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Abstract

Background: Dysfunction of fatty acid metabolism plays a critical role in the pathogenesis of
Rheumatoid Arthritis (RA). This study aimed to screen for Hub genes involved in fatty acid metabolism
that contribute to the inflammatory state of RA synovium.

Methods: Four mRNA microarray datasets for RA were integrated into an expression matrix as a test
dataset. One RNA-seq and five microarray datasets were preprocessed as validation datasets. Immune
cell infiltration combined with Weighted Gene Co-expression Network Analysis (WGCNA) were used
to feature infiltrated cells and their correlation with candidate genes in RA. Five machine learning
algorithms were applied to Hub genes screening. Temporal, immuno-efficacy, drug target prediction,
molecular docking, ccRNA, and transcription factors networks analyses were conducted to elucidate the
association of the Hub genes with RA. Immunofluorescence assay was performed in Collagen-Induced
Arthritis (CIA) mouse, and qPCR and Western blot were applied to TNFa or IL-6 treated MH7A cells to
reveal the potential roles of the proinflammatory cytokines on Hub genes expression in RA synovium.

Results: Three Hub genes with better diagnostic efficiency were screened, with PDK] and XBPI
up-regulated and ACACB down-regulated in RA. These genes were associated with immune cells
infiltration and immuno-efficacy in RA, and their expression patterns showed time-dependent
characteristics during disease progression. Mechanistically, MALATI, NEATI and FOXCI were involved
in the regulation of PDK1, XBPI and ACACB expression, and TNFa or IL-6 treatment mimicked their
expression phenotypes in RA.

Conclusion: Our study identified PDK1, XBPI and ACACB as the Hub genes from the fatty acid metabolic
pathway and indicated that PDK1, XBP1 and ACACB might play key roles in the pathogenesis of RA
synovium.

Keywords: bioinformatic analysis, rheumatoid arthritis, synovial, fatty acid metabolism, PDK1, XBP1, ACACB

Introduction

Rheumatoid Arthritis (RA) is a chronic treatment at an early stage of RA are crucial. Joint

autoimmune disease, and its basic pathological
change in the early stage is synovial inflammation [1,
2]. The destruction of synovial membrane of joints
occurs within 3 months of the onset of RA, and it is
difficult to reverse once bone erosion and joint
deformity occur [2, 3]. Therefore, early diagnosis and

inflammation in RA leads to changes in the energy
metabolism of joint cells, especially synovial cells and
chondrocytes, which require more energy to support
cell proliferation, differentiation, and synthesis of
extracellular matrix to respond to inflammation and
repair bone damage [4-9]. Multiple metabolic
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pathways, such as glycolysis and fatty acid
metabolism, are dysregulated in the RA synovium
[4-7,10].

Fatty acid metabolism (FAM) contributes to the
synovial inflammatory environment formation,
affecting both resident immune cells [4, 5, 11, 12] and
fibroblast-like synovial cells (FLS) [7, 13, 14]. T cells
from patients with RA tend to increase the uptake and
oxidation of fatty acids, which is related to the
overactivation of T cells and the intensification of the
inflammatory response [11, 15]. Specific fatty acids,
such as unsaturated fatty acids, can affect the
proliferation, apoptosis and immune-modulatory
function of T «cells [16-18]. The up-regulated
expression of fatty acid synthase (FASN) and
long-chain fatty acid-CoA synthase 4 (ACSL4) in
Regulatory T cells (Treg) are associated with the
inhibitory function of Treg [19, 20]. Moreover,
changes in fatty acid metabolism in RA are related to
the recruitment of T helper cell 17 (Th17) and the
generation of osteoclasts, thus aggravating joint
inflammation and bone erosion [21]. In addition, the
synovial microenvironment of RA has been shown to
induce the maturation and metabolic reprogramming
of immune cells, such as macrophage and CD11c*
dendritic cells, which exhibit increased expression of
genes associated with fatty acid metabolism [22].

Increasing evidence shows that fatty acid
metabolic pathways of RA-FLS are involved in the
inflammatory  environment formation of RA
synovium [7, 13, 14]. Leptin-driven fatty acid
B-oxidation (FAO) activation enhances the
proinflammatory characteristics of FLS in RA, and the
proinflammatory phenotype of RA-FLS can be
inhibited by silencing leptin expression or with
etomoxir, a well-known FAO pathway inhibitor [23].
On the other hand, synovial tissue in inflamed joints is
a rich source of proinflammatory cytokines [24, 25].
Fatty acid metabolism also needs to adopt to and be
modified by this inflammatory microenvironment.
Specially, TNFa and Interleukin 6 (IL-6) are dominant
proinflammatory cytokines within the inflamed bone
microenvironment in RA [26-28]. However, the roles
of these cytokines in the regulation of fatty acid
metabolism in RA remain unclear.

In the current study, we conducted
bioinformatics analyses and utilized machine learning
algorithms to explore Hub genes associated with the
fatty acid metabolic pathway in the synovial
membrane of RA. The expression patterns of the Hub
genes in RA synovium were elucidated through
protein-protein interaction (PPI), temporal and
immune cell infiltration analyses. Moreover,
immuno-efficacy evaluation, drug target prediction
and transcription factor network prediction were

performed to provide hints for possible therapeutic
application and related regulatory mechanism.
Further biological investigation using Collagen-
Induced Arthritis mouse (CIA) and MH7A cells
implicated the potential regulation mechanism of the
Hub genes expression in RA synovium. These insights
from our study would be valuable for further
understanding the impact of the fatty acid metabolic
pathway on RA pathogenesis.

