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Abstract

Background & Aims: Pancreatic adenocarcinoma (PAAD) remains a highly lethal malignancy with
limited therapeutic options, primarily due to the absence of reliable prognostic biomarkers. Inmunogenic
cell death (ICD) plays a pivotal role in anti-tumor immunity and has potential as both a prognostic marker
and a predictor of immunotherapy response. This study aimed to identify ICD-related hub genes and
establish a robust prognostic gene signature for PAAD using weighted gene co-expression network
analysis (WGCNA).

Methods & Results: Transcriptomic and clinical data of PAAD patients were obtained from the TCGA
and GEO databases. ICD enrichment scores were calculated using single-sample gene set enrichment
analysis (ssGSEA), and ICD-associated gene modules were identified through WGCNA. A prognostic
ICD-related gene signature was then constructed, and patients were stratified into high- and low-score
groups based on the median risk score. Functional enrichment analysis was performed using the
Molecular Signatures Database (MsigDB). Correlations between the signature score, immune cell
infiltration, and drug sensitivity (ICso values from the GDSC2 database) were further assessed. Among the
identified genes, AJM| emerged as a key prognostic marker, validated in an independent PAAD cohort
and through in vitro functional assays.

Conclusion: This study developed and validated an ICD-related gene signature capable of predicting
prognosis and immunotherapy responsiveness in PAAD. The identification and validation of AJMI
highlight its potential role as a prognostic biomarker and a novel contributor to the pathogenesis of
PAAD.
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Introduction

Pancreatic adenocarcinoma (PAAD) is among advances in surgical techniques and imaging

the most lethal malignancies of the digestive system,
posing persistent challenges in diagnosis and
treatment [1-3]. Over half of PAAD patients are
diagnosed at an advanced, metastatic stage, resulting
in a 5-year survival rate of less than 5% despite

modalities [4,5]. At presentation, more than 80% of
patients are ineligible for surgical resection, and even
those wundergoing curative surgery frequently
experience local or distant recurrence within two
years [6,7]. The efficacy of conventional treatments,
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including radiotherapy, combination chemotherapy,
and biotherapy, remains limited, primarily due to the
incomplete understanding of PAAD pathogenesis and
the lack of reliable biomarkers to guide prognosis and
therapy [8-10]. Thus, identifying robust molecular
biomarkers for diagnosis, treatment selection, and
prognostic evaluation remains an urgent clinical
priority.

Immunogenic cell death (ICD) has recently
emerged as a key mechanism that promotes
anti-tumor immune responses, representing a
promising avenue for cancer immunotherapy [11-13].
Although preclinical studies have highlighted the
therapeutic potential of ICD, its clinical relevance in
PAAD remains poorly defined. Further research is
therefore required to clarify how ICD-related
biomarkers can be leveraged to stratify patients based
on their likely responsiveness to ICD-based
immunotherapies.

To address this gap, we applied a weighted gene
co-expression network analysis (WGCNA) approach
to identify ICD-associated hub genes in PAAD.
Subsequently, Cox proportional hazards and least
absolute shrinkage and selection operator (LASSO)
regression analyses were conducted to construct an
ICD-related prognostic gene signature. This signature
was designed to predict patient survival and
immunotherapeutic responsiveness while providing
mechanistic insights into the potential role of ICD in
PAAD progression.

Materials and Methods

Data acquisition and processing

Training dataset

Clinical and transcriptomic data for PAAD
patient samples, normalized in log2(FPKM + 1)
format, were retrieved from The Cancer Genome
Atlas (TCGA) database using the TCGAbiolinks
package in R. Corresponding clinical information for
cases included in the training cohort was also
collected for subsequent analyses (Table S1).

