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Abstract 

Background: Dysfunction of fatty acid metabolism plays a critical role in the pathogenesis of 
Rheumatoid Arthritis (RA). This study aimed to screen for Hub genes involved in fatty acid metabolism 
that contribute to the inflammatory state of RA synovium.  
Methods: Four mRNA microarray datasets for RA were integrated into an expression matrix as a test 
dataset. One RNA-seq and five microarray datasets were preprocessed as validation datasets. Immune 
cell infiltration combined with Weighted Gene Co-expression Network Analysis (WGCNA) were used 
to feature infiltrated cells and their correlation with candidate genes in RA. Five machine learning 
algorithms were applied to Hub genes screening. Temporal, immuno-efficacy, drug target prediction, 
molecular docking, ceRNA, and transcription factors networks analyses were conducted to elucidate the 
association of the Hub genes with RA. Immunofluorescence assay was performed in Collagen-Induced 
Arthritis (CIA) mouse, and qPCR and Western blot were applied to TNFα or IL-6 treated MH7A cells to 
reveal the potential roles of the proinflammatory cytokines on Hub genes expression in RA synovium.  
Results: Three Hub genes with better diagnostic efficiency were screened, with PDK1 and XBP1 
up-regulated and ACACB down-regulated in RA. These genes were associated with immune cells 
infiltration and immuno-efficacy in RA, and their expression patterns showed time-dependent 
characteristics during disease progression. Mechanistically, MALAT1, NEAT1 and FOXC1 were involved 
in the regulation of PDK1, XBP1 and ACACB expression, and TNFα or IL-6 treatment mimicked their 
expression phenotypes in RA.  
Conclusion: Our study identified PDK1, XBP1 and ACACB as the Hub genes from the fatty acid metabolic 
pathway and indicated that PDK1, XBP1 and ACACB might play key roles in the pathogenesis of RA 
synovium. 
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Introduction 
Rheumatoid Arthritis (RA) is a chronic 

autoimmune disease, and its basic pathological 
change in the early stage is synovial inflammation [1, 
2]. The destruction of synovial membrane of joints 
occurs within 3 months of the onset of RA, and it is 
difficult to reverse once bone erosion and joint 
deformity occur [2, 3]. Therefore, early diagnosis and 

treatment at an early stage of RA are crucial. Joint 
inflammation in RA leads to changes in the energy 
metabolism of joint cells, especially synovial cells and 
chondrocytes, which require more energy to support 
cell proliferation, differentiation, and synthesis of 
extracellular matrix to respond to inflammation and 
repair bone damage [4-9]. Multiple metabolic 
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pathways, such as glycolysis and fatty acid 
metabolism, are dysregulated in the RA synovium 
[4-7, 10].  

Fatty acid metabolism (FAM) contributes to the 
synovial inflammatory environment formation, 
affecting both resident immune cells [4, 5, 11, 12] and 
fibroblast-like synovial cells (FLS) [7, 13, 14]. T cells 
from patients with RA tend to increase the uptake and 
oxidation of fatty acids, which is related to the 
overactivation of T cells and the intensification of the 
inflammatory response [11, 15]. Specific fatty acids, 
such as unsaturated fatty acids, can affect the 
proliferation, apoptosis and immune-modulatory 
function of T cells [16-18]. The up-regulated 
expression of fatty acid synthase (FASN) and 
long-chain fatty acid-CoA synthase 4 (ACSL4) in 
Regulatory T cells (Treg) are associated with the 
inhibitory function of Treg [19, 20]. Moreover, 
changes in fatty acid metabolism in RA are related to 
the recruitment of T helper cell 17 (Th17) and the 
generation of osteoclasts, thus aggravating joint 
inflammation and bone erosion [21]. In addition, the 
synovial microenvironment of RA has been shown to 
induce the maturation and metabolic reprogramming 
of immune cells, such as macrophage and CD11c+ 
dendritic cells, which exhibit increased expression of 
genes associated with fatty acid metabolism [22].  

Increasing evidence shows that fatty acid 
metabolic pathways of RA-FLS are involved in the 
inflammatory environment formation of RA 
synovium [7, 13, 14]. Leptin-driven fatty acid 
β-oxidation (FAO) activation enhances the 
proinflammatory characteristics of FLS in RA, and the 
proinflammatory phenotype of RA-FLS can be 
inhibited by silencing leptin expression or with 
etomoxir, a well-known FAO pathway inhibitor [23]. 
On the other hand, synovial tissue in inflamed joints is 
a rich source of proinflammatory cytokines [24, 25]. 
Fatty acid metabolism also needs to adopt to and be 
modified by this inflammatory microenvironment. 
Specially, TNFα and Interleukin 6 (IL-6) are dominant 
proinflammatory cytokines within the inflamed bone 
microenvironment in RA [26-28]. However, the roles 
of these cytokines in the regulation of fatty acid 
metabolism in RA remain unclear. 

In the current study, we conducted 
bioinformatics analyses and utilized machine learning 
algorithms to explore Hub genes associated with the 
fatty acid metabolic pathway in the synovial 
membrane of RA. The expression patterns of the Hub 
genes in RA synovium were elucidated through 
protein-protein interaction (PPI), temporal and 
immune cell infiltration analyses. Moreover, 
immuno-efficacy evaluation, drug target prediction 
and transcription factor network prediction were 

performed to provide hints for possible therapeutic 
application and related regulatory mechanism. 
Further biological investigation using Collagen- 
Induced Arthritis mouse (CIA) and MH7A cells 
implicated the potential regulation mechanism of the 
Hub genes expression in RA synovium. These insights 
from our study would be valuable for further 
understanding the impact of the fatty acid metabolic 
pathway on RA pathogenesis.  