Material and Methods

Data acquisition and preprocessing

The overall workflow of this study is shown in
Supplementary Figure S1. Four mRNA microarray
datasets of RA synovium (GSE12021, GSE55235,
GSE55457, GSE77298) generated on the Affymetrix
HG-U133A (GPL96) and HG-U133 Plus 2.0 (GPL570)
platforms were downloaded from GEO database
[29-33]. The GPL570 platform contained probes that
were not present in GPL96, therefore, only the probes
common to both platforms were retained to ensure
comparability. Background correction  and
normalization were performed using the Robust
Multi-array Average (RMA) algorithm to generate
gene-level expression values. Probe IDs were
converted to official gene symbols using the
platform-specific annotation packages (hgul33a.db
for GPL96 and hgul33plus2.db for GPL570). To
handle the common issue of probe-to-gene symbol,
the following strategy was employed: for probe
groups corresponding to multiple genes, the first one
was selected for retention; for genes having multiple
probes, the average expression value of the probes
was taken. By matching probe IDs and gene Symbols,
probe expression matrices were converted into gene
expression matrices. Gene expression values were
log2-transformed. = The normalizeBetweenArrays
function of the limma package was applied for
intra-group data normalization processing. The
intersect function was used to extract common genes.
The cbind function was used to merge the gene
expression matrices of the four datasets. The
integrated dataset was then processed for batch effect
correction using the ComBat algorithm from the sva R
package, with the dataset source as the batch variable.
Parametric empirical Bayes framework of ComBat
was used to adjust for location and scale shifts in the
data across batches. The biological condition (RA vs.
HC) was included as a model covariate to preserve
the biological signal of interest. Principal component
analyses (PCA) were performed both before and after
batch effect correction and visualized by PCA plots
for confirmation. The integrated expression matrix
obtained after background correction and batch effect
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correction was considered as the test dataset. The
limma package was used to analyze differentially
expressed genes (DEGs) using the threshold of
adj.p-value < 0.05 and |logFC| > 1 [34]. The ggplot2
package and pheatmap package were employed to
visualize the results with volcano plot and heatmap.
The RNA-seq dataset (GSE89408) was downloaded
and subjected to the Counts and FPKM numerical
transformation using Counts2FPKM package for
normalization to obtain accurate gene expression
data. Differential expression analysis and statistical
test were performed using DESeq2, resulting in the
generation of gene matrix as the validation dataset
[35]. Five other mRNA microarray datasets with
clinical samples from different immunotherapy drug
treatments were downloaded for background
correction, and their expression matrices were
extracted as additional validation datasets.
Differential expression analyses were performed
using the DESeq2 package for the validation datasets
mentioned above. GEO information included in this
study is provided in Supplementary Table S1.

This study downloaded the ‘'fatty acid
metabolism" gene sets from the MSigDB database
(https:/ /www.gsea-msigdb.org/gsea/msigdb/huma
n/search.jsp). A total of 4 most relevant gene sets
were selected: HALLMARK FATTY_ACID META
BOLISM, KEGG_FATTY_ACID_METABOLISM, REA
CTOME_FATTY_ACID_METABOLISM, and GOBP_
FATTY_ACID_METABOLIC_PROCESS. A total of
536 genes related to fatty acid metabolism (FAM)
were identified, and 24 FAM_DEGs (FAM-related
DEGs) were obtained by intersection with DEGs from
the test dataset.

All research involving human databases was
approved by the Medical Ethics Committee of first
affiliated hospital of Sun Yat-Sen University.

Enrichment and protein-protein interaction
network analysis

Gene Ontology (GO) and Kyoto Encyclopedia of
Genes Genomes (KEGG) analyses were conducted
using the Clusterprofiler package. The thresholds
were set as p value Cut off < 0.05 and q value Cut off <
0.05. The dotplot function was utilized to create
bubble plots, and the circlize package was used to
generate circle plots for visualizing the results of the
enrichment analyses. Gene Set Enrichment Analysis
(GSEA) was performed based on the entire gene set in
MigDB, and the gseaplot function was used to
visualize the up- and down-regulated pathways. The
DEGs were imported into the STRING database
(http:/ /string-db.org) to construct the PPI network
followed by the visualization using Cytoscape
software. The CytoHubba plugin and the Maximum

Clique Centrality (MCC) topological algorithm were
used to calculate Node Scores as criteria, and the top
ten DEGs were selected as Hub candidate genes.

Immune infiltration analysis using
CIBERSORT

The requirements of the CIBERSORT algorithm
for input matrix are as follows: (1) no missing or
negative values; (2) log conversion is not performed;
(3) affymetrix chips use RMA standardization,
Illumina's Beadchip and Agilen monochrome chips
use limma processing; (4) for RNA-seq sequencing
data, either FPKM or TPM numerical types are
applicable [36, 37]. The original data of the test dataset
was downloaded, and the RMA function was used for
background  correction, data standardization,
expression value calculation, and log2 transformation
and ID transformation. The ComBat function of the
sva package was applied for batch effect correction.
Permutation tests were used to evaluate the reliability
of the results. The number of permutations parameter
was set as perm = 1000 to enhance the credibility of
cell proportion estimation. DEGs in each dataset were
screened according to the threshold of adj.p-value <
0.05 and |logFC| > 1, and the differential gene
expression matrix of the test dataset was obtained for
immune cell infiltration analysis.

The relative proportions of immune cell types in
each sample were quantified using the CIBERSORT
algorithm with the LM22 signature matrix. The
algorithm reported a p-value for each sample, which
reflected that the result was not due to random
chance. A p-value < 0.05 was generally considered
indicative of a reliable estimate for that individual
sample and was not directly equivalent to the
statistical ~ significance of differences in cell
proportions between groups. For group comparisons
(RA vs. HC), the differences in immune cell fractions
were assessed using the Mann-Whitney U test, and a
p-value < 0.05 was considered statistically significant.
The observed non-significant p-values for some
inter-groups might reflect the substantial biological
heterogeneity inherent in RA synovial tissue. The
immune cells with insignificant p-values were
excluded. The Wilcoxon test was employed to identify
immune cells with significant differences between RA
and healthy controls (HCs), which were selected as
the phenotypic data for subsequent Weighted Gene
Co-expression Network Analysis (WGCNA) [38].