Validation dataset

The GSE57495 dataset (platform: GPL15048),
comprising 63 PAAD patient samples, was selected
for external validation of the predictive model.
Clinical and gene expression data were obtained from
the Gene Expression Omnibus (GEO) database, and
the corresponding clinical characteristics were
summarized in Table S2. During data preprocessing,
probes without corresponding gene annotations were
excluded, and those mapping to multiple genes were
removed. For genes represented by multiple probes,
the median expression value was used. Since the

TCGA (training set) and GEO (validation set) datasets
were analyzed independently, batch effect correction
was not necessary.

Other data

A total of 34 ICD-related genes (listed in Table
S3) were included in the analyses. The Hallmark gene
set was obtained from the Molecular Signatures
Database (MSigDB) for pathway enrichment analysis.
Statistical significance was defined as p < 0.05, with
significance levels denoted as follows: p < 0.05 (*), p <
0.01 (**), p <0.001 (***), and p < 0.0001 (****).

Differential expression analysis

Differential expression of ICD-related genes was
analyzed by comparing PAAD samples with
corresponding control tissues, as well as among
patient subgroups stratified by distinct clinical
characteristics. The Wilcoxon rank-sum test was used
for two-group comparisons, and the Kruskal-Wallis
test was employed for multi-group analyses.
Single-nucleotide variants (SNVs) of ICD genes in the
training cohort were visualized using the maftools
package in R. The chromosomal distribution of ICD
genes was illustrated with the RCircos package, and
copy number variations (CNVs) were plotted using

ggplot2.

Identification and functional enrichment
analyses of ICD-associated genes

WGCNA of ICD-associated hub genes

Gene expression matrices were used to construct
a similarity network using the pickSoftThreshold
function of the WGCNA package. The optimal
soft-thresholding power (B) was determined to
achieve a scale-free topology fit index (R?) > 0.85,
ensuring the generation of a biologically meaningful
network structure. The ICD enrichment scores for
individual samples were calculated using the GSVA
package, which employs single-sample gene set
enrichment analysis (ssGSEA), and these scores were
used to quantify ICD activity for each patient. ICD
levels, age, and tumor stage were defined as key
phenotypic  traits of interest. Samples were
subsequently subjected to hierarchical clustering, and
gene co-expression networks were constructed using
the blockwiseModules function in WGCNA.

The similarity matrix was then transformed into
adjacency and topological overlap matrices (TOMs),
with the latter serving as the basis for gene clustering
through an average linkage hierarchical clustering
approach. A hybrid dynamic tree-cutting algorithm
was employed, specifying a minimum module size of
30 genes. Following module identification, module
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eigengenes (MEs) representing the first principal
component of each module were calculated. Modules
demonstrating high similarity were then merged
based on a merge cut height of 0.25 and a deep split
parameter of 2.

The expression profile of each module was
summarized by its eigengene (ME), and Pearson
correlation coefficients were computed to assess the
associations between MEs and clinical trait vectors.
Modules demonstrating stronger correlations were
considered to have greater biological significance.
Finally, ICD-associated hub modules were identified
based on stringent criteria of module membership
(MM > 0.7) and gene significance (GS > 0.6),
highlighting the key co-expression networks linked to
ICD-related hub genes.

Functional enrichment analyses of ICD-associated hub
genes

The GO and KEGG enrichment analyses were
performed using the clusterProfiler package in R.
Multiple testing correction was applied using the
Benjamini-Hochberg (BH) method, and pathways
with a BH-adjusted p-value < 0.05 were considered
statistically significant.

ICD-related hub gene signature development

Univariate Cox proportional hazards regression
analyses of ICD-associated hub genes were conducted
using the coxph function from the survival package in
R, applying a significance threshold of p < 0.05. To
enhance the predictive robustness and minimize
model  overfitting, LASSO regression was
subsequently performed using the glmnet package in
R, reducing the number of coefficient variables and
refining the prognostic model. Signature scores for
each patient were determined according to the levels
of gene expression and their regression coefficients
with the formula:

n
Score = z Bi* xi
i=0

Pi: gene weighting coefficient, i

expression

gene

Examination of the correlations between
signature scores and patient characteristics

Assessment of the prognostic utility of signature
scores

Following LASSO regression analysis, patients
were stratified into high- and low-score groups
according to the median signature score. The
prognostic performance of the constructed gene
signature was subsequently evaluated using the

survival, survminer, and pROC packages in R
through Kaplan-Meier (KM) survival analysis and
receiver operating characteristic (ROC) curve
assessment.

