
Int. J. Med. Sci. 2025, Vol. 22 
 

 
https://www.medsci.org 

4493 

International Journal of Medical Sciences 
2025; 22(16): 4493-4508. doi: 10.7150/ijms.119960 

Research Paper 

Machine Learning-Based WGCNA Approach for 
Developing an Immunogenic Cell Death-Related Hub 
Gene Signature and Identification of AJM1 as a 
Prognostic Biomarker in Pancreatic Adenocarcinoma 
Tianyin Ma1#, Xiangdong Gongye2#, Cairang Dongzhi1#, Yibo Chai1, Qikun Wang3*, Ming Tian* 

1. Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. 
2. Department of Chemistry and Molecular Biology, Sahlgrenska Akademin, Göteborg Universitet, Gothenburg, Västra Götalands, Sweden. 
3. Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan 430072, Hubei, China. 

# These authors contributed equally to this work. 

* These authors share senior authorship.  

 Corresponding authors: Qikun Wang (Email: wangqikun131@163.com) and Ming Tian (Email: dr.med.mingtian@whu.edu.cn). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See https://ivyspring.com/terms for full terms and conditions. 

Received: 2025.06.20; Accepted: 2025.10.09; Published: 2025.10.27 

Abstract 

Background & Aims: Pancreatic adenocarcinoma (PAAD) remains a highly lethal malignancy with 
limited therapeutic options, primarily due to the absence of reliable prognostic biomarkers. Immunogenic 
cell death (ICD) plays a pivotal role in anti-tumor immunity and has potential as both a prognostic marker 
and a predictor of immunotherapy response. This study aimed to identify ICD-related hub genes and 
establish a robust prognostic gene signature for PAAD using weighted gene co-expression network 
analysis (WGCNA). 
Methods & Results: Transcriptomic and clinical data of PAAD patients were obtained from the TCGA 
and GEO databases. ICD enrichment scores were calculated using single-sample gene set enrichment 
analysis (ssGSEA), and ICD-associated gene modules were identified through WGCNA. A prognostic 
ICD-related gene signature was then constructed, and patients were stratified into high- and low-score 
groups based on the median risk score. Functional enrichment analysis was performed using the 
Molecular Signatures Database (MsigDB). Correlations between the signature score, immune cell 
infiltration, and drug sensitivity (IC50 values from the GDSC2 database) were further assessed. Among the 
identified genes, AJM1 emerged as a key prognostic marker, validated in an independent PAAD cohort 
and through in vitro functional assays. 
Conclusion: This study developed and validated an ICD-related gene signature capable of predicting 
prognosis and immunotherapy responsiveness in PAAD. The identification and validation of AJM1 
highlight its potential role as a prognostic biomarker and a novel contributor to the pathogenesis of 
PAAD. 
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Introduction 
Pancreatic adenocarcinoma (PAAD) is among 

the most lethal malignancies of the digestive system, 
posing persistent challenges in diagnosis and 
treatment [1–3]. Over half of PAAD patients are 
diagnosed at an advanced, metastatic stage, resulting 
in a 5-year survival rate of less than 5% despite 

advances in surgical techniques and imaging 
modalities [4,5]. At presentation, more than 80% of 
patients are ineligible for surgical resection, and even 
those undergoing curative surgery frequently 
experience local or distant recurrence within two 
years [6,7]. The efficacy of conventional treatments, 
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including radiotherapy, combination chemotherapy, 
and biotherapy, remains limited, primarily due to the 
incomplete understanding of PAAD pathogenesis and 
the lack of reliable biomarkers to guide prognosis and 
therapy [8–10]. Thus, identifying robust molecular 
biomarkers for diagnosis, treatment selection, and 
prognostic evaluation remains an urgent clinical 
priority. 

Immunogenic cell death (ICD) has recently 
emerged as a key mechanism that promotes 
anti-tumor immune responses, representing a 
promising avenue for cancer immunotherapy [11–13]. 
Although preclinical studies have highlighted the 
therapeutic potential of ICD, its clinical relevance in 
PAAD remains poorly defined. Further research is 
therefore required to clarify how ICD-related 
biomarkers can be leveraged to stratify patients based 
on their likely responsiveness to ICD-based 
immunotherapies. 