Weighted gene co-expression network analysis

The WGCNA package was used to identify
genes associated with immune cell infiltration. The
outliers of gene expression matrix were identified
using hierarchical clustering. Spearman correlation
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coefficients between genes were calculated and the
similarity matrix was constructed. A suitable soft
threshold was selected to transform the similar matrix
into an adjacency matrix, which was further
transformed into a topological overlap matrix (TOM).
Dynamic pruning tree recognition module was used,
and clustering was based on 1-TOM distance. The
predominant immune infiltrating cells in the RA
microenvironment were identified. The module genes
with the highest correlation with RA, fatty
acid-related genes and differentially expressed genes
were extracted and intersected as Hub candidate
genes for subsequent correlation analysis. Spearman
rank correlation coefficient analysis was performed
on the significantly different immune infiltrates and
the thirteen Hub candidate genes using the corrplot
package, with the cor.mtest function conducting a
significance test on the correlation matrix based on
Hotelling-Pabst test.

Machine Learning algorithms screening and
validation for Hub genes

Five machine learning algorithms were
combined to screen Hub genes: LASSO (Least
Absolute shrinkage and selection operator) [39],
SVM-RFE (Support vector machine recursive feature
elimination) [40], RF (Random Forest), XGBoost (limit
gradient lifting eXtreme Gradient Boosting) [41] and
Boruta [42, 43]. Each machine learning algorithm has
its own inherent biases and assumptions. By
combining multiple algorithms, the biases can be
reduced, and the result of feature selection can be
more reliable. The Hub genes were internally and
externally validated using both the test dataset and
validation dataset. The ggboxplot function was used
to visualize the gene expression levels of samples
from patients with RA and HCs, and the Wilcoxon
test was used to calculate the significance.

Diagnostic efficiency evaluation and temporal
analysis

The Receiver Operating Characteristic (ROC)
curves and the Area Under the Curve (AUC) values
were used to evaluate the diagnostic efficiency of the
Hub genes between RA and HC. The pROC package
was utilized to generate ROC curves and calculate
AUC values, and the roc.test function was used for
statistical analyses.

Temporal analysis is a method for analyzing the
temporal trends of transcription changes using Mfuzz
package in R, which employs the core algorithm
based on Fuzzy C-Means Clustering (FCM) for soft
clustering. Mfuzz assigns each gene a membership
value to each cluster, reflecting the biological reality
that genes can participate in multiple coordinated

processes. Temporal analysis was conducted using six
disease progression time points from RA to HC in the
validation dataset GSE89408, including normal,
osteoarthritis, arthralgia, undifferentiated arthritis,
RA (early) and RA (established) stages. The data was
filtered to remove genes with standard deviation of 0
to ensure each time course was comparable. The
critical fuzziness parameter “m” was set to 1.711549,
which was determined using the mestimate function,
ensuring a balance between cluster overlap and
distinctness. The optimal number of clusters (five)
was determined using the vegan package, which
provided a clear separation of major temporal trends
while minimizing overly complex patterns. The
Mfuzz function was applied to process the time node
information of the samples and the expression profile
information of DEGs, examining the number of DEGs
in each cluster and the cluster to which each DEG
belonged. Genes were assigned to a core cluster based
on their highest membership value. A cluster was
considered to represent a robust time-dependent
pattern if its centroid exhibited a clear directional or
phased trajectory and contained genes with high
membership values (typically > 0.5). The Mfuzz.plot
was used to visualize clustering results, and the
cluster hierarchy to which the Hub genes belonged
was extracted to analyze their temporal expression
patterns.

Immuno-efficacy evaluation and molecular
docking analysis

Five mRNA microarray datasets containing
clinical samples with different immunotherapy
treatments were used as validation datasets. The
GSE15258 dataset was divided into TNF antibody
response and non-response groups. The GSE37107
dataset was divided into Rituximab response and
non-response groups. The GSE58795 dataset was
divided into groups treated with Infiximab and
placebo. The GSE68215 dataset was divided into
groups with low and non-low disease activity. The
GSE45867 dataset was grouped into before- and
after-controls for Methotrexate and Abatacept,
respectively. The ggboxplot function was used to plot
the expression boxplots for the Hub genes across
different immunotherapy treatments, and the
Wilcoxon test was used to assess the significance.

The  DSigDB (https:/ /dsigdb.tanlab.org/
DSigDBv1.0/) and Enrichr (https:/ /maayanlab. cloud
/Enrichr/#) online tools were used to predict
potential drug molecules targeting the Hub genes.
Small drug molecules with strong binding ability to
the three Hub genes (PDK1, XBP1 and ACACB) were
selected based on the binding p-values and scores for
molecular docking analysis. The protein PDB
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numbers and corresponding tertiary structures for the
Hub genes were downloaded from the PDB database
(https:/ /www.rcsb.org/). The small molecule CID
numbers and structures were obtained from the
PubChem database (https://pubchem.ncbi.nlm.nih
.gov/). Autodock Tools and PyMOL software were
used for protein-ligand docking analysis and
visualization.

ceRNA and transcription factor network
analysis

The ceRNA network is an emerging gene
regulatory mechanism that regulates variably spliced
RNAs through competitive binding of endogenous
microRNAs (miRNAs) to influence each other's
expression. The ceRNA network of the Hub genes
was analyzed using the miRDB (https://mirdb.org/
index.html) and ENCORI (https://rnasysu.com/
encori/) websites. The ggalluvial package was
employed to draw a mulberry map to visualize the
IncRNA-miRNA-mRNA regulatory network of the
Hub genes.