Signature score distributions in relation to clinical
characteristics

The distribution of signature scores in relation to
various clinical characteristics within the training
cohort was visualized using the ggplot2 package in R.
Differences between groups were assessed using the
Wilcoxon rank-sum test for two-group comparisons
and the Kruskal-Wallis test for multiple-group
analyses.

Univariate and multivariate Cox analyses for the
training cohort

Clinical data from patients in the training cohort
were subjected to univariate and multivariate Cox
proportional hazards analyses using the coxph
function from the survival package in R. A forest plot
was generated to visualize the results, applying a
significance threshold of p < 0.05. The independent
prognostic value of the signature score was further
evaluated based on its significance in both univariate
and multivariate models.

Characterization of signature score-related
molecular features and drug responses

Assessment of signature score-related molecular
features and pathway changes

The SNV and CNV data from the training cohort
were analyzed after stratifying samples into high- and
low-score groups based on whether their signature
scores were above or below the median value.
Hallmark gene sets retrieved from the MsigDB were
used for pathway analysis, with TCGA gene
expression data serving as input. Moreover, the
ssGSEA scores for each pathway were computed
using the GSVA package, and heatmaps illustrating
the enrichment patterns of Hallmark pathways were
generated with the pheatmap package in R.

Immune cell infiltration analyses

Gene sets representing characteristic expression
profiles of distinct infiltrating immune cell types were
obtained from a previously published study [14]. In
total, 28 immune cell types were analyzed, including
regulatory T cells, natural killer T cells, activated
dendritic cells, macrophages, and activated CD8* T
cells. The infiltration of immune and stromal cells
within tumor tissues was inferred from gene
expression data using the Pearson correlation method.
Stromal and immune scores were calculated using the
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ESTIMATE package in R, and their combined value
was defined as the ESTIMATE score. Immune cell
infiltration levels were further quantified using the
ssGSEA, CIBERSORT, and xCell algorithms.
Differences in immune infiltration between high- and
low-signature score groups were visualized and
compared using the ggplot2 package in R, with the
Wilcoxon rank-sum test employed for statistical
evaluation.

Chemotherapy response analyses

The oncoPredict package in R was used to
retrieve gene expression profiles and corresponding
drug response data for cell lines from the GDSC2
database. Spearman rank correlation analyses were
then performed to evaluate the relationships between
signature scores (high- and low-score groups) and the
log10(ICso) values of various drugs across different
cell lines.

Analyses of immunotherapy responses

Due to the lack of available clinical datasets
documenting immunotherapy responses in PAAD
patients, the IMvigor210 cohort of advanced
urothelial carcinoma was used as a surrogate for
immunotherapy analysis. The previously established
gene signature was applied to calculate a signature
score for each sample, and KM survival curves were
generated to compare survival outcomes between the
high- and low-score groups. Furthermore, the
distributions of responders (R) and non-responders
(NoR) across these groups were analyzed to assess the
potential predictive value of the signature for
immunotherapy responsiveness.

Experimental validation

AJM1 expression levels were validated by
quantitative PCR (qPCR) in an internal cohort of
patients who underwent surgical resection at the
Department of Hepatobiliary & Pancreatic Surgery,
Zhongnan Hospital of Wuhan University, between
2020 and 2023. None of the patients received
neoadjuvant chemotherapy before surgery, and
written informed consent was obtained from all
participants. The study was conducted in accordance
with the Declaration of Helsinki and was approved by
the Medical Ethics Committee of Zhongnan Hospital
of Wuhan University (approval number: 2025005K).
Clinical characteristics of the enrolled patients are
summarized in Table S4. Further validation of AJM1
protein  expression was  performed  using
immunohistochemistry (IHC) data from the Human
Protein Atlas (HPA) database.

