academy of Sciences. 2005; 102: 15545-50. 

12. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers 
differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015; 43: e47. 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

635 

13. Alivand MR, Najafi S, Esmaeili S, Rahmanpour D, Zhaleh H, Rahmati Y. 
Integrative analysis of DNA methylation and gene expression profiles to 
identify biomarkers of glioblastoma. Cancer Genet. 2021; 258-259: 135-50. 

14. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with 
confidence assessments and item tracking. Bioinformatics. 2010; 26: 1572-3. 

15. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012; 16: 284-7. 

16. Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics. 
2019; 11: 123. 

17. Huang J, Liu W. Comparison of machine learning models for predicting stroke 
risk in hypertensive patients: Lasso regression model, random forest model, 
Boruta algorithm model, and Boruta algorithm combined with Lasso 
regression model. Medicine. 2025; 104: e42690. 

18. Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q. GeneMANIA: Fast 
gene network construction and function prediction for Cytoscape. F1000Res. 
2014; 3: 153. 

19. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling 
Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 2018; 
1711: 243-59. 

20. Zhou F, Xing Y, Xu X, Yang Y, Zhang J, Ma Z, et al. NBPF is a potential 
DNA-binding transcription factor that is directly regulated by NF-κB. The 
international journal of biochemistry & cell biology. 2013; 45: 2479-90. 

21. Hercules SM, Liu X, Bassey-Archibong BB, Skeete DH, Smith Connell S, 
Daramola A, et al. Analysis of the genomic landscapes of Barbadian and 
Nigerian women with triple negative breast cancer. Cancer Causes & Control. 
2022; 33: 831-41. 

22. Ma R, Jing C, Zhang Y, Cao H, Liu S, Wang Z, et al. The somatic mutation 
landscape of Chinese Colorectal Cancer. Journal of Cancer. 2020; 11: 1038. 

23. Trevino V. Modeling and analysis of site-specific mutations in cancer 
identifies known plus putative novel hotspots and bias due to contextual 
sequences. Computational and Structural Biotechnology Journal. 2020; 18: 
1664-75. 

24. Zhu H-Y, Bai W-D, Li C, Li J, Hu D-H. NBPF7 promotes the proliferation of 
α-catenin-knockdown HaCaT cells via functional interaction with the NF-κB 
pathway. Oncotarget. 2017; 8: 65800. 

25. Zhang J, Zhang Y, Li L, Nian Y, Chen Y, Shen R, et al. Pregnancy-associated 
plasma protein-A (PAPPA) promotes breast cancer progression. 
Bioengineered. 2022; 13: 291-307. 

26. Becker MA, Haluska Jr P, Bale LK, Oxvig C, Conover CA. A novel neutralizing 
antibody targeting pregnancy-associated plasma protein-a inhibits ovarian 
cancer growth and ascites accumulation in patient mouse tumorgrafts. 
Molecular cancer therapeutics. 2015; 14: 973-81. 

27. Hjortebjerg R, Espelund U, Rasmussen TR, Folkersen B, Steiniche T, Georgsen 
JB, et al. Pregnancy-associated plasma Protein-A2 is associated with mortality 
in patients with lung cancer. Frontiers in Endocrinology. 2020; 11: 614. 

28. Heitzeneder S, Sotillo E, Shern JF, Sindiri S, Xu P, Jones R, et al. 
Pregnancy-associated plasma protein-A (PAPP-A) in Ewing sarcoma: role in 
tumor growth and immune evasion. JNCI: Journal of the National Cancer 
Institute. 2019; 111: 970-82. 

29. Rieder S, W Michalski C, Friess H. Insulin-like growth factor signaling as a 
therapeutic target in pancreatic cancer. Anti-Cancer Agents in Medicinal 
Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 
2011; 11: 427-33. 

30. Ireland L, Santos A, Ahmed MS, Rainer C, Nielsen SR, Quaranta V, et al. 
Chemoresistance in pancreatic cancer is driven by stroma-derived insulin-like 
growth factors. Cancer research. 2016; 76: 6851-63. 

31. Lyons A, Coleman M, Riis S, Favre C, O'Flanagan CH, Zhdanov AV, et al. 
Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis 
and mitophagy in cancer cells. Journal of Biological Chemistry. 2017; 292: 
16983-98. 

32. Ge W-L, Chen Q, Meng L-D, Huang X-M, Shi G-d, Zong Q-Q, et al. The 
YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and 
metastasis in human pancreatic cancer. Cell death & disease. 2020; 11: 294. 

33. Torres C, Perales S, Alejandre MJ, Iglesias J, Palomino RJ, Martin M, et al. 
Serum cytokine profile in patients with pancreatic cancer. Pancreas. 2014; 43: 
1042-9. 

34. Li Y, Han S, Wu B, Zhong C, Shi Y, Lv C, et al. CXCL11 correlates with 
immune infiltration and impacts patient immunotherapy efficacy: A 
pan-cancer analysis. Frontiers in Immunology. 2022; 13: 951247. 

35. Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, 
and implications of their inhibition. American journal of clinical oncology. 
2016; 39: 98-106. 

36. Zhang Z, Liu X, Huang R, Liu X, Liang Z, Liu T. Upregulation of 
nucleoprotein AHNAK is associated with poor outcome of pancreatic ductal 
adenocarcinoma prognosis via mediating epithelial-mesenchymal transition. 
Journal of Cancer. 2019; 10: 3860. 

37. Li D, Huang S, Luo C, Xu Y, Fu S, Liu K, et al. CKLF as a prognostic biomarker 
and its association with immune infiltration in hepatocellular carcinoma. 
Current Oncology. 2023; 30: 2653-72. 

38. Chang Q, Jorgensen C, Pawson T, Hedley D. Effects of dasatinib on EphA2 
receptor tyrosine kinase activity and downstream signalling in pancreatic 
cancer. British journal of cancer. 2008; 99: 1074-82. 

39. Ma L, Wei J, Su GH, Lin J. Dasatinib can enhance paclitaxel and gemcitabine 
inhibitory activity in human pancreatic cancer cells. Cancer biology & therapy. 
2019; 20: 855-65. 

40. Malsy M, Bitzinger D, Graf B, Bundscherer A. Staurosporine induces 
apoptosis in pancreatic carcinoma cells PaTu 8988t and Panc-1 via the intrinsic 
signaling pathway. European Journal of Medical Research. 2019; 24: 1-8. 

 