To address this gap, we applied a weighted gene 
co-expression network analysis (WGCNA) approach 
to identify ICD-associated hub genes in PAAD. 
Subsequently, Cox proportional hazards and least 
absolute shrinkage and selection operator (LASSO) 
regression analyses were conducted to construct an 
ICD-related prognostic gene signature. This signature 
was designed to predict patient survival and 
immunotherapeutic responsiveness while providing 
mechanistic insights into the potential role of ICD in 
PAAD progression. 

Materials and Methods 
Data acquisition and processing 

Training dataset 

Clinical and transcriptomic data for PAAD 
patient samples, normalized in log2(FPKM + 1) 
format, were retrieved from The Cancer Genome 
Atlas (TCGA) database using the TCGAbiolinks 
package in R. Corresponding clinical information for 
cases included in the training cohort was also 
collected for subsequent analyses (Table S1). 

Validation dataset 

The GSE57495 dataset (platform: GPL15048), 
comprising 63 PAAD patient samples, was selected 
for external validation of the predictive model. 
Clinical and gene expression data were obtained from 
the Gene Expression Omnibus (GEO) database, and 
the corresponding clinical characteristics were 
summarized in Table S2. During data preprocessing, 
probes without corresponding gene annotations were 
excluded, and those mapping to multiple genes were 
removed. For genes represented by multiple probes, 
the median expression value was used. Since the 

TCGA (training set) and GEO (validation set) datasets 
were analyzed independently, batch effect correction 
was not necessary. 

Other data 

A total of 34 ICD-related genes (listed in Table 
S3) were included in the analyses. The Hallmark gene 
set was obtained from the Molecular Signatures 
Database (MSigDB) for pathway enrichment analysis. 
Statistical significance was defined as p < 0.05, with 
significance levels denoted as follows: p ≤ 0.05 (*), p ≤ 
0.01 (**), p ≤ 0.001 (***), and p ≤ 0.0001 (****). 

Differential expression analysis 

Differential expression of ICD-related genes was 
analyzed by comparing PAAD samples with 
corresponding control tissues, as well as among 
patient subgroups stratified by distinct clinical 
characteristics. The Wilcoxon rank-sum test was used 
for two-group comparisons, and the Kruskal–Wallis 
test was employed for multi-group analyses. 
Single-nucleotide variants (SNVs) of ICD genes in the 
training cohort were visualized using the maftools 
package in R. The chromosomal distribution of ICD 
genes was illustrated with the RCircos package, and 
copy number variations (CNVs) were plotted using 
ggplot2. 

Identification and functional enrichment 
analyses of ICD-associated genes 

WGCNA of ICD-associated hub genes 

Gene expression matrices were used to construct 
a similarity network using the pickSoftThreshold 
function of the WGCNA package. The optimal 
soft-thresholding power (β) was determined to 
achieve a scale-free topology fit index (R²) > 0.85, 
ensuring the generation of a biologically meaningful 
network structure. The ICD enrichment scores for 
individual samples were calculated using the GSVA 
package, which employs single-sample gene set 
enrichment analysis (ssGSEA), and these scores were 
used to quantify ICD activity for each patient. ICD 
levels, age, and tumor stage were defined as key 
phenotypic traits of interest. Samples were 
subsequently subjected to hierarchical clustering, and 
gene co-expression networks were constructed using 
the blockwiseModules function in WGCNA. 

The similarity matrix was then transformed into 
adjacency and topological overlap matrices (TOMs), 
with the latter serving as the basis for gene clustering 
through an average linkage hierarchical clustering 
approach. A hybrid dynamic tree-cutting algorithm 
was employed, specifying a minimum module size of 
30 genes. Following module identification, module 
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eigengenes (MEs) representing the first principal 
component of each module were calculated. Modules 
demonstrating high similarity were then merged 
based on a merge cut height of 0.25 and a deep split 
parameter of 2. 

The expression profile of each module was 
summarized by its eigengene (ME), and Pearson 
correlation coefficients were computed to assess the 
associations between MEs and clinical trait vectors. 
Modules demonstrating stronger correlations were 
considered to have greater biological significance. 
Finally, ICD-associated hub modules were identified 
based on stringent criteria of module membership 
(MM > 0.7) and gene significance (GS > 0.6), 
highlighting the key co-expression networks linked to 
ICD-related hub genes. 

Functional enrichment analyses of ICD-associated hub 
genes 

The GO and KEGG enrichment analyses were 
performed using the clusterProfiler package in R. 
Multiple testing correction was applied using the 
Benjamini–Hochberg (BH) method, and pathways 
with a BH-adjusted p-value < 0.05 were considered 
statistically significant. 