To further explore the functional role of A]JM1 in
pancreatic cancer cells, AsPC-1 PAAD cells were

transfected with siAJM1, followed by Cell Counting
Kit-8 (CCK-8), b5-ethynyl-2'-deoxyuridine (EdU)
incorporation, and colony formation assays,
conducted according to established protocols [15-18].
All primer and siRNA sequences used in this study
are provided in Table S5.

Results

Characterization of the ICD gene landscape

A total of 181 tissue samples, including 177
tumor and 4 normal tissues, from the TCGA-PAAD
cohort were analyzed to characterize the landscape of
ICD-related genes in pancreatic adenocarcinoma. The
expression profiles of 34 ICD genes were compared
between groups using Wilcoxon rank-sum tests (Fig.
S1A). Among these, 10 genes (CD4, IFNGR1, P2RX7,
TLR4, ENTPD1, LY96, NLRP3, IL17RA, PRF1, and
TNF) were significantly downregulated in tumor
samples, whereas PDIA3 was significantly
upregulated.

Further subgroup analyses revealed significant
clinical correlations. Expression levels of IFNGRI,
CASP8, CASP1, and MYD88 were significantly higher
in stage II/III/IV tumors compared to stage 1 (Fig.
S1B). Similarly, PIK3CA and NT5E expression levels
were elevated in patients younger than 60 years
compared with those aged 60 years or older (Fig.
S1C). Female patients showed significantly increased
expression of IFNGR1, FOXP3, IL1B, IL6, NLRP3, and
TNF relative to males (Fig. S1D). Moreover, grade 3/4
tumors showed higher expression of CASP8 and
NT5E than grade 1/2 tumors (Fig. S1E). PIK3CA and
NT5E expression levels were also significantly
elevated in tumor-positive compared with tumor-free
samples (Fig. S1F). Further, eight genes (CD4,
IFNGR1, CASPS8, PIK3CA, IL10, LY96, MYDS88, and
CXCR3) showed pronounced expression differences
across tissue types (Fig. S1G). IFNGR1 demonstrated
significant variability across multiple parameters,
including tissue type, tumor stage, sex, and
histological subtype, highlighting its potential clinical
relevance in PAAD.

The SNV landscape of ICD genes was also
examined (Fig. S2A), revealing an overall low
mutation frequency across the training cohort.
Among all ICD genes, PIK3CA displayed the highest
mutation incidence, and all detected variants were
missense mutations. The chromosomal localization of
the ICD genes is illustrated in Fig. S2B. Furthermore,
the CNV profiles of these genes were analyzed (Fig.
$2C), indicating a relatively higher frequency of CNV
alterations in IFNA1, predominantly characterized by
copy number deletions.
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Identification and functional enrichment
analyses of ICD-associated hub genes in PAAD

To identify ICD-associated hub genes, data from
the training cohort were first analyzed using WGCNA
(Fig. 1A). The ssGSEA algorithm was applied to
determine an appropriate soft threshold power (P).
ICD levels in individual samples were quantified
based on the resulting enrichment scores (Fig. 1B-C).
Pearson correlation analysis was then conducted to
assess the relationships between MEs and sample trait
feature vectors. Among the constructed modules, the
brown, yellow, cyan, and light cyan modules showed
the strongest positive correlations with ICD levels and
were therefore selected for subsequent analyses.
Applying stringent screening criteria ((MM] > 0.7 and
[GS] > 0.6), a total of 606 ICD-associated hub genes
were identified for downstream functional
characterization (Fig. 1D-E).