NetworkAnalyst (https:/ /www.networkanalyst
.ca/) was used for transcription factor prediction and
interaction network construction. The JASPAR
database was employed to predict the transcription
factors associated with the Hub genes.

Cell culture and treatment

The human synovial fibroblast-like cell line
MH?7A was obtained from the American Type Culture
Collection. The MH7A cells were cultured in RPMI
1640 (Invitrogen, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (Invitrogen) and 1%
penicillin/streptomycin (Invitrogen) at 37 °C in a
humidified atmosphere with 5% CO.. The cells were
treated with 50 ng/mL TNFa or 10 ng/mL IL-6
(Peprotech, Rocky Hill, NJ, USA) for 4 or 8 hours
before being harvested for experimental assays.

RNA isolation and quantitative real-time PCR
(qPCR)

The total RNA was extracted from 1 x 105 cells
followed by ¢cDNA synthesis using the BeyoRT™II
First Strand cDNA Synthesis Kit (Beyotime, Shanghai,
China). RT-qPCR using Universal SYBR qPCR Master
Mix was performed on the ABI StepOne PLUS
Real-Time PCR System (Applied Biosystems, USA).
The primer sequences, for PDKI were 5-CTGTG
ATACGGATCAGAAACCG-3" and 5-TCCACCAAA
CAATAAAGAGTGCT-3; for XBP1 were 5-CCCT
CCAGAACATCTCCCCAT-3 and 5-ACATGACTGG
GTCCAAGTTGT-3’; for ACACB were 5-AGAAGA
CAAGAAGCAGGCAAAC-3 and 5-GTAGACTCAC
GAGATGAGCCA-3, for GAPDH were 5-AAGGTCA

TCCCAGAGCTG AA-3" and 5-CTGCTTCACCACC
TTCTTGA-3'. Relative mRNA expression level was
calculated using the 2-2ACt method, normalizing to the
housekeeping gene GAPDH.

Western blot

The proteins were extracted using RIPA buffer
(Beyotime, Shanghai, China) supplemented with
PMSEF (Beyotime). After quantification, the extracted
samples were separated by SDS-PAGE and
transferred to polyvinylidene fluoride membranes.
The membranes were blocked with 5% Bovine Serum
Albumin for 1h and then incubated with primary
antibodies at 4 °C for 12 h. The membranes were
probed with anti-ACACB (1:1000, Cat# DF7980,
Affinity, CA, USA) and anti-PDK1 (1:1000, Cat#
DF4365, Affinity), and anti-XBP1 (1:1000, Cat#
sc-8015, Santa Cruz, CA, USA) and anti-Actin (1:1000,
Cat# sc-58673, Santa Cruz) primary antibodies. The
membranes were subsequently incubated with
secondary antibodies for 1 h at room temperature and
developed with a chemiluminescent detection system
(Applied Biosystems, USA). The protein expression
levels were quantified using Image ] 9.0 software
(NIH, USA) by measuring the band intensities and
normalizing them to those of Actin.

Immunofluorescence staining

The synovium tissues from control and CIA mice
were mounted on slides. The slides were blocked with
3% Bovine Serum Albumin for 1h and incubated with
anti-ACACB  (1:200, Cat# DF7980, Affinity),
anti-PDK1 (1:200, Cat# DF4365, Affinity) or anti-XBP1
(1:200, Cat# sc-8015, Santa Cruz) primary antibodies
at 4 °C for 12h, followed by staining with
fluorescence-conjugated second antibodies. Iso-type-
matched primary antibodies served as controls. The
nuclei were stained with DAPI, and the coverslips
were mounted using Antifade Mounting Medium
(Beyotime). The images were acquired and analyzed
using a Zeiss LSM 710 Confocal Imaging System
(Zeiss, Oberkochen, Germany). Total fluorescence
intensity was quantified using the ZEN 3.11 software.
Graphs were generated by comparing the
fluorescence intensities of CIA to normal mice
samples. 6 biological replicates were performed.

Statistical analysis

All data preprocessing, statistical analyses and
plotting were completed with R 4.3.2 software. The
Wilcoxon rank sum test was utilized for comparisons
between two groups. The Pearson correlation analysis
was used for correlations between two continuous
variables, while the Spearman correlation analysis
was used for correlations between ordered variables
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or non-normal distribution data. The data were
represented as mean * SEM. The student’s t-test was
performed between two groups, and the one-way
ANOVA followed by Tukey’s post hoc test was
performed among multiple groups. The p-value
of <0.05 was considered statistically significant.

Results

Screening of Hub genes associated with fatty
acid metabolic characteristics of RA synovium

The integrated gene expression matrix for the
test dataset was obtained after applying the limma
package for group data normalization and the sva
package for batch effect removal. Before integrating
the four datasets, the normalizeBetweenArrays
function of the limma package was applied for
intra-group data normalization (Fig. S2). Box plots
and principal component analysis (PCA) graphs
visualized the overall gene expression levels of the
integrated datasets. Although the gene expression
levels within the same dataset were generally
consistent, there were still obvious batch effects
between datasets from different platforms and
different experiments (Fig. S2A and B). The batch
effects were then removed using the ComBat function
of the sva package (Fig. S2C and D), meeting the
conditions for subsequent analysis. PCA analysis was
performed on the sample grouping of disease objects
RA and HC in the integrated dataset (Fig. S2E). The
results showed that there were significant differences
in gene expression between the RA and HC groups,
implicating successful integration.