ICD-related hub gene signature development 
Univariate Cox proportional hazards regression 

analyses of ICD-associated hub genes were conducted 
using the coxph function from the survival package in 
R, applying a significance threshold of p < 0.05. To 
enhance the predictive robustness and minimize 
model overfitting, LASSO regression was 
subsequently performed using the glmnet package in 
R, reducing the number of coefficient variables and 
refining the prognostic model. Signature scores for 
each patient were determined according to the levels 
of gene expression and their regression coefficients 
with the formula: 

Score = �βi ∗χi
n

i=0

 

βi: gene weighting coefficient, χi: gene 
expression 

Examination of the correlations between 
signature scores and patient characteristics 

Assessment of the prognostic utility of signature 
scores 

Following LASSO regression analysis, patients 
were stratified into high- and low-score groups 
according to the median signature score. The 
prognostic performance of the constructed gene 
signature was subsequently evaluated using the 

survival, survminer, and pROC packages in R 
through Kaplan–Meier (KM) survival analysis and 
receiver operating characteristic (ROC) curve 
assessment. 

Signature score distributions in relation to clinical 
characteristics 

The distribution of signature scores in relation to 
various clinical characteristics within the training 
cohort was visualized using the ggplot2 package in R. 
Differences between groups were assessed using the 
Wilcoxon rank-sum test for two-group comparisons 
and the Kruskal–Wallis test for multiple-group 
analyses. 

Univariate and multivariate Cox analyses for the 
training cohort 

Clinical data from patients in the training cohort 
were subjected to univariate and multivariate Cox 
proportional hazards analyses using the coxph 
function from the survival package in R. A forest plot 
was generated to visualize the results, applying a 
significance threshold of p < 0.05. The independent 
prognostic value of the signature score was further 
evaluated based on its significance in both univariate 
and multivariate models. 

Characterization of signature score-related 
molecular features and drug responses 

Assessment of signature score-related molecular 
features and pathway changes 

The SNV and CNV data from the training cohort 
were analyzed after stratifying samples into high- and 
low-score groups based on whether their signature 
scores were above or below the median value. 
Hallmark gene sets retrieved from the MsigDB were 
used for pathway analysis, with TCGA gene 
expression data serving as input. Moreover, the 
ssGSEA scores for each pathway were computed 
using the GSVA package, and heatmaps illustrating 
the enrichment patterns of Hallmark pathways were 
generated with the pheatmap package in R. 

Immune cell infiltration analyses 

Gene sets representing characteristic expression 
profiles of distinct infiltrating immune cell types were 
obtained from a previously published study [14]. In 
total, 28 immune cell types were analyzed, including 
regulatory T cells, natural killer T cells, activated 
dendritic cells, macrophages, and activated CD8⁺ T 
cells. The infiltration of immune and stromal cells 
within tumor tissues was inferred from gene 
expression data using the Pearson correlation method. 
Stromal and immune scores were calculated using the 
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ESTIMATE package in R, and their combined value 
was defined as the ESTIMATE score. Immune cell 
infiltration levels were further quantified using the 
ssGSEA, CIBERSORT, and xCell algorithms. 
Differences in immune infiltration between high- and 
low-signature score groups were visualized and 
compared using the ggplot2 package in R, with the 
Wilcoxon rank-sum test employed for statistical 
evaluation. 

Chemotherapy response analyses 

The oncoPredict package in R was used to 
retrieve gene expression profiles and corresponding 
drug response data for cell lines from the GDSC2 
database. Spearman rank correlation analyses were 
then performed to evaluate the relationships between 
signature scores (high- and low-score groups) and the 
log₁₀(IC₅₀) values of various drugs across different 
cell lines. 

Analyses of immunotherapy responses 

Due to the lack of available clinical datasets 
documenting immunotherapy responses in PAAD 
patients, the IMvigor210 cohort of advanced 
urothelial carcinoma was used as a surrogate for 
immunotherapy analysis. The previously established 
gene signature was applied to calculate a signature 
score for each sample, and KM survival curves were 
generated to compare survival outcomes between the 
high- and low-score groups. Furthermore, the 
distributions of responders (R) and non-responders 
(NoR) across these groups were analyzed to assess the 
potential predictive value of the signature for 
immunotherapy responsiveness. 