Functional enrichment analyses were then
performed on these 606 genes using GO and KEGG
databases (Fig. 1F). The GO analysis revealed
significant enrichment in biological processes related
to T cell activation and regulation of cell-cell
adhesion. At the same time, cellular component
enrichment was observed for the external side of the
plasma membrane and the collagen-containing
extracellular matrix. In terms of molecular functions,
these genes were predominantly associated with
immune receptor activity and structural constituents
of the extracellular matrix. Consistent with these
findings, KEGG pathway analysis indicated that the
cytokine-cytokine  receptor  interaction  and
chemokine signaling pathways were among the most
significantly enriched pathways, suggesting that these
hub genes play crucial roles in immune modulation
and tumor-microenvironment interactions.

Establishment of an ICD-related hub gene
signature in PAAD

Using the 606 ICD-associated hub genes
identified from the preceding WGCNA analysis, a
univariate Cox regression was conducted based on
data from 176 patient samples. Applying appropriate
statistical ~thresholds, 26 genes with potential
prognostic significance were identified (Table S6).
For each gene, the median expression value served as
a cutoff to stratify samples into high- and
low-expression groups. The KM survival analyses
were then performed to evaluate overall survival (OS)
differences between these groups. The results
demonstrated that low expression levels of RABSB
and NOTCH2 were significantly correlated with
prolonged OS, whereas higher expression levels of
ADA2, FYN, ARRB2, EBI3, S1PR2, and CLEC9A were
indicative of better patient prognosis (Fig. 2A).

Afterward, these 26 candidate genes were
subjected to LASSO regression analysis, which further
refined the list to 11 key prognostic genes associated
with PAAD outcomes. These genes included MSN,
NOTCH2, CHST11, C1QB, CELF2, CD1D, ILI0RA,
ADA2, ARRB2, FYN, and AJM1. As illustrated in Fig.
2B-D, the LASSO regression coefficients
corresponding to these 11 genes were used to weight
their expression levels, constructing a robust
ICD-related prognostic gene signature for stratifying
PAAD patient samples.

Signature scores are related to PAAD patient
prognosis

The constructed ICD-related hub gene signature
was applied to calculate a signature score for each
patient sample. The KM and ROC curve analyses in
both the training and validation cohorts demonstrated
that lower signature scores were significantly
associated with a more favorable prognosis (Fig. 3A-
B, F-G). As shown in Figs. 3C and 3H, the
distribution of signature scores across both cohorts
revealed a continuous pattern, with no evident
outliers or extreme values. Similarly, in the survival
analyses, patients classified into the low-score group
showed prolonged OS compared with those in the
high-score group (Fig. 3D, I).

Expression levels of the 11 genes constituting the
prognostic model were also evaluated in both cohorts
(Fig. 3E, J), revealing concordant expression patterns
between the two datasets, except for a few genes that
were undetectable in the validation cohort. These
findings indicate that the established signature score
serves as a robust and reliable prognostic biomarker
for PAAD.

Signature score values serve as independent
predictors of PAAD patient prognosis

To evaluate the independent prognostic value of
the signature score in PAAD patients, score
distributions were analyzed across various clinical
subgroups, excluding those with fewer than two
samples (Fig. 4A). The analysis revealed that
signature scores varied significantly with respect to
tumor status and histological subtype. Patients
classified as WITH TUMOR showed significantly
higher signature scores compared to those
categorized as TUMOR FREE. Similarly, ductal-type
tumors displayed higher signature score values than
other histological variants.

Furthermore, both univariate and multivariate
Cox regression analyses demonstrated that the
signature score was independently correlated with
the prognosis of PAAD patients (p <0.05), reinforcing
its potential as an independent prognostic indicator
(Fig. 4B-C).
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Figure 2. ICD-related hub gene signature construction in PAAD. (A) KM survival curves for those genes with significant differences between the high- and low-ICD
groups. (B) LASSO regression analysis trajectories for the 26 independent genes, with the log of the lambda value for these independent variables along the x-axis, while the y-axis
shows the coefficients for these independent variables. (C) Confidence intervals corresponding to each lambda. (D) LASSO coefficient profiles for the 11 key prognostic genes

identified through this approach.