Material and Methods 
Data acquisition and preprocessing 

The overall workflow of this study is shown in 
Supplementary Figure S1. Four mRNA microarray 
datasets of RA synovium (GSE12021, GSE55235, 
GSE55457, GSE77298) generated on the Affymetrix 
HG-U133A (GPL96) and HG-U133 Plus 2.0 (GPL570) 
platforms were downloaded from GEO database 
[29-33]. The GPL570 platform contained probes that 
were not present in GPL96, therefore, only the probes 
common to both platforms were retained to ensure 
comparability. Background correction and 
normalization were performed using the Robust 
Multi-array Average (RMA) algorithm to generate 
gene-level expression values. Probe IDs were 
converted to official gene symbols using the 
platform-specific annotation packages (hgu133a.db 
for GPL96 and hgu133plus2.db for GPL570). To 
handle the common issue of probe-to-gene symbol, 
the following strategy was employed: for probe 
groups corresponding to multiple genes, the first one 
was selected for retention; for genes having multiple 
probes, the average expression value of the probes 
was taken. By matching probe IDs and gene Symbols, 
probe expression matrices were converted into gene 
expression matrices. Gene expression values were 
log2-transformed. The normalizeBetweenArrays 
function of the limma package was applied for 
intra-group data normalization processing. The 
intersect function was used to extract common genes. 
The cbind function was used to merge the gene 
expression matrices of the four datasets. The 
integrated dataset was then processed for batch effect 
correction using the ComBat algorithm from the sva R 
package, with the dataset source as the batch variable. 
Parametric empirical Bayes framework of ComBat 
was used to adjust for location and scale shifts in the 
data across batches. The biological condition (RA vs. 
HC) was included as a model covariate to preserve 
the biological signal of interest. Principal component 
analyses (PCA) were performed both before and after 
batch effect correction and visualized by PCA plots 
for confirmation. The integrated expression matrix 
obtained after background correction and batch effect 
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correction was considered as the test dataset. The 
limma package was used to analyze differentially 
expressed genes (DEGs) using the threshold of 
adj.p-value < 0.05 and |logFC| > 1 [34]. The ggplot2 
package and pheatmap package were employed to 
visualize the results with volcano plot and heatmap. 
The RNA-seq dataset (GSE89408) was downloaded 
and subjected to the Counts and FPKM numerical 
transformation using Counts2FPKM package for 
normalization to obtain accurate gene expression 
data. Differential expression analysis and statistical 
test were performed using DESeq2, resulting in the 
generation of gene matrix as the validation dataset 
[35]. Five other mRNA microarray datasets with 
clinical samples from different immunotherapy drug 
treatments were downloaded for background 
correction, and their expression matrices were 
extracted as additional validation datasets. 
Differential expression analyses were performed 
using the DESeq2 package for the validation datasets 
mentioned above. GEO information included in this 
study is provided in Supplementary Table S1.  

This study downloaded the "fatty acid 
metabolism" gene sets from the MSigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb/huma
n/search.jsp). A total of 4 most relevant gene sets 
were selected: HALLMARK_FATTY_ACID_META 
BOLISM, KEGG_FATTY_ACID_METABOLISM, REA 
CTOME_FATTY_ACID_METABOLISM, and GOBP_ 
FATTY_ACID_METABOLIC_PROCESS. A total of 
536 genes related to fatty acid metabolism (FAM) 
were identified, and 24 FAM_DEGs (FAM-related 
DEGs) were obtained by intersection with DEGs from 
the test dataset.  

All research involving human databases was 
approved by the Medical Ethics Committee of first 
affiliated hospital of Sun Yat-Sen University. 

Enrichment and protein-protein interaction 
network analysis 

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes Genomes (KEGG) analyses were conducted 
using the Clusterprofiler package. The thresholds 
were set as p value Cut off < 0.05 and q value Cut off < 
0.05. The dotplot function was utilized to create 
bubble plots, and the circlize package was used to 
generate circle plots for visualizing the results of the 
enrichment analyses. Gene Set Enrichment Analysis 
(GSEA) was performed based on the entire gene set in 
MigDB, and the gseaplot function was used to 
visualize the up- and down-regulated pathways. The 
DEGs were imported into the STRING database 
(http://string-db.org) to construct the PPI network 
followed by the visualization using Cytoscape 
software. The CytoHubba plugin and the Maximum 

Clique Centrality (MCC) topological algorithm were 
used to calculate Node Scores as criteria, and the top 
ten DEGs were selected as Hub candidate genes.  

Immune infiltration analysis using 
CIBERSORT 

The requirements of the CIBERSORT algorithm 
for input matrix are as follows: (1) no missing or 
negative values; (2) log conversion is not performed; 
(3) affymetrix chips use RMA standardization, 
Illumina's Beadchip and Agilen monochrome chips 
use limma processing; (4) for RNA-seq sequencing 
data, either FPKM or TPM numerical types are 
applicable [36, 37]. The original data of the test dataset 
was downloaded, and the RMA function was used for 
background correction, data standardization, 
expression value calculation, and log2 transformation 
and ID transformation. The ComBat function of the 
sva package was applied for batch effect correction. 
Permutation tests were used to evaluate the reliability 
of the results. The number of permutations parameter 
was set as perm = 1000 to enhance the credibility of 
cell proportion estimation. DEGs in each dataset were 
screened according to the threshold of adj.p-value < 
0.05 and |logFC| > 1, and the differential gene 
expression matrix of the test dataset was obtained for 
immune cell infiltration analysis.  

The relative proportions of immune cell types in 
each sample were quantified using the CIBERSORT 
algorithm with the LM22 signature matrix. The 
algorithm reported a p-value for each sample, which 
reflected that the result was not due to random 
chance. A p-value < 0.05 was generally considered 
indicative of a reliable estimate for that individual 
sample and was not directly equivalent to the 
statistical significance of differences in cell 
proportions between groups. For group comparisons 
(RA vs. HC), the differences in immune cell fractions 
were assessed using the Mann-Whitney U test, and a 
p-value < 0.05 was considered statistically significant. 
The observed non-significant p-values for some 
inter-groups might reflect the substantial biological 
heterogeneity inherent in RA synovial tissue. The 
immune cells with insignificant p-values were 
excluded. The Wilcoxon test was employed to identify 
immune cells with significant differences between RA 
and healthy controls (HCs), which were selected as 
the phenotypic data for subsequent Weighted Gene 
Co-expression Network Analysis (WGCNA) [38].  