Experimental validation 
AJM1 expression levels were validated by 

quantitative PCR (qPCR) in an internal cohort of 
patients who underwent surgical resection at the 
Department of Hepatobiliary & Pancreatic Surgery, 
Zhongnan Hospital of Wuhan University, between 
2020 and 2023. None of the patients received 
neoadjuvant chemotherapy before surgery, and 
written informed consent was obtained from all 
participants. The study was conducted in accordance 
with the Declaration of Helsinki and was approved by 
the Medical Ethics Committee of Zhongnan Hospital 
of Wuhan University (approval number: 2025005K). 
Clinical characteristics of the enrolled patients are 
summarized in Table S4. Further validation of AJM1 
protein expression was performed using 
immunohistochemistry (IHC) data from the Human 
Protein Atlas (HPA) database. 

To further explore the functional role of AJM1 in 
pancreatic cancer cells, AsPC-1 PAAD cells were 

transfected with siAJM1, followed by Cell Counting 
Kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU) 
incorporation, and colony formation assays, 
conducted according to established protocols [15–18]. 
All primer and siRNA sequences used in this study 
are provided in Table S5. 

Results 
Characterization of the ICD gene landscape 

A total of 181 tissue samples, including 177 
tumor and 4 normal tissues, from the TCGA-PAAD 
cohort were analyzed to characterize the landscape of 
ICD-related genes in pancreatic adenocarcinoma. The 
expression profiles of 34 ICD genes were compared 
between groups using Wilcoxon rank-sum tests (Fig. 
S1A). Among these, 10 genes (CD4, IFNGR1, P2RX7, 
TLR4, ENTPD1, LY96, NLRP3, IL17RA, PRF1, and 
TNF) were significantly downregulated in tumor 
samples, whereas PDIA3 was significantly 
upregulated. 

Further subgroup analyses revealed significant 
clinical correlations. Expression levels of IFNGR1, 
CASP8, CASP1, and MYD88 were significantly higher 
in stage II/III/IV tumors compared to stage I (Fig. 
S1B). Similarly, PIK3CA and NT5E expression levels 
were elevated in patients younger than 60 years 
compared with those aged 60 years or older (Fig. 
S1C). Female patients showed significantly increased 
expression of IFNGR1, FOXP3, IL1B, IL6, NLRP3, and 
TNF relative to males (Fig. S1D). Moreover, grade 3/4 
tumors showed higher expression of CASP8 and 
NT5E than grade 1/2 tumors (Fig. S1E). PIK3CA and 
NT5E expression levels were also significantly 
elevated in tumor-positive compared with tumor-free 
samples (Fig. S1F). Further, eight genes (CD4, 
IFNGR1, CASP8, PIK3CA, IL10, LY96, MYD88, and 
CXCR3) showed pronounced expression differences 
across tissue types (Fig. S1G). IFNGR1 demonstrated 
significant variability across multiple parameters, 
including tissue type, tumor stage, sex, and 
histological subtype, highlighting its potential clinical 
relevance in PAAD. 

The SNV landscape of ICD genes was also 
examined (Fig. S2A), revealing an overall low 
mutation frequency across the training cohort. 
Among all ICD genes, PIK3CA displayed the highest 
mutation incidence, and all detected variants were 
missense mutations. The chromosomal localization of 
the ICD genes is illustrated in Fig. S2B. Furthermore, 
the CNV profiles of these genes were analyzed (Fig. 
S2C), indicating a relatively higher frequency of CNV 
alterations in IFNA1, predominantly characterized by 
copy number deletions. 
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Identification and functional enrichment 
analyses of ICD-associated hub genes in PAAD 

To identify ICD-associated hub genes, data from 
the training cohort were first analyzed using WGCNA 
(Fig. 1A). The ssGSEA algorithm was applied to 
determine an appropriate soft threshold power (β). 
ICD levels in individual samples were quantified 
based on the resulting enrichment scores (Fig. 1B–C). 
Pearson correlation analysis was then conducted to 
assess the relationships between MEs and sample trait 
feature vectors. Among the constructed modules, the 
brown, yellow, cyan, and light cyan modules showed 
the strongest positive correlations with ICD levels and 
were therefore selected for subsequent analyses. 
Applying stringent screening criteria ([MM] > 0.7 and 
[GS] > 0.6), a total of 606 ICD-associated hub genes 
were identified for downstream functional 
characterization (Fig. 1D–E). 