The limma package was applied to conduct
differential analysis on the integrated gene expression
matrix. With the criteria of adj.p-value < 0.05 and
|logFC| > 1, a total of 499 significantly differentially
expressed genes (DEGs) were screened between
synovium from patients with RA and HCs, including
331 up-regulated genes and 168 down-regulated
genes (Fig. 1A and B). The GO and KEGG enrichment
analyses for the DEGs showed that the biological
processes for RA synovium DEGs were mainly
enriched in the pathways related to leucocyte
adhesion, monocyte differentiation, lymphocyte
differentiation,  cell-cell ~adhesion regulation,
leukocyte migration, and T cell activation (Fig. 1C and
D). The KEGG pathways were primarily concentrated
in signaling interactions and the immune system,
including cytokine and cytokine receptor interactions,
chemokine signaling, hematopoietic lineage, cell
adhesion molecules, and primary immunodeficiency
disease pathways. Among these, the pathways
associated with RA were mainly focused on Th17, Th1l
and Th2 differentiation, osteoclast differentiation,

IL-17 signaling, NF-xB signaling, and B cell receptor
signaling pathways.

By intersecting the 499 DEGs with the 536 fatty
acid metabolism-related (FAM-) genes selected from
the MSigDB database, a total of 24 FAM-DEGs were
identified as Hub candidate genes in RA synovium
(Fig. 1E). The PPl network of FAM-DEGs was
analyzed using the STRING database (Fig. 1F), and
the Cytohubba plug-in of Cytoscape software was
utilized to obtain the top ten Hub genes (Fig. 1G),
among which ACACB, PCK1, PDK4, PPARGGCIA
and LPL were central to the PPI network regulation.

Immune cell infiltration characteristics and
correlation analysis

Immune cell infiltration analysis is critical for
elucidating the mechanism of disease immune
response and revealing the immune environment
involved in RA synovium. The CIBERSORT algorithm
was utilized to analyze the relative content of immune
cells in the test dataset. The results of the immune cell
infiltration analysis showed that the infiltration
abundance of immune cells, including M0 and M1
macrophage, memory B cells, plasma cells, CD8 T
cells, activated CD4 T cells, follicular helper T cells,
and y&T cells, was higher in the synovial membrane of
patients with RA compared to that in HCs (Fig. 2A).
This indicated the existence of an overactivated
immune microenvironment in RA synovium.
Notably, not all these differences reached a threshold
of statistical significance. This likely reflected the
considerable  biological heterogeneity of RA
synovium, including variations in disease stage,
treatment exposure, and the predominance of distinct
synovial ~pathotypes. This pronounced inter-
individual heterogeneity, combined with the limited
sample size typical of bulk RNA-seq studies of human
synovium, inherently reduced statistical power. The
observed trend, however, still implicated a genuine
biological shift, highlighting the complex and variable
nature of RA synovitis.

The immune cells with significantly up-
regulated infiltration capability in RA from the
previous CIBERSORT analysis were used as the
phenotypic data for WGCNA. Our study focused on
the characteristics of the monocyte/macrophage
lineage. Therefore, the phenotypes of immune cells
included memory B cells, follicular helper T cells,
gamma delta T cells, monocytes, and macrophages
(MO, M1 and M2). In WGCNA, the Scale_Free_
Topology_and_Mean, which showed scale-free fit
index (y-axis) against different soft threshold (x-axis),
was calculated (Fig. S3A-C).
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Figure 2. WGCNA analysis of immune infiltrating cell phenotypes and their correlation with the Hub candidate genes. (A) Box plot of significantly different
immune cells between RA and HC. Analysis of synovial infiltrated immune cells based on CIBERSORT algorithm. The iterations number was 1000. The Wilcoxon test was utilized
for statistics. (B) WGCNA of the infiltrating immune cell phenotypes. Relationship coefficient heatmap between gene modules and immune cells. (C)Venn diagram of
intersection between module genes and DEGs associated with fatty acid metabolism. (D) Correlation between Hub candidate genes and immune cells. (E-G) Correlation
between significant module genes and infiltrated immune cells via the Spearman test.

When the threshold was defined as 0.9, the  which was selected as the optimal soft threshold for
minimum soft threshold (sft$powerEstimate) was 9,  subsequent analysis. According to the moduled-trait
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relationship plot analyzed by WGCNA, the genes in
the MEbrown and MEdarkred modules had the
highest correlation with the phenotypes of immune
cells, with the correlation coefficients of 0.74 and 0.86,
respectively (Fig. 2B), indicating that there were genes
highly associated with immune cell infiltration
characteristics in RA synovium in these two modules.
Therefore, the MEbrown and MEdarkred module
genes were extracted and intersected with the
FAM-genes and the DEGs. Three FAM-DEGs were
extracted from the MEbrown module: PDK1, XBP1
and GABARAPLI (Fig. 2C), and collected into the Hub
candidate gene list. The correlation analysis between
the total thirteen Hub genes and seven types of
significantly different immune cells showed that the
expression of PDKI and XBP1 was positively
correlated with yOT cells (PDK1, r = 0.51; XBP1, r =
0.58), follicular helper T cells (PDK1, r = 0.5; XBP1, r =
0.49), and M1 macrophages (PDK1, r = 0.49; XBP1,r =
0.43) (Fig. 2D). The Hub candidate gene ACACB, as
screened by PPI network analysis, showed a negative
correlation with M1 macrophages, y6T cells, and
follicular helper T cells (Fig. 2D). Moreover, the
significant correlation between PDKI, XBP1 and
ACACB and immune cell infiltration was confirmed
using the Spearman test (Fig. 2E-G).