Weighted gene co-expression network analysis 
The WGCNA package was used to identify 

genes associated with immune cell infiltration. The 
outliers of gene expression matrix were identified 
using hierarchical clustering. Spearman correlation 
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coefficients between genes were calculated and the 
similarity matrix was constructed. A suitable soft 
threshold was selected to transform the similar matrix 
into an adjacency matrix, which was further 
transformed into a topological overlap matrix (TOM). 
Dynamic pruning tree recognition module was used, 
and clustering was based on 1-TOM distance. The 
predominant immune infiltrating cells in the RA 
microenvironment were identified. The module genes 
with the highest correlation with RA, fatty 
acid-related genes and differentially expressed genes 
were extracted and intersected as Hub candidate 
genes for subsequent correlation analysis. Spearman 
rank correlation coefficient analysis was performed 
on the significantly different immune infiltrates and 
the thirteen Hub candidate genes using the corrplot 
package, with the cor.mtest function conducting a 
significance test on the correlation matrix based on 
Hotelling-Pabst test.  

Machine Learning algorithms screening and 
validation for Hub genes 

Five machine learning algorithms were 
combined to screen Hub genes: LASSO (Least 
Absolute shrinkage and selection operator) [39], 
SVM-RFE (Support vector machine recursive feature 
elimination) [40], RF (Random Forest), XGBoost (limit 
gradient lifting eXtreme Gradient Boosting) [41] and 
Boruta [42, 43]. Each machine learning algorithm has 
its own inherent biases and assumptions. By 
combining multiple algorithms, the biases can be 
reduced, and the result of feature selection can be 
more reliable. The Hub genes were internally and 
externally validated using both the test dataset and 
validation dataset. The ggboxplot function was used 
to visualize the gene expression levels of samples 
from patients with RA and HCs, and the Wilcoxon 
test was used to calculate the significance.  

Diagnostic efficiency evaluation and temporal 
analysis 

The Receiver Operating Characteristic (ROC) 
curves and the Area Under the Curve (AUC) values 
were used to evaluate the diagnostic efficiency of the 
Hub genes between RA and HC. The pROC package 
was utilized to generate ROC curves and calculate 
AUC values, and the roc.test function was used for 
statistical analyses.  

Temporal analysis is a method for analyzing the 
temporal trends of transcription changes using Mfuzz 
package in R, which employs the core algorithm 
based on Fuzzy C-Means Clustering (FCM) for soft 
clustering. Mfuzz assigns each gene a membership 
value to each cluster, reflecting the biological reality 
that genes can participate in multiple coordinated 

processes. Temporal analysis was conducted using six 
disease progression time points from RA to HC in the 
validation dataset GSE89408, including normal, 
osteoarthritis, arthralgia, undifferentiated arthritis, 
RA (early) and RA (established) stages. The data was 
filtered to remove genes with standard deviation of 0 
to ensure each time course was comparable. The 
critical fuzziness parameter “m” was set to 1.711549, 
which was determined using the mestimate function, 
ensuring a balance between cluster overlap and 
distinctness. The optimal number of clusters (five) 
was determined using the vegan package, which 
provided a clear separation of major temporal trends 
while minimizing overly complex patterns. The 
Mfuzz function was applied to process the time node 
information of the samples and the expression profile 
information of DEGs, examining the number of DEGs 
in each cluster and the cluster to which each DEG 
belonged. Genes were assigned to a core cluster based 
on their highest membership value. A cluster was 
considered to represent a robust time-dependent 
pattern if its centroid exhibited a clear directional or 
phased trajectory and contained genes with high 
membership values (typically > 0.5). The Mfuzz.plot 
was used to visualize clustering results, and the 
cluster hierarchy to which the Hub genes belonged 
was extracted to analyze their temporal expression 
patterns.  

Immuno-efficacy evaluation and molecular 
docking analysis 

Five mRNA microarray datasets containing 
clinical samples with different immunotherapy 
treatments were used as validation datasets. The 
GSE15258 dataset was divided into TNF antibody 
response and non-response groups. The GSE37107 
dataset was divided into Rituximab response and 
non-response groups. The GSE58795 dataset was 
divided into groups treated with Infiximab and 
placebo. The GSE68215 dataset was divided into 
groups with low and non-low disease activity. The 
GSE45867 dataset was grouped into before- and 
after-controls for Methotrexate and Abatacept, 
respectively. The ggboxplot function was used to plot 
the expression boxplots for the Hub genes across 
different immunotherapy treatments, and the 
Wilcoxon test was used to assess the significance.  

The DSigDB (https://dsigdb.tanlab.org/ 
DSigDBv1.0/) and Enrichr (https://maayanlab. cloud 
/Enrichr/#) online tools were used to predict 
potential drug molecules targeting the Hub genes. 
Small drug molecules with strong binding ability to 
the three Hub genes (PDK1, XBP1 and ACACB) were 
selected based on the binding p-values and scores for 
molecular docking analysis. The protein PDB 
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numbers and corresponding tertiary structures for the 
Hub genes were downloaded from the PDB database 
(https://www.rcsb.org/). The small molecule CID 
numbers and structures were obtained from the 
PubChem database (https://pubchem.ncbi.nlm.nih 
.gov/). Autodock Tools and PyMOL software were 
used for protein-ligand docking analysis and 
visualization.  

ceRNA and transcription factor network 
analysis 

The ceRNA network is an emerging gene 
regulatory mechanism that regulates variably spliced 
RNAs through competitive binding of endogenous 
microRNAs (miRNAs) to influence each other's 
expression. The ceRNA network of the Hub genes 
was analyzed using the miRDB (https://mirdb.org/ 
index.html) and ENCORI (https://rnasysu.com/ 
encori/) websites. The ggalluvial package was 
employed to draw a mulberry map to visualize the 
lncRNA-miRNA-mRNA regulatory network of the 
Hub genes.  

NetworkAnalyst (https://www.networkanalyst 
.ca/) was used for transcription factor prediction and 
interaction network construction. The JASPAR 
database was employed to predict the transcription 
factors associated with the Hub genes.  

Cell culture and treatment 
The human synovial fibroblast-like cell line 

MH7A was obtained from the American Type Culture 
Collection. The MH7A cells were cultured in RPMI 
1640 (Invitrogen, Carlsbad, CA, USA) supplemented 
with 10% fetal bovine serum (Invitrogen) and 1% 
penicillin/streptomycin (Invitrogen) at 37 °C in a 
humidified atmosphere with 5% CO2. The cells were 
treated with 50 ng/mL TNFα or 10 ng/mL IL-6 
(Peprotech, Rocky Hill, NJ, USA) for 4 or 8 hours 
before being harvested for experimental assays.  