Functional enrichment analyses were then 
performed on these 606 genes using GO and KEGG 
databases (Fig. 1F). The GO analysis revealed 
significant enrichment in biological processes related 
to T cell activation and regulation of cell–cell 
adhesion. At the same time, cellular component 
enrichment was observed for the external side of the 
plasma membrane and the collagen-containing 
extracellular matrix. In terms of molecular functions, 
these genes were predominantly associated with 
immune receptor activity and structural constituents 
of the extracellular matrix. Consistent with these 
findings, KEGG pathway analysis indicated that the 
cytokine–cytokine receptor interaction and 
chemokine signaling pathways were among the most 
significantly enriched pathways, suggesting that these 
hub genes play crucial roles in immune modulation 
and tumor-microenvironment interactions. 

Establishment of an ICD-related hub gene 
signature in PAAD 

Using the 606 ICD-associated hub genes 
identified from the preceding WGCNA analysis, a 
univariate Cox regression was conducted based on 
data from 176 patient samples. Applying appropriate 
statistical thresholds, 26 genes with potential 
prognostic significance were identified (Table S6). 
For each gene, the median expression value served as 
a cutoff to stratify samples into high- and 
low-expression groups. The KM survival analyses 
were then performed to evaluate overall survival (OS) 
differences between these groups. The results 
demonstrated that low expression levels of RAB8B 
and NOTCH2 were significantly correlated with 
prolonged OS, whereas higher expression levels of 
ADA2, FYN, ARRB2, EBI3, S1PR2, and CLEC9A were 
indicative of better patient prognosis (Fig. 2A). 

Afterward, these 26 candidate genes were 
subjected to LASSO regression analysis, which further 
refined the list to 11 key prognostic genes associated 
with PAAD outcomes. These genes included MSN, 
NOTCH2, CHST11, C1QB, CELF2, CD1D, IL10RA, 
ADA2, ARRB2, FYN, and AJM1. As illustrated in Fig. 
2B–D, the LASSO regression coefficients 
corresponding to these 11 genes were used to weight 
their expression levels, constructing a robust 
ICD-related prognostic gene signature for stratifying 
PAAD patient samples. 

Signature scores are related to PAAD patient 
prognosis 

The constructed ICD-related hub gene signature 
was applied to calculate a signature score for each 
patient sample. The KM and ROC curve analyses in 
both the training and validation cohorts demonstrated 
that lower signature scores were significantly 
associated with a more favorable prognosis (Fig. 3A–
B, F–G). As shown in Figs. 3C and 3H, the 
distribution of signature scores across both cohorts 
revealed a continuous pattern, with no evident 
outliers or extreme values. Similarly, in the survival 
analyses, patients classified into the low-score group 
showed prolonged OS compared with those in the 
high-score group (Fig. 3D, I). 

Expression levels of the 11 genes constituting the 
prognostic model were also evaluated in both cohorts 
(Fig. 3E, J), revealing concordant expression patterns 
between the two datasets, except for a few genes that 
were undetectable in the validation cohort. These 
findings indicate that the established signature score 
serves as a robust and reliable prognostic biomarker 
for PAAD. 

Signature score values serve as independent 
predictors of PAAD patient prognosis 

To evaluate the independent prognostic value of 
the signature score in PAAD patients, score 
distributions were analyzed across various clinical 
subgroups, excluding those with fewer than two 
samples (Fig. 4A). The analysis revealed that 
signature scores varied significantly with respect to 
tumor status and histological subtype. Patients 
classified as WITH TUMOR showed significantly 
higher signature scores compared to those 
categorized as TUMOR FREE. Similarly, ductal-type 
tumors displayed higher signature score values than 
other histological variants. 