Screening Hub genes based on machine
learning algorithm

Five machine learning algorithms were
employed to screen characteristic genes from the
thirteen Hub candidate genes identified above. In the
LASSO regression analysis, as the logarithm of the
penalty coefficient (log Lambda) increased, the
regression coefficients of all variables in the
regression model gradually reduced (Fig. 3A). The
model ultimately selected six feature variables,
including ACACB, PPARGCIA, ADIPOQ,
GABARAPL1, PDK1 and XBP1 (Supplementary Table
S2). According to the SVM-RFE feature-5 cross-
validation accuracy diagram, the accuracy of the
thirteen genes analyzed was 0.915 (Fig. 3B). Random
Forest (RF) analysis selected the optimal number of
trees and determined the importance of the random
forest variables (Fig. 3C). The XGBoost analysis of the
importance scores of characteristic variables showed
that the top five genes GABARAPL1, ACACB, PDK1,
PPARGC1A and XBP1 were crucial for distinguishing
RA and HC diagnosis (Fig. 3D). The Boruta analysis
screened the thirteen Hub candidate genes with
higher scores than the shadow Max and identified
them as feature genes (Fig. 3E). The Hub genes
selected by the five machine learning algorithms were
shown in Supplementary Table S2, respectively. The
intersection of the screening results revealed five final

Hub genes: ACACB, GABARAPL1, PPARGCI1A, PDKI,
and XBP1 (Fig. 3F). The expression of these five genes
was internally validated in the test dataset queue to
evaluate the screening effect of the five machine
learning algorithms. As shown in Figure 3G, the gene
expression levels of PDKI and XBP1 were
significantly up-regulated, while the expression levels
of ACACB, GABARAPL1 and PPARGCIA were
significantly down-regulated in samples from
patients with RA.

Diagnostic efficiency evaluation and temporal
analysis for Hub genes

The diagnostic value of each gene from the five
Hub genes (ACACB, GABARAPL1, PPARGCIA,
PDK1, and XBP1) was evaluated by ROC analysis,
with the RA diagnosis defined as the dependent
variable and the expression level of each gene defined
as the independent variable. The result showed that
the AUC values of all five Hub genes were greater
than 0.8 (Fig. 4A). Furthermore, external verification
was conducted in the GSE89408 RAN-seq dataset, and
the result showed that the AUC values of PDK1, XBP1
and ACACB were all greater than 0.9 (Fig. 4B),
indicating the abilities of these genes to accurately
distinguish RA samples from HCs. However, the
AUC values of GABARAPL1 and PPARGCIA were
less than 0.65, suggesting that their diagnostic values
in different stages of RA were slightly inferior.
Therefore, the Hub genes with the best diagnostic
efficiency were PDK1, XBP1 and ACACB.

The temporal analysis of gene expression
patterns in GSE89408 RN A-seq validation dataset was
conducted for the gene expression levels of PDKI,
XBP1 and ACACB across different disease stages,
including normal, arthralgia, osteoarthritis,
undifferentiated arthritis, RA (early), and RA
(established). The results showed that the gene
expression levels of PDKI1 and XBPI gradually
increased, while the level of ACACB decreased in RA
(Fig. 4C-E). Mfuzz analysis partitioned the
dynamically expressed genes into 5 distinct temporal
clusters (Fig. 4F). Among these, Cluster 1 and 2
displayed pronounced time-dependent patterns,
characterized by a sustained downregulation and
upregulation, respectively, over the course of the
pseudo-development of RA. The clustering result
indicated that the expression patterns of ACACB
belonged to Cluster 1, and that of PDK1 and XBP1
belonged to Cluster 2 (Supplementary Table S3). The
high membership values of these three Hub genes
(Supplementary Table S4) strongly suggested their
co-regulation within the specific temporal trajectories.
These patterns were consistent with the alteration of
FAM in response to RA progression. In summary, all
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progression, suggesting that these genes were

three Hub genes displayed the characteristics of
important for the early onset and progression of RA.

time-dependent changes corresponding to the disease
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Figure 3. Hub genes screening based on machine learning algorithms and validation. (A) LASSO regression graph. (B) SVM-RFE feature-5-fold cross-validation
accuracy diagram. (C) Importance ranking of Random Forest variables. (D) XGBoost analysis: Score results of importance of characteristic variables. (E) Boruta analysis. The
box plot with green color represented the identified feature variables. (F) Intersection Venn diagram of five Hub genes screened by five machine learning algorithms. (G) Boxplot
of the gene expression levels of PDK1, XBPI and ACACB for internal validation, and the Wilcoxon was utilized for statistics.
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Figure 4. Temporal analysis for the Hub candidate genes. (A, B) Diagnostic ROC curves of internal and external validation of the Hub genes. The roc.test function was
used for statistical difference analysis and diagnostic performance comparison. The area under the curves (AUCs) represented the diagnostic performance of the Hub genes. The
closer the AUC value is to 1, the better the diagnostic performance. (C-E) PDKI, XBPI and ACACB expression levels in the validation dataset for external validation, and the
Wilcoxon was utilized for statistics. (F) Clustering results of temporal analysis. ACACB belonged to Cluster 1; PDK] and XBPI belonged to Cluster 2. Also see Supplementary
Table S3.