RNA isolation and quantitative real-time PCR 
(qPCR) 

The total RNA was extracted from 1 × 105 cells 
followed by cDNA synthesis using the BeyoRTTMII 
First Strand cDNA Synthesis Kit (Beyotime, Shanghai, 
China). RT-qPCR using Universal SYBR qPCR Master 
Mix was performed on the ABI StepOne PLUS 
Real-Time PCR System (Applied Biosystems, USA). 
The primer sequences, for PDK1 were 5’-CTGTG 
ATACGGATCAGAAACCG-3’ and 5’-TCCACCAAA 
CAATAAAGAGTGCT-3’; for XBP1 were 5’-CCCT 
CCAGAACATCTCCCCAT-3’ and 5’-ACATGACTGG 
GTCCAAGTTGT-3’; for ACACB were 5’-AGAAGA 
CAAGAAGCAGGCAAAC-3’ and 5’-GTAGACTCAC 
GAGATGAGCCA-3’, for GAPDH were 5’-AAGGTCA 

TCCCAGAGCTG AA-3’ and 5’-CTGCTTCACCACC 
TTCTTGA-3’. Relative mRNA expression level was 
calculated using the 2−ΔΔCt method, normalizing to the 
housekeeping gene GAPDH.  

Western blot 
The proteins were extracted using RIPA buffer 

(Beyotime, Shanghai, China) supplemented with 
PMSF (Beyotime). After quantification, the extracted 
samples were separated by SDS-PAGE and 
transferred to polyvinylidene fluoride membranes. 
The membranes were blocked with 5% Bovine Serum 
Albumin for 1h and then incubated with primary 
antibodies at 4 °C for 12 h. The membranes were 
probed with anti-ACACB (1:1000, Cat# DF7980, 
Affinity, CA, USA) and anti-PDK1 (1:1000, Cat# 
DF4365, Affinity), and anti-XBP1 (1:1000, Cat# 
sc-8015, Santa Cruz, CA, USA) and anti-Actin (1:1000, 
Cat# sc-58673, Santa Cruz) primary antibodies. The 
membranes were subsequently incubated with 
secondary antibodies for 1 h at room temperature and 
developed with a chemiluminescent detection system 
(Applied Biosystems, USA). The protein expression 
levels were quantified using Image J 9.0 software 
(NIH, USA) by measuring the band intensities and 
normalizing them to those of Actin.  

Immunofluorescence staining 
The synovium tissues from control and CIA mice 

were mounted on slides. The slides were blocked with 
3% Bovine Serum Albumin for 1h and incubated with 
anti-ACACB (1:200, Cat# DF7980, Affinity), 
anti-PDK1 (1:200, Cat# DF4365, Affinity) or anti-XBP1 
(1:200, Cat# sc-8015, Santa Cruz) primary antibodies 
at 4 °C for 12h, followed by staining with 
fluorescence-conjugated second antibodies. Iso-type- 
matched primary antibodies served as controls. The 
nuclei were stained with DAPI, and the coverslips 
were mounted using Antifade Mounting Medium 
(Beyotime). The images were acquired and analyzed 
using a Zeiss LSM 710 Confocal Imaging System 
(Zeiss, Oberkochen, Germany). Total fluorescence 
intensity was quantified using the ZEN 3.11 software. 
Graphs were generated by comparing the 
fluorescence intensities of CIA to normal mice 
samples. 6 biological replicates were performed.  

Statistical analysis 
All data preprocessing, statistical analyses and 

plotting were completed with R 4.3.2 software. The 
Wilcoxon rank sum test was utilized for comparisons 
between two groups. The Pearson correlation analysis 
was used for correlations between two continuous 
variables, while the Spearman correlation analysis 
was used for correlations between ordered variables 
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or non-normal distribution data. The data were 
represented as mean ± SEM. The student’s t-test was 
performed between two groups, and the one-way 
ANOVA followed by Tukey’s post hoc test was 
performed among multiple groups. The p-value 
of < 0.05 was considered statistically significant.  

Results 
Screening of Hub genes associated with fatty 
acid metabolic characteristics of RA synovium 

The integrated gene expression matrix for the 
test dataset was obtained after applying the limma 
package for group data normalization and the sva 
package for batch effect removal. Before integrating 
the four datasets, the normalizeBetweenArrays 
function of the limma package was applied for 
intra-group data normalization (Fig. S2). Box plots 
and principal component analysis (PCA) graphs 
visualized the overall gene expression levels of the 
integrated datasets. Although the gene expression 
levels within the same dataset were generally 
consistent, there were still obvious batch effects 
between datasets from different platforms and 
different experiments (Fig. S2A and B). The batch 
effects were then removed using the ComBat function 
of the sva package (Fig. S2C and D), meeting the 
conditions for subsequent analysis. PCA analysis was 
performed on the sample grouping of disease objects 
RA and HC in the integrated dataset (Fig. S2E). The 
results showed that there were significant differences 
in gene expression between the RA and HC groups, 
implicating successful integration.  

The limma package was applied to conduct 
differential analysis on the integrated gene expression 
matrix. With the criteria of adj.p-value < 0.05 and 
|logFC| > 1, a total of 499 significantly differentially 
expressed genes (DEGs) were screened between 
synovium from patients with RA and HCs, including 
331 up-regulated genes and 168 down-regulated 
genes (Fig. 1A and B). The GO and KEGG enrichment 
analyses for the DEGs showed that the biological 
processes for RA synovium DEGs were mainly 
enriched in the pathways related to leucocyte 
adhesion, monocyte differentiation, lymphocyte 
differentiation, cell-cell adhesion regulation, 
leukocyte migration, and T cell activation (Fig. 1C and 
D). The KEGG pathways were primarily concentrated 
in signaling interactions and the immune system, 
including cytokine and cytokine receptor interactions, 
chemokine signaling, hematopoietic lineage, cell 
adhesion molecules, and primary immunodeficiency 
disease pathways. Among these, the pathways 
associated with RA were mainly focused on Th17, Th1 
and Th2 differentiation, osteoclast differentiation, 

IL-17 signaling, NF-κB signaling, and B cell receptor 
signaling pathways.  