Furthermore, both univariate and multivariate 
Cox regression analyses demonstrated that the 
signature score was independently correlated with 
the prognosis of PAAD patients (p < 0.05), reinforcing 
its potential as an independent prognostic indicator 
(Fig. 4B–C). 
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Figure 1. Identification and functional enrichment analyses of ICD-associated hub genes in PAAD. (A) Study flow chart. The training dataset was obtained from 
TCGA-PAAD, and the validation dataset was GSE57495 from GEO. (B) Network topology analyses for different soft-thresholding powers. (C) A gene dendrogram and module 
colors. (D) Module-trait correlations. (E) Correlations between MM and GS for the brown, yellow, cyan, and light cyan modules. (F) GO and KEGG pathway enrichment 
analyses. 
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Figure 2. ICD-related hub gene signature construction in PAAD. (A) KM survival curves for those genes with significant differences between the high- and low-ICD 
groups. (B) LASSO regression analysis trajectories for the 26 independent genes, with the log of the lambda value for these independent variables along the x-axis, while the y-axis 
shows the coefficients for these independent variables. (C) Confidence intervals corresponding to each lambda. (D) LASSO coefficient profiles for the 11 key prognostic genes 
identified through this approach. 

 

Evaluation of signature score-related 
molecular features and changes in pathway 
activities 

The top 10 most prevalent SNVs and CNVs were 
subsequently compared between the high- and 
low-score patient groups. Among these, KRAS and 
TP53 emerged as the most frequently mutated genes, 
with KRAS predominantly demonstrating missense 
mutations (Fig. 5A). Furthermore, the overall 
frequency of CNVs was significantly higher in the 
high-score group than in the low-score group (Fig. 
5B). 

To further explore biological pathway 
differences between these two groups, a ssGSEA was 
performed. This analysis revealed a significant 
variation in pathway activity (Fig. 5C), demonstrating 
enhanced enrichment of the mitotic spindle and 
TGF-β signaling pathways in the high-score group, 
indicating their potential involvement in PAAD 
progression. 

PAAD patient signature scores are associated 
with tumor microenvironment composition 

To evaluate the relationship between the 
signature score and the TME composition in PAAD 
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patients, stromal, immune, and ESTIMATE scores 
were computed using the R ESTIMATE package. 
Their distributions were compared between the low- 
and high-score groups (Fig. 6A). The analysis 
revealed that immune scores were significantly lower 

in the high-score group than in the low-score group, 
indicating a relative suppression of immune activity. 
Furthermore, correlation analyses demonstrated that 
signature scores were positively associated with both 
stromal and ESTIMATE scores (Fig. 6B). 

 

 
Figure 3. Signature scores are associated with PAAD patient prognosis. (A, B) KM survival curves (A) and ROC curves (B) for the training cohort. (C) Signature 
score distributions for the training cohort. (D) Survival time distributions in the training cohort. (F, G) KM survival curves (F) and ROC curves (G) for the validation cohort. (H) 
Signature score distributions for the validation cohort. (I) Survival time distributions in the validation cohort. (J) Expression levels of 11 key prognostic factors in the validation 
cohort. 
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Figure 4. Signature scores are independently associated with PAAD patient prognosis. (A) Signature score distributions for different clinical features. (B, C) Forest 
plots for univariate (B) and multivariate (C) regression analyses in the training cohort. 
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Figure 5. Signature score-related molecular features and pathway enrichment. (A, B) The top 10 SNVs (A) and CNVs (B) in the low- and high-score groups. (C) 
Differences in pathway enrichment levels in the low- and high-score groups. 
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The infiltration profiles of immune cell 
populations were next examined via ssGSEA to 
compare differences between the two groups (Fig. 
6C). The results showed that seven immune cell types, 
including activated B cells and activated CD8⁺ T cells, 

showed reduced infiltration in the high-score group. 
In comparison, Th2 cell infiltration was elevated in 
these same samples. These findings suggest that 
higher signature scores may reflect a more 
immunosuppressive TME phenotype in PAAD. 

 

 
Figure 6. Signature scores offer utility for the evaluation of the tumor microenvironment. (A) Stromal, immune, and ESTIMATE scores in the low- and high-score 
groups. (B) Correlations between signature scores and stromal, immune, and ESTIMATE scores. (C) Immune cell infiltration levels in the high- and low-score groups. n.s., not 
significant, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001. 
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Signature scores are associated with potential 
chemoresistance and immunotherapy 
responses 

To explore the association between 
chemoresistance and the signature score, analyses 
were performed using cell line expression and drug 
response data from the GDSC2 database. Spearman 
correlation coefficients were calculated to evaluate the 
relationships between log10(IC50) values for individual 
drugs and signature score values, which were derived 
from the corresponding gene expression profiles of 
each cell line. The analysis revealed significant 
differences in correlation coefficients between the 
low- and high-scoring groups, suggesting distinct 
patterns of drug sensitivity (Fig. 7A–B). 