Targeted drug prediction for Hub genes isolated from the peripheral whole blood of patients
with RA undergoing different immunotherapy

treatments, including anti-TNF antibodies, Rituximab,
Infiximab, Methotrexate, and Abatacept. The

The immuno-efficacy of the Hub genes was
evaluated using multiple datasets from mRNA
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expression levels of the Hub genes showed no  the Hub genes were screened from synovial samples,
significant differences following the application of  analysis with tissue samples may yield positive
these drugs (Fig. 5A-F). Since joint inflammation and  results. However, there were few synovium datasets
damage play a central role in RA development and  available for the immuno-efficacy evaluation.
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Figure 5. Association between the Hub genes and RA. (A-F) Expression levels of PDKI, XBPI and ACACB in the validation dataset with different immunotherapy
treatments were used for immuno-efficacy evaluation. The Wilcoxon was utilized for statistics. (G) Molecular docking analysis of Tretinoin with the corresponding proteins of
Hub genes. Three analysis results with the lowest binding energy were shown. (H) Mulberry map of IncRNA-miRNA-mRNA network interaction for PDK] and ACACB. (I) The
interaction network between the Hub genes and the predicted transcription factor, with the red circle representing the Hub genes and the blue square representing the predicted
transcription factors.
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The potential drug targets of these Hub genes
were further explored using the DSigDB database,
with the ranking results shown as binding force scores
(Supplementary Table S5). Additionally, the
AutoDock molecular docking was conducted to
analyze the binding ability of Tretinoin to the
corresponding proteins of the three Hub genes. The
minimum binding energy of Tretinoin with PDK1,
XBP1 and ACACB were -7.542 kcal/mol, -7.514
kcal/mol, and -6.788 kcal/mol, respectively (Fig. 5G),
indicating highly stable binding of Tretinoin with all
three proteins.

ceRNA and transcription factor network
prediction for Hub genes

miRNA induces gene silencing by down-
regulating target mRNA expression through binding
to mRNA, while upstream molecules circRNA and
IncRNA regulate miRNA function by binding to
miRNA response elements, thereby modulating
mRNA expression. To further understand the
regulatory network, interactions of IncRNAs and
miRNAs with the mRNAs of the three Hub genes
were predicted using miRDB (https://mirdb.org/
index.html) and ENCORI (https://rnasysu.com/
encori/) websites. No direct regulatory pathway was
found for miRNA and upstream IncRNA targeting
XBP1 mRNA. However, MALAT1 and NEAT1 were
identified as the main IncRNA-miRNA regulatory
pathways for PDKlI and ACACB (Fig. 5H).
Meanwhile, the transcription factor prediction
suggested that FOXC1l may be a common
transcription factor regulating the expression of PDK1
and ACACB (Fig. 5I).

Hub gene expressions are regulated by
proinflammatory cytokines

To confirm the abnormal expression of PDK1,
XBP1 and ACACB in RA joint, a CIA mouse model for
RA was utilized by injecting chicken type II collagen
into DB] mice. Immunofluorescent results showed
significantly increased fluorescence intensities of
PDK1(Fig. 6A and B) and XBP1(Fig. 6C and D), and
decreased intensity of ACACB in the joint tissues of
CIA mice compared to the vehicle treated mice (Fig.
6E and F).

In RA, cells within the inflamed synovium
produce various proinflammatory  cytokines,
particularly TNFa and IL-6. To assess whether
increased TNFa and IL-6 levels in synovial tissue
contributed to the abnormal expression of PDK1,
XBP1 and ACACB in RA synovium, MH7A, a
fibroblast-like synovial cell line generated from RA
synovial tissue, was treated with 50 ng/mL TNFa or
10 ng/mL IL-6 for 4 or 8 hours, and the transcript

levels of the three Hub genes were analyzed using
qPCR. The result showed that the mRNA levels of
PDK1 and XBP1 were significantly up-regulated and
that of ACACB was down-regulated in the TNFa
treated MH7A cells (Fig. 7A). Western blot confirmed
that the bands intensities were increased for PDK1
and XBP1 and decreased for ACACB in the synovial
fibroblast cells treated with TNFa (Fig. 7B and C).
Similarly, higher expression levels of PDK1 and
XBPlwere induced by IL-6, while that of ACACB
seemed to be unchanged after IL-6 treatment (Fig.
7D-F). Together, these findings indicated that the
abnormal expression of PDK1, XBP1 and ACACB
might be induced by inflammatory cytokines in RA
synovium.

Discussion

Fatty acid metabolism is highly associated with
the pathogenesis of RA. In this study, using
bioinformatics and machine learning algorithms,
PDK1, XBP1 and ACACB, which were related to fatty
acid metabolic pathway, were identified as three Hub
genes associated with immune cell infiltration into the
RA synovial tissue and exhibited high diagnostic
efficiency. These genes might be considered as
significant risk factors in the onset and pathogenesis
of RA.

In RA, fibroblast-like synoviocytes (FLSs) and
immune cells interact in the synovium, leading to the
activation of both cell types. Our analysis of immune
cell infiltration showed that the most abundant cell
types in the synovial membrane of RA were
monocyte/macrophage, FLSs, and T lymphocytes.
Moreover, memory B cells, plasma cells, and dendritic
cells were also significantly increased in RA
synovium. Consistently, multiple research suggested
that several effector cells in the synovial membrane of
RA could be potential therapeutic targets, including
MERTK* macrophages [44], NOTCH3* synovial
fibroblasts [45], CD11c* autoimmune associated B
cells [46], and PD-1* peripheral helper T cells [47, 48].
These findings indicate that these cells may play
critical roles in the inflammatory environment
formation of RA synovium. However, we should
interpret these findings with caution. It is important
to consider the methodological constraints of the
CIBERSORT algorithm when applied to synovial
tissue. First, CIBERSORT relies on a predefined
signature matrix (LM22), which was built from
circulating  immune cells.  Synovial tissue
macrophages and fibroblasts can exist in unique
activation states that may not be perfectly mirrored in
the blood-derived signatures, potentially leading to
misclassification or an inability to resolve specific
tissue-resident subsets. Second, the computational
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deconvolution of bulk tissue RNA-seq data is
inherently challenged by the similarity of gene
expression profiles between different cell types.
Activated synovial fibroblasts can express genes
typical of myeloid cells, potentially leading to
overestimation of certain immune populations.
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Finally, the hypoxic and inflamed synovial

microenvironment can alter global gene expression
profiles, which might not be fully accounted for in the
reference matrix, introducing a potential source of
bias.
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Figure 6. PDK1, XBP1 and ACACB expression in synovial tissue. DB] mice were immunized with collage. (A-B) Immunofluorescence staining of PDK1 from the hind
paw in vehicle and collage induced mice. Representative images were from one of six synovial tissue sections. Bar, 20um. (C-D) Immunofluorescence staining of XBP1 from the
hind paw in vehicle and collage induced mice. Representative images were from one of six synovial tissue sections. Bar, 20um. (E-F) Immunofluorescence staining of ACACB
from the hind paw in vehicle and collage induced mice. Representative images were from one of six synovial tissue sections. Bar, 20um. All data are presented as the mean + SEM.