By intersecting the 499 DEGs with the 536 fatty 
acid metabolism-related (FAM-) genes selected from 
the MSigDB database, a total of 24 FAM-DEGs were 
identified as Hub candidate genes in RA synovium 
(Fig. 1E). The PPI network of FAM-DEGs was 
analyzed using the STRING database (Fig. 1F), and 
the Cytohubba plug-in of Cytoscape software was 
utilized to obtain the top ten Hub genes (Fig. 1G), 
among which ACACB, PCK1, PDK4, PPARGGC1A 
and LPL were central to the PPI network regulation.  

Immune cell infiltration characteristics and 
correlation analysis 

Immune cell infiltration analysis is critical for 
elucidating the mechanism of disease immune 
response and revealing the immune environment 
involved in RA synovium. The CIBERSORT algorithm 
was utilized to analyze the relative content of immune 
cells in the test dataset. The results of the immune cell 
infiltration analysis showed that the infiltration 
abundance of immune cells, including M0 and M1 
macrophage, memory B cells, plasma cells, CD8 T 
cells, activated CD4 T cells, follicular helper T cells, 
and γδT cells, was higher in the synovial membrane of 
patients with RA compared to that in HCs (Fig. 2A). 
This indicated the existence of an overactivated 
immune microenvironment in RA synovium. 
Notably, not all these differences reached a threshold 
of statistical significance. This likely reflected the 
considerable biological heterogeneity of RA 
synovium, including variations in disease stage, 
treatment exposure, and the predominance of distinct 
synovial pathotypes. This pronounced inter- 
individual heterogeneity, combined with the limited 
sample size typical of bulk RNA-seq studies of human 
synovium, inherently reduced statistical power. The 
observed trend, however, still implicated a genuine 
biological shift, highlighting the complex and variable 
nature of RA synovitis.  

The immune cells with significantly up- 
regulated infiltration capability in RA from the 
previous CIBERSORT analysis were used as the 
phenotypic data for WGCNA. Our study focused on 
the characteristics of the monocyte/macrophage 
lineage. Therefore, the phenotypes of immune cells 
included memory B cells, follicular helper T cells, 
gamma delta T cells, monocytes, and macrophages 
(M0, M1 and M2). In WGCNA, the Scale_Free_ 
Topology_and_Mean, which showed scale-free fit 
index (y-axis) against different soft threshold (x-axis), 
was calculated (Fig. S3A-C).   
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Figure 1. Identification of differentially expressed genes (DEGs) between RA and HC. (A, B) Volcano map and heatmap of DEGs. The top twenty significantly 
up-regulated DEGs (logFC > 1 and adj.p-value < 0.05) were labeled in red, and the top twenty significantly down-regulated DEGs (logFC < -1 and adj.p-value < 0.05) were labeled 
in blue. The color degree of the heatmap grid represents the gene expression. (C, D) GO and KEGG enrichment analysis of DEGs. GO ONTOLOGY displayed the top ten 
enrichment items. The top twenty enriched KEGG pathways were displayed. (E) Venn diagram of intersection of fatty acid metabolism-related (FAM-) genes and DEGs. (F) PPI 
network of DEGs related to fatty acid metabolic pathway. (G) Calculation of Hub candidate gene network based on CytoHubba method in Cytoscape. Node size represented 
connection number (degree) and node color represented mediated number centrality (blue: low mediated number centrality, red: high mediated number centrality).  
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Figure 2. WGCNA analysis of immune infiltrating cell phenotypes and their correlation with the Hub candidate genes. (A) Box plot of significantly different 
immune cells between RA and HC. Analysis of synovial infiltrated immune cells based on CIBERSORT algorithm. The iterations number was 1000. The Wilcoxon test was utilized 
for statistics. (B) WGCNA of the infiltrating immune cell phenotypes. Relationship coefficient heatmap between gene modules and immune cells. (C)Venn diagram of 
intersection between module genes and DEGs associated with fatty acid metabolism. (D) Correlation between Hub candidate genes and immune cells. (E-G) Correlation 
between significant module genes and infiltrated immune cells via the Spearman test.  

 
When the threshold was defined as 0.9, the 

minimum soft threshold (sft$powerEstimate) was 9, 
which was selected as the optimal soft threshold for 
subsequent analysis. According to the moduled-trait 
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relationship plot analyzed by WGCNA, the genes in 
the MEbrown and MEdarkred modules had the 
highest correlation with the phenotypes of immune 
cells, with the correlation coefficients of 0.74 and 0.86, 
respectively (Fig. 2B), indicating that there were genes 
highly associated with immune cell infiltration 
characteristics in RA synovium in these two modules. 
Therefore, the MEbrown and MEdarkred module 
genes were extracted and intersected with the 
FAM-genes and the DEGs. Three FAM-DEGs were 
extracted from the MEbrown module: PDK1, XBP1 
and GABARAPL1 (Fig. 2C), and collected into the Hub 
candidate gene list. The correlation analysis between 
the total thirteen Hub genes and seven types of 
significantly different immune cells showed that the 
expression of PDK1 and XBP1 was positively 
correlated with γδT cells (PDK1, r = 0.51; XBP1, r = 
0.58), follicular helper T cells (PDK1, r = 0.5; XBP1, r = 
0.49), and M1 macrophages (PDK1, r = 0.49; XBP1, r = 
0.43) (Fig. 2D). The Hub candidate gene ACACB, as 
screened by PPI network analysis, showed a negative 
correlation with M1 macrophages, γδT cells, and 
follicular helper T cells (Fig. 2D). Moreover, the 
significant correlation between PDK1, XBP1 and 
ACACB and immune cell infiltration was confirmed 
using the Spearman test (Fig. 2E-G). 