Afterward, the potential of the ICD-related hub 
genes to predict immunotherapy response was 
assessed using data from the IMvigor210 cohort. 
Kaplan–Meier survival analyses demonstrated that 
patients in the low-score group showed a more 
favorable prognosis following immunotherapy (Fig. 
7C). Moreover, comparisons of responder (R) and 
non-responder (NoR) distributions indicated a higher 
proportion of responders in the low-score group, 
supporting the predictive value of the signature score 
for immunotherapeutic efficacy (Fig. 7D–E). 

Validation of AJM1 as a novel prognostic gene 
in PAAD 

Based on the successful development of the 
ICD-related hub gene signature as a prognostic and 
drug response predictor in PAAD, further validation 
analyses were conducted focusing on the model 
genes. Using 33 pairs of PAAD tumor and adjacent 
non-tumor tissue samples (Fig. 8A), qPCR analyses 
confirmed that AJM1 expression was significantly 
higher in paracancerous tissues compared with tumor 
tissues (Fig. 8B). These findings were further 
supported by IHC results demonstrating a similar 
expression trend (Fig. 8C). 

In in vitro functional assays, AJM1 knockdown 
was achieved via siRNA transfection in AsPC-1 
PAAD cells (Fig. 8D). Results from CCK-8, EdU 
incorporation, and colony formation assays 
consistently showed that silencing AJM1 significantly 
increased PAAD cell proliferation (Fig. 8E–G). These 
findings confirm the functional significance of AJM1 
in the progression of PAAD and underscore its 
potential as a prognostic biomarker and therapeutic 
target in this malignancy. 

Discussion 
The PAAD remains one of the most lethal 

malignancies, mainly due to the absence of reliable 
early diagnostic biomarkers and its frequent detection 

at advanced stages, where tumors show significant 
resistance to conventional therapies. A defining 
characteristic of PAAD is its remarkable ability to 
evade immune surveillance, which severely limits the 
efficacy of chemotherapeutic and radiotherapeutic 
approaches [19–21]. The lack of robust prognostic 
biomarkers further constrains opportunities for 
personalized therapeutic strategies, underscoring the 
urgent need for novel molecular indicators that can 
guide clinical decision-making. 

Emerging evidence highlights the tumor 
immune microenvironment (TIME) as a key driver of 
PAAD progression, orchestrated through complex 
interactions between tumor and immune cells [22–24]. 
Within this context, ICD, a regulated form of cell 
death that provokes both innate and adaptive 
immune responses, has garnered increasing attention 
as a potential therapeutic avenue [25,26]. ICD 
promotes the release of damage-associated molecular 
patterns (DAMPs) and tumor-associated antigens, 
increasing the activation of immune cells and 
tumor-specific cytotoxicity [27]. Although preclinical 
studies have demonstrated that ICD can foster 
sustained anti-tumor immunity and increase 
responsiveness to immunotherapy, clinical validation 
in PAAD remains limited, emphasizing the need for 
further translational research to clarify its prognostic 
and therapeutic potential. 

AJM1 is a critical tight junction (TJ) protein 
responsible for maintaining epithelial integrity and 
regulating cellular signaling pathways within the 
intestinal barrier [28]. It interacts with structural 
proteins such as VAB-9 and DLG-1, contributing to 
the maintenance of junctional stability and epithelial 
polarity [29]. Under proteotoxic stress conditions, 
disruptions in AJM1 localization mediated by mTOR 
sequestration and excessive autophagy activation can 
compromise epithelial integrity, underscoring its 
sensitivity to cellular stress [30]. Recent evidence has 
linked AJM1 expression to intestinal disease models 
and toxicological stress responses. For instance, litchi 
polysaccharides have been shown to protect intestinal 
barrier function, partly by modulating AJM1 
expression, in C. elegans and murine models [31]. 
Similarly, exposure to mycotoxins such as tenuazonic 
acid and patulin disrupted AJM1 expression in C. 
elegans, suggesting that it may serve as a mediator of 
intestinal stress responses [32]. These studies indicate 
that AJM1 may serve as a biomarker for digestive tract 
pathophysiology. Moreover, tight junction proteins, 
by preserving epithelial polarity, may act to suppress 
uncontrolled proliferation and migration associated 
with the EMT, a hallmark of tumor progression. 
However, the specific functional role of AJM1 in 
PAAD has remained poorly defined. 
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Figure 7. Signature scores are associated with chemoresistance and immunotherapy responses. (A-B) Analyses of chemoresistance in the low- and high-score 
groups. The top 6 drugs with the strongest positive (A) or negative (B) correlations with signature scores are presented, along with their corresponding p-values. (C) KM curves 
for the immunotherapeutic advanced urothelial cancer cohort (IMvigor210). (D) Responder and non-responder distributions in the low- and high-score groups. (E) Differences 
in responses between the low- and high-score groups. 