Paired Student t-test, ** P < 0.01; *** P < 0.001.
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Figure 7. PDKI, XBP1 and ACACB were regulated by proinflammatory cytokines in synovial fibroblasts. (A-C) RA fibroblast-like synovial cells (FLS) MH7A
were treated with vehicle or TNFa for indicated time. (A) Transcript levels of PDKI, XBP1, and ACACB were quantified by qPCR, biological replicates: n=3. (B) PDK1, XBP1 and
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and ACACB expressions were detected by western blotting, representative images were shown. (F) Band intensity data from 3 replicate experiments were quantified. All data
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Our study identified PDK1, XBP1 and ACACB as
the critical Hub genes related to fatty acid metabolic
pathway, and these three Hub genes were
significantly ~ correlated ~ with infiltrated M1
macrophages, yOT cells and follicular helper T cells in
the synovium. A question arises is whether PDK1,
XBP1 and ACACB are associated with synovium
inflammatory environment. PDK1, a key kinase
controlling fatty acid metabolism by phosphorylating
pyruvate dehydrogenase subunits PDHA1 and
PDHA?2, regulates macrophage migration ability via
HIF-1a-PDK1 axis [49]. Moreover, IncRNA
LOC100912373 promotes FLS proliferation by
up-regulating PDK1 expression [50]. XBP1, a major
transcription factor regulating endoplasmic reticulum
stress, can be activated by Toll like receptors in
synovial fibroblasts from patients with active RA [51].
Moreover, studies in ACC knockout mice have
demonstrated that ACC/ACACB regulates acute
inflammatory responses by limiting fatty acid
oxidation in macrophage innate immunity [52]. Our
experiments using an RA mouse model confirmed the
high expression of PDK1, XBP1 and lower expression
of ACACB in the joints of CIA mice. These findings

suggest that the three Hub genes may play important
roles in the pathogenesis of RA synovium.
Furthermore, temporal analysis demonstrated the
time-dependent characteristics of PDK1, XBP1 and
ACACB in the development of RA. Considering that
bone destruction in RA is an irreversible process and
requires active intervention before entering the
terminal stage, these genes may serve as potential
disease indicators for early diagnosis of RA.
Immuno-efficacy results from molecular docking
analysis successfully predicted the stable interaction
between Tretinoin and the corresponding proteins of
PDK1, XBP1 and ACACB, indicating their potential as
drug targets for RA treatment in terms of abnormal
fatty acid metabolism. The analysis of peripheral
blood datasets showed no significant differences in
the expression of these genes in the efficacy
evaluation of immunotherapy drugs. However, the
three Hub genes identified here were from synovial
datasets, yet there were few such datasets available
for immuno-efficacy evaluation. Considering the
difficulty for generating synovial datasets compared
to peripheral blood datasets, future studies could first
focus on revealing the molecular mechanisms and
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interactions between peripheral blood cells and
synovial tissues, which might provide hints for
hypothesis regarding immunotherapy efficacy on RA
synovial membranes or fibroblasts. However, since
immune responses, inflammation and tissue
destruction primarily occurred in synovial tissues,
further explorations for more comprehensive immune
pathways and mechanisms with RA synovial samples
and within the inflammatory microenvironment
should be essential for more accurate immuno-
efficacy analysis of the three Hub genes.

Meanwhile, the regulatory mechanism for PDK1,
XBP1 and ACACB expression in synovial cells
remains unclear. Although our studies showed that
the MALAT1 and NEAT1 IncRNA-miRNA pathways
and the transcription factor FOXC1 might play roles
in the regulation of PDK1 and ACACB expression,
mechanistic studies are needed to illustrate the
detailed regulatory pathways. In RA, cells within the
synovium secrete various proinflammatory cytokines.
Our results indicated that in the presence of TNFa or
IL-6, the expression levels of PDK1, XBP1 seemed to
be further increased, whereas ACACB expression was
suppressed by TNFa. This suggests that the
inflammatory microenvironment of RA synovium
may be responsible for the exacerbation of abnormal
fatty acid metabolism associated RA, implicating that
the modified expression of PDK1, XBP1 and ACACB
by inflammatory cytokines may further alter fatty
acid metabolic pathways and promote RA
development. Specifically, cytokines in the RA
inflammatory microenvironment may upregulate
PDK1 and XBP1 expression, and downregulate
ACACB expression in the cells within synovium,
altering the metabolic balance toward enhanced fatty
acid oxidation. Such metabolic shift may meet the
elevated energy requirement associated with
inflammatory reactions and responses, promoting the
inflammatory phenotypes of RA.

Conclusion

In this study, we identified PDK1, XBP1 and
ACACB as the three Hub genes highly involved in
fatty acid metabolism dysfunction and immune
infiltration in RA synovium. These genes exhibited
better  diagnostic  efficiency and  showed
characteristics of time-dependent changes in the
course of RA pathogenesis. Further investigation
successfully elucidated the abnormal expression of
PDK1, XBP1 and ACACB in RA synovium, and
suggested that their expression might be regulated by
proinflammatory cytokines. These findings indicated
the potential regulatory roles of these fatty acid
metabolic genes in the inflammation of RA synovium.
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