Screening Hub genes based on machine 
learning algorithm 

Five machine learning algorithms were 
employed to screen characteristic genes from the 
thirteen Hub candidate genes identified above. In the 
LASSO regression analysis, as the logarithm of the 
penalty coefficient (log Lambda) increased, the 
regression coefficients of all variables in the 
regression model gradually reduced (Fig. 3A). The 
model ultimately selected six feature variables, 
including ACACB, PPARGC1A, ADIPOQ, 
GABARAPL1, PDK1 and XBP1 (Supplementary Table 
S2). According to the SVM-RFE feature-5 cross- 
validation accuracy diagram, the accuracy of the 
thirteen genes analyzed was 0.915 (Fig. 3B). Random 
Forest (RF) analysis selected the optimal number of 
trees and determined the importance of the random 
forest variables (Fig. 3C). The XGBoost analysis of the 
importance scores of characteristic variables showed 
that the top five genes GABARAPL1, ACACB, PDK1, 
PPARGC1A and XBP1 were crucial for distinguishing 
RA and HC diagnosis (Fig. 3D). The Boruta analysis 
screened the thirteen Hub candidate genes with 
higher scores than the shadow Max and identified 
them as feature genes (Fig. 3E). The Hub genes 
selected by the five machine learning algorithms were 
shown in Supplementary Table S2, respectively. The 
intersection of the screening results revealed five final 

Hub genes: ACACB, GABARAPL1, PPARGC1A, PDK1, 
and XBP1 (Fig. 3F). The expression of these five genes 
was internally validated in the test dataset queue to 
evaluate the screening effect of the five machine 
learning algorithms. As shown in Figure 3G, the gene 
expression levels of PDK1 and XBP1 were 
significantly up-regulated, while the expression levels 
of ACACB, GABARAPL1 and PPARGC1A were 
significantly down-regulated in samples from 
patients with RA.  

Diagnostic efficiency evaluation and temporal 
analysis for Hub genes 

The diagnostic value of each gene from the five 
Hub genes (ACACB, GABARAPL1, PPARGC1A, 
PDK1, and XBP1) was evaluated by ROC analysis, 
with the RA diagnosis defined as the dependent 
variable and the expression level of each gene defined 
as the independent variable. The result showed that 
the AUC values of all five Hub genes were greater 
than 0.8 (Fig. 4A). Furthermore, external verification 
was conducted in the GSE89408 RAN-seq dataset, and 
the result showed that the AUC values of PDK1, XBP1 
and ACACB were all greater than 0.9 (Fig. 4B), 
indicating the abilities of these genes to accurately 
distinguish RA samples from HCs. However, the 
AUC values of GABARAPL1 and PPARGC1A were 
less than 0.65, suggesting that their diagnostic values 
in different stages of RA were slightly inferior. 
Therefore, the Hub genes with the best diagnostic 
efficiency were PDK1, XBP1 and ACACB.  

The temporal analysis of gene expression 
patterns in GSE89408 RNA-seq validation dataset was 
conducted for the gene expression levels of PDK1, 
XBP1 and ACACB across different disease stages, 
including normal, arthralgia, osteoarthritis, 
undifferentiated arthritis, RA (early), and RA 
(established). The results showed that the gene 
expression levels of PDK1 and XBP1 gradually 
increased, while the level of ACACB decreased in RA 
(Fig. 4C-E). Mfuzz analysis partitioned the 
dynamically expressed genes into 5 distinct temporal 
clusters (Fig. 4F). Among these, Cluster 1 and 2 
displayed pronounced time-dependent patterns, 
characterized by a sustained downregulation and 
upregulation, respectively, over the course of the 
pseudo-development of RA. The clustering result 
indicated that the expression patterns of ACACB 
belonged to Cluster 1, and that of PDK1 and XBP1 
belonged to Cluster 2 (Supplementary Table S3). The 
high membership values of these three Hub genes 
(Supplementary Table S4) strongly suggested their 
co-regulation within the specific temporal trajectories. 
These patterns were consistent with the alteration of 
FAM in response to RA progression. In summary, all 



Int. J. Med. Sci. 2026, Vol. 23 

 
https://www.medsci.org 

398 

three Hub genes displayed the characteristics of 
time-dependent changes corresponding to the disease 

progression, suggesting that these genes were 
important for the early onset and progression of RA.  

 

 
Figure 3. Hub genes screening based on machine learning algorithms and validation. (A) LASSO regression graph. (B) SVM-RFE feature-5-fold cross-validation 
accuracy diagram. (C) Importance ranking of Random Forest variables. (D) XGBoost analysis: Score results of importance of characteristic variables. (E) Boruta analysis. The 
box plot with green color represented the identified feature variables. (F) Intersection Venn diagram of five Hub genes screened by five machine learning algorithms. (G) Boxplot 
of the gene expression levels of PDK1, XBP1 and ACACB for internal validation, and the Wilcoxon was utilized for statistics.  
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Figure 4. Temporal analysis for the Hub candidate genes. (A, B) Diagnostic ROC curves of internal and external validation of the Hub genes. The roc.test function was 
used for statistical difference analysis and diagnostic performance comparison. The area under the curves (AUCs) represented the diagnostic performance of the Hub genes. The 
closer the AUC value is to 1, the better the diagnostic performance. (C-E) PDK1, XBP1 and ACACB expression levels in the validation dataset for external validation, and the 
Wilcoxon was utilized for statistics. (F) Clustering results of temporal analysis. ACACB belonged to Cluster 1; PDK1 and XBP1 belonged to Cluster 2. Also see Supplementary 
Table S3.  

 
Targeted drug prediction for Hub genes 

The immuno-efficacy of the Hub genes was 
evaluated using multiple datasets from mRNA 

isolated from the peripheral whole blood of patients 
with RA undergoing different immunotherapy 
treatments, including anti-TNF antibodies, Rituximab, 
Infiximab, Methotrexate, and Abatacept. The 
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expression levels of the Hub genes showed no 
significant differences following the application of 
these drugs (Fig. 5A-F). Since joint inflammation and 
damage play a central role in RA development and 

the Hub genes were screened from synovial samples, 
analysis with tissue samples may yield positive 
results. However, there were few synovium datasets 
available for the immuno-efficacy evaluation.  