 
In this study, the relationship between ICD and 

PAAD prognosis was systematically examined 
through the analysis of ICD-associated hub genes 
identified using ssGSEA and WGCNA. The 

constructed ICD-related hub gene signature 
effectively stratified PAAD patients into low- and 
high-score groups with distinct prognostic outcomes. 
This signature demonstrated independent prognostic 
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value in both univariate and multivariate Cox 
regression analyses, while also revealing significant 
differences in tumor mutational burden (SNVs and 
CNVs) and immune cell infiltration patterns between 
the two groups. Immune scores and immune 
infiltration levels were significantly higher in the 
low-score group, suggesting a more immunologically 
active tumor microenvironment, which may 
contribute to improved clinical outcomes and 
increased therapeutic responsiveness. 

The present study builds upon and extends a 
recent report [33] that employed consensus clustering 
to categorize PAAD samples according to ICD-related 
gene expression while characterizing the immune 
landscape using data from 502 HNSCC samples. 
Although that approach broadened the general 
applicability of the ICD gene signature across 
multiple cancer types, it may not have fully captured 
the immunosuppressive characteristics of the PAAD 
tumor microenvironment, which significantly 

contrasts with the immune-active (hot) phenotype 
typical of HNSCC. In comparison, our use of 
WGCNA facilitated the identification of 
PAAD-specific ICD-associated hub gene modules, 
improving disease specificity. By exclusively 
analyzing PAAD-derived datasets, the resulting gene 
signature was optimized for evaluating the tumor 
immune microenvironment in this cancer type. These 
methodological refinements enhance the precision 
and translational relevance of our findings, offering a 
valuable complement to the previous study. 

The drug-sensitivity analyses further 
underscored the clinical relevance of the ICD-related 
hub gene signature established in this study. By 
calculating Spearman correlation coefficients between 
the signature scores and IC50 values from the GDSC2 
database, distinct patterns of drug sensitivity were 
identified, offering potential strategies to optimize 
therapeutic regimens for patients in the low- and 
high-score groups. 

 

 
Figure 8. Validation of AJM1 as a novel protective gene in PAAD. (A) Experimental workflow for the internal patient cohort and in vitro analyses. (B) qPCR-based 
analysis of the expression of AJM1 in the internal cohort. T: Tumor tissue, P: Paracancerous tissue. (C) AJM1 immunohistochemical staining results in the HPA database. (D) 
qPCR-based validation of the siRNA transfection efficiency levels in AsPC-1 cells. (E) CCK-8 assay. (F) EdU assay and corresponding analyses of the frequency of EdU-positive 
cells. (G) Colony formation assay and corresponding quantification. n.s., not significant, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001 and ****p ≤ 0.0001. 
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The protective function of AJM1 is further 
supported by its potential role in modulating the 
tumor microenvironment. In this study, qPCR 
analyses revealed significantly higher AJM1 
expression in paracancerous tissues compared to 
tumor tissues, suggesting that its downregulation 
may contribute to tumor initiation and progression. 
Similarly, in vitro assays, including CCK-8, EdU 
incorporation, and colony formation, demonstrated 
that silencing AJM1 significantly increased the 
proliferation of PAAD cells. These findings suggest 
that AJM1 functions as a tumor suppressor, limiting 
the proliferative capacity of PAAD cells. 

In conclusion, this study establishes an 
ICD-related hub gene signature, constructed using 
machine learning, that effectively predicts prognostic 
outcomes in patients with PAAD. This signature 
offers a promising framework for the personalized 
management and therapeutic stratification of this 
highly aggressive malignancy. Moreover, the 
observed link between AJM1 downregulation and 
increased tumor cell proliferation underscores the 
potential importance of epithelial junction regulation 
as a therapeutic target in PAAD. However, further 
clinical validation will be necessary to confirm the 
predictive and translational value of the proposed 
signature in broader patient cohorts. 
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