Evaluation of signature score-related
molecular features and changes in pathway
activities

The top 10 most prevalent SNVs and CNVs were
subsequently compared between the high- and
low-score patient groups. Among these, KRAS and
TP53 emerged as the most frequently mutated genes,
with KRAS predominantly demonstrating missense
mutations (Fig. 5A). Furthermore, the overall
frequency of CNVs was significantly higher in the
high-score group than in the low-score group (Fig.
5B).

To further

explore

biological = pathway

differences between these two groups, a ssGSEA was
performed. This analysis revealed a significant
variation in pathway activity (Fig. 5C), demonstrating
enhanced enrichment of the mitotic spindle and
TGEF-B signaling pathways in the high-score group,
indicating their potential involvement in PAAD
progression.

PAAD patient signature scores are associated
with tumor microenvironment composition

To evaluate the relationship between the
signature score and the TME composition in PAAD
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patients, stromal, immune, and ESTIMATE scores
were computed using the R ESTIMATE package.
Their distributions were compared between the low-
and high-score groups (Fig. 6A). The analysis
revealed that immune scores were significantly lower

in the high-score group than in the low-score group,
indicating a relative suppression of immune activity.
Furthermore, correlation analyses demonstrated that
signature scores were positively associated with both
stromal and ESTIMATE scores (Fig. 6B).
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The infiltration profiles of immune cell showed reduced infiltration in the high-score group.
populations were next examined via ssGSEA to  In comparison, Th2 cell infiltration was elevated in
compare differences between the two groups (Fig. these same samples. These findings suggest that
6C). The results showed that seven immune cell types,  higher signature scores may reflect a more
including activated B cells and activated CD8* T cells, = immunosuppressive TME phenotype in PAAD.
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Signature scores are associated with potential
chemoresistance and immunotherapy
responses

To  explore the  association  between
chemoresistance and the signature score, analyses
were performed using cell line expression and drug
response data from the GDSC2 database. Spearman
correlation coefficients were calculated to evaluate the
relationships between logi0(ICso) values for individual
drugs and signature score values, which were derived
from the corresponding gene expression profiles of
each cell line. The analysis revealed significant
differences in correlation coefficients between the
low- and high-scoring groups, suggesting distinct
patterns of drug sensitivity (Fig. 7A-B).

Afterward, the potential of the ICD-related hub
genes to predict immunotherapy response was
assessed using data from the IMvigor210 cohort.
Kaplan-Meier survival analyses demonstrated that
patients in the low-score group showed a more
favorable prognosis following immunotherapy (Fig.
7C). Moreover, comparisons of responder (R) and
non-responder (NoR) distributions indicated a higher
proportion of responders in the low-score group,
supporting the predictive value of the signature score
for immunotherapeutic efficacy (Fig. 7D-E).

Validation of AJM1 as a novel prognostic gene
in PAAD

Based on the successful development of the
ICD-related hub gene signature as a prognostic and
drug response predictor in PAAD, further validation
analyses were conducted focusing on the model
genes. Using 33 pairs of PAAD tumor and adjacent
non-tumor tissue samples (Fig. 8A), qPCR analyses
confirmed that AJMI expression was significantly
higher in paracancerous tissues compared with tumor
tissues (Fig. 8B). These findings were further
supported by IHC results demonstrating a similar
expression trend (Fig. 8C).

In in vitro functional assays, AJM1 knockdown
was achieved via siRNA transfection in AsPC-1
PAAD cells (Fig. 8D). Results from CCK-§, EdU
incorporation, and colony formation assays
consistently showed that silencing AJM1 significantly
increased PAAD cell proliferation (Fig. 8E-G). These
findings confirm the functional significance of AJM1
in the progression of PAAD and underscore its
potential as a prognostic biomarker and therapeutic
target in this malignancy.