 

 
Figure 5. Association between the Hub genes and RA. (A-F) Expression levels of PDK1, XBP1 and ACACB in the validation dataset with different immunotherapy 
treatments were used for immuno-efficacy evaluation. The Wilcoxon was utilized for statistics. (G) Molecular docking analysis of Tretinoin with the corresponding proteins of 
Hub genes. Three analysis results with the lowest binding energy were shown. (H) Mulberry map of lncRNA-miRNA-mRNA network interaction for PDK1 and ACACB. (I) The 
interaction network between the Hub genes and the predicted transcription factor, with the red circle representing the Hub genes and the blue square representing the predicted 
transcription factors.  
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The potential drug targets of these Hub genes 
were further explored using the DSigDB database, 
with the ranking results shown as binding force scores 
(Supplementary Table S5). Additionally, the 
AutoDock molecular docking was conducted to 
analyze the binding ability of Tretinoin to the 
corresponding proteins of the three Hub genes. The 
minimum binding energy of Tretinoin with PDK1, 
XBP1 and ACACB were -7.542 kcal/mol, -7.514 
kcal/mol, and -6.788 kcal/mol, respectively (Fig. 5G), 
indicating highly stable binding of Tretinoin with all 
three proteins.  

ceRNA and transcription factor network 
prediction for Hub genes 

miRNA induces gene silencing by down- 
regulating target mRNA expression through binding 
to mRNA, while upstream molecules circRNA and 
lncRNA regulate miRNA function by binding to 
miRNA response elements, thereby modulating 
mRNA expression. To further understand the 
regulatory network, interactions of lncRNAs and 
miRNAs with the mRNAs of the three Hub genes 
were predicted using miRDB (https://mirdb.org/ 
index.html) and ENCORI (https://rnasysu.com/ 
encori/) websites. No direct regulatory pathway was 
found for miRNA and upstream lncRNA targeting 
XBP1 mRNA. However, MALAT1 and NEAT1 were 
identified as the main lncRNA-miRNA regulatory 
pathways for PDK1 and ACACB (Fig. 5H). 
Meanwhile, the transcription factor prediction 
suggested that FOXC1 may be a common 
transcription factor regulating the expression of PDK1 
and ACACB (Fig. 5I).  

Hub gene expressions are regulated by 
proinflammatory cytokines 

To confirm the abnormal expression of PDK1, 
XBP1 and ACACB in RA joint, a CIA mouse model for 
RA was utilized by injecting chicken type II collagen 
into DBJ mice. Immunofluorescent results showed 
significantly increased fluorescence intensities of 
PDK1(Fig. 6A and B) and XBP1(Fig. 6C and D), and 
decreased intensity of ACACB in the joint tissues of 
CIA mice compared to the vehicle treated mice (Fig. 
6E and F).  

In RA, cells within the inflamed synovium 
produce various proinflammatory cytokines, 
particularly TNFα and IL-6. To assess whether 
increased TNFα and IL-6 levels in synovial tissue 
contributed to the abnormal expression of PDK1, 
XBP1 and ACACB in RA synovium, MH7A, a 
fibroblast-like synovial cell line generated from RA 
synovial tissue, was treated with 50 ng/mL TNFα or 
10 ng/mL IL-6 for 4 or 8 hours, and the transcript 

levels of the three Hub genes were analyzed using 
qPCR. The result showed that the mRNA levels of 
PDK1 and XBP1 were significantly up-regulated and 
that of ACACB was down-regulated in the TNFα 
treated MH7A cells (Fig. 7A). Western blot confirmed 
that the bands intensities were increased for PDK1 
and XBP1 and decreased for ACACB in the synovial 
fibroblast cells treated with TNFα (Fig. 7B and C). 
Similarly, higher expression levels of PDK1 and 
XBP1were induced by IL-6, while that of ACACB 
seemed to be unchanged after IL-6 treatment (Fig. 
7D-F). Together, these findings indicated that the 
abnormal expression of PDK1, XBP1 and ACACB 
might be induced by inflammatory cytokines in RA 
synovium.  

Discussion 
Fatty acid metabolism is highly associated with 

the pathogenesis of RA. In this study, using 
bioinformatics and machine learning algorithms, 
PDK1, XBP1 and ACACB, which were related to fatty 
acid metabolic pathway, were identified as three Hub 
genes associated with immune cell infiltration into the 
RA synovial tissue and exhibited high diagnostic 
efficiency. These genes might be considered as 
significant risk factors in the onset and pathogenesis 
of RA.  

In RA, fibroblast-like synoviocytes (FLSs) and 
immune cells interact in the synovium, leading to the 
activation of both cell types. Our analysis of immune 
cell infiltration showed that the most abundant cell 
types in the synovial membrane of RA were 
monocyte/macrophage, FLSs, and T lymphocytes. 
Moreover, memory B cells, plasma cells, and dendritic 
cells were also significantly increased in RA 
synovium. Consistently, multiple research suggested 
that several effector cells in the synovial membrane of 
RA could be potential therapeutic targets, including 
MERTK+ macrophages [44], NOTCH3+ synovial 
fibroblasts [45], CD11c+ autoimmune associated B 
cells [46], and PD-1+ peripheral helper T cells [47, 48]. 
These findings indicate that these cells may play 
critical roles in the inflammatory environment 
formation of RA synovium. However, we should 
interpret these findings with caution. It is important 
to consider the methodological constraints of the 
CIBERSORT algorithm when applied to synovial 
tissue. First, CIBERSORT relies on a predefined 
signature matrix (LM22), which was built from 
circulating immune cells. Synovial tissue 
macrophages and fibroblasts can exist in unique 
activation states that may not be perfectly mirrored in 
the blood-derived signatures, potentially leading to 
misclassification or an inability to resolve specific 
tissue-resident subsets. Second, the computational 
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deconvolution of bulk tissue RNA-seq data is 
inherently challenged by the similarity of gene 
expression profiles between different cell types. 
Activated synovial fibroblasts can express genes 
typical of myeloid cells, potentially leading to 
overestimation of certain immune populations. 

Finally, the hypoxic and inflamed synovial 
microenvironment can alter global gene expression 
profiles, which might not be fully accounted for in the 
reference matrix, introducing a potential source of 
bias.  

 

 
Figure 6. PDK1, XBP1 and ACACB expression in synovial tissue. DBJ mice were immunized with collage. (A-B) Immunofluorescence staining of PDK1 from the hind 
paw in vehicle and collage induced mice. Representative images were from one of six synovial tissue sections. Bar, 20µm. (C-D) Immunofluorescence staining of XBP1 from the 
hind paw in vehicle and collage induced mice. Representative images were from one of six synovial tissue sections. Bar, 20µm. (E-F) Immunofluorescence staining of ACACB 
from the hind paw in vehicle and collage induced mice. Representative images were from one of six synovial tissue sections. Bar, 20µm. All data are presented as the mean ± SEM. 
Paired Student t-test, ** P < 0.01; *** P < 0.001.  
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Figure 7. PDK1, XBP1 and ACACB were regulated by proinflammatory cytokines in synovial fibroblasts. (A-C) RA fibroblast-like synovial cells (FLS) MH7A 
were treated with vehicle or TNFα for indicated time. (A) Transcript levels of PDK1, XBP1, and ACACB were quantified by qPCR, biological replicates: n=3. (B) PDK1, XBP1 and 
ACACB expressions were detected by western blotting, representative images were shown. (C) Band intensity data from 3 replicate experiments were quantified. (D-F) MH7A 
cells were treated with vehicle or IL-6 for indicated time. (D) Transcript levels of PDK1, XBP1, and ACACB were quantified by qPCR, biological replicates: n=3. (E) PDK1, XBP1 
and ACACB expressions were detected by western blotting, representative images were shown. (F) Band intensity data from 3 replicate experiments were quantified. All data 
are presented as the mean ± SEM. Paired Student t-test, * P < 0.05; ** P < 0.01; *** P < 0.001; n.s. no significance.  

 
Our study identified PDK1, XBP1 and ACACB as 

the critical Hub genes related to fatty acid metabolic 
pathway, and these three Hub genes were 
significantly correlated with infiltrated M1 
macrophages, γδT cells and follicular helper T cells in 
the synovium. A question arises is whether PDK1, 
XBP1 and ACACB are associated with synovium 
inflammatory environment. PDK1, a key kinase 
controlling fatty acid metabolism by phosphorylating 
pyruvate dehydrogenase subunits PDHA1 and 
PDHA2, regulates macrophage migration ability via 
HIF-1α-PDK1 axis [49]. Moreover, lncRNA 
LOC100912373 promotes FLS proliferation by 
up-regulating PDK1 expression [50]. XBP1, a major 
transcription factor regulating endoplasmic reticulum 
stress, can be activated by Toll like receptors in 
synovial fibroblasts from patients with active RA [51]. 
Moreover, studies in ACC knockout mice have 
demonstrated that ACC/ACACB regulates acute 
inflammatory responses by limiting fatty acid 
oxidation in macrophage innate immunity [52]. Our 
experiments using an RA mouse model confirmed the 
high expression of PDK1, XBP1 and lower expression 
of ACACB in the joints of CIA mice. These findings 

suggest that the three Hub genes may play important 
roles in the pathogenesis of RA synovium. 
Furthermore, temporal analysis demonstrated the 
time-dependent characteristics of PDK1, XBP1 and 
ACACB in the development of RA. Considering that 
bone destruction in RA is an irreversible process and 
requires active intervention before entering the 
terminal stage, these genes may serve as potential 
disease indicators for early diagnosis of RA.  

Immuno-efficacy results from molecular docking 
analysis successfully predicted the stable interaction 
between Tretinoin and the corresponding proteins of 
PDK1, XBP1 and ACACB, indicating their potential as 
drug targets for RA treatment in terms of abnormal 
fatty acid metabolism. The analysis of peripheral 
blood datasets showed no significant differences in 
the expression of these genes in the efficacy 
evaluation of immunotherapy drugs. However, the 
three Hub genes identified here were from synovial 
datasets, yet there were few such datasets available 
for immuno-efficacy evaluation. Considering the 
difficulty for generating synovial datasets compared 
to peripheral blood datasets, future studies could first 
focus on revealing the molecular mechanisms and 
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interactions between peripheral blood cells and 
synovial tissues, which might provide hints for 
hypothesis regarding immunotherapy efficacy on RA 
synovial membranes or fibroblasts. However, since 
immune responses, inflammation and tissue 
destruction primarily occurred in synovial tissues, 
further explorations for more comprehensive immune 
pathways and mechanisms with RA synovial samples 
and within the inflammatory microenvironment 
should be essential for more accurate immuno- 
efficacy analysis of the three Hub genes.  

Meanwhile, the regulatory mechanism for PDK1, 
XBP1 and ACACB expression in synovial cells 
remains unclear. Although our studies showed that 
the MALAT1 and NEAT1 lncRNA-miRNA pathways 
and the transcription factor FOXC1 might play roles 
in the regulation of PDK1 and ACACB expression, 
mechanistic studies are needed to illustrate the 
detailed regulatory pathways. In RA, cells within the 
synovium secrete various proinflammatory cytokines. 
Our results indicated that in the presence of TNFα or 
IL-6, the expression levels of PDK1, XBP1 seemed to 
be further increased, whereas ACACB expression was 
suppressed by TNFα. This suggests that the 
inflammatory microenvironment of RA synovium 
may be responsible for the exacerbation of abnormal 
fatty acid metabolism associated RA, implicating that 
the modified expression of PDK1, XBP1 and ACACB 
by inflammatory cytokines may further alter fatty 
acid metabolic pathways and promote RA 
development. Specifically, cytokines in the RA 
inflammatory microenvironment may upregulate 
PDK1 and XBP1 expression, and downregulate 
ACACB expression in the cells within synovium, 
altering the metabolic balance toward enhanced fatty 
acid oxidation. Such metabolic shift may meet the 
elevated energy requirement associated with 
inflammatory reactions and responses, promoting the 
inflammatory phenotypes of RA.  

Conclusion 
In this study, we identified PDK1, XBP1 and 

ACACB as the three Hub genes highly involved in 
fatty acid metabolism dysfunction and immune 
infiltration in RA synovium. These genes exhibited 
better diagnostic efficiency and showed 
characteristics of time-dependent changes in the 
course of RA pathogenesis. Further investigation 
successfully elucidated the abnormal expression of 
PDK1, XBP1 and ACACB in RA synovium, and 
suggested that their expression might be regulated by 
proinflammatory cytokines. These findings indicated 
the potential regulatory roles of these fatty acid 
metabolic genes in the inflammation of RA synovium.  
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