Discussion

The PAAD remains one of the most lethal
malignancies, mainly due to the absence of reliable
early diagnostic biomarkers and its frequent detection

at advanced stages, where tumors show significant
resistance to conventional therapies. A defining
characteristic of PAAD is its remarkable ability to
evade immune surveillance, which severely limits the
efficacy of chemotherapeutic and radiotherapeutic
approaches [19-21]. The lack of robust prognostic
biomarkers further constrains opportunities for
personalized therapeutic strategies, underscoring the
urgent need for novel molecular indicators that can
guide clinical decision-making.

Emerging evidence highlights the tumor
immune microenvironment (TIME) as a key driver of
PAAD progression, orchestrated through complex
interactions between tumor and immune cells [22-24].
Within this context, ICD, a regulated form of cell
death that provokes both innate and adaptive
immune responses, has garnered increasing attention
as a potential therapeutic avenue [25,26]. ICD
promotes the release of damage-associated molecular
patterns (DAMPs) and tumor-associated antigens,
increasing the activation of immune cells and
tumor-specific cytotoxicity [27]. Although preclinical
studies have demonstrated that ICD can foster
sustained anti-tumor immunity and increase
responsiveness to immunotherapy, clinical validation
in PAAD remains limited, emphasizing the need for
further translational research to clarify its prognostic
and therapeutic potential.

AJM1 is a critical tight junction (TJ) protein
responsible for maintaining epithelial integrity and
regulating cellular signaling pathways within the
intestinal barrier [28]. It interacts with structural
proteins such as VAB-9 and DLG-1, contributing to
the maintenance of junctional stability and epithelial
polarity [29]. Under proteotoxic stress conditions,
disruptions in AJM1 localization mediated by mTOR
sequestration and excessive autophagy activation can
compromise epithelial integrity, underscoring its
sensitivity to cellular stress [30]. Recent evidence has
linked AJM1 expression to intestinal disease models
and toxicological stress responses. For instance, litchi
polysaccharides have been shown to protect intestinal
barrier function, partly by modulating AJM1
expression, in C. elegans and murine models [31].
Similarly, exposure to mycotoxins such as tenuazonic
acid and patulin disrupted AJM1 expression in C.
elegans, suggesting that it may serve as a mediator of
intestinal stress responses [32]. These studies indicate
that AJM1 may serve as a biomarker for digestive tract
pathophysiology. Moreover, tight junction proteins,
by preserving epithelial polarity, may act to suppress
uncontrolled proliferation and migration associated
with the EMT, a hallmark of tumor progression.
However, the specific functional role of AJM1 in
PAAD has remained poorly defined.
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Figure 7. Signature scores are associated with chemoresistance and immunotherapy responses. (A-B) Analyses of chemoresistance in the low- and high-score
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for the immunotherapeutic advanced urothelial cancer cohort (IMvigor210). (D) Responder and non-responder distributions in the low- and high-score groups. (E) Differences

in responses between the low- and high-score groups.

In this study, the relationship between ICD and
PAAD prognosis was systematically examined
through the analysis of ICD-associated hub genes
identified using ssGSEA and WGCNA. The

constructed ICD-related hub gene signature
effectively stratified PAAD patients into low- and
high-score groups with distinct prognostic outcomes.
This signature demonstrated independent prognostic
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value in both univariate and multivariate Cox
regression analyses, while also revealing significant
differences in tumor mutational burden (SNVs and
CNVs) and immune cell infiltration patterns between
the two groups. Immune scores and immune
infiltration levels were significantly higher in the
low-score group, suggesting a more immunologically
active tumor microenvironment, which may
contribute to improved clinical outcomes and
increased therapeutic responsiveness.

The present study builds upon and extends a
recent report [33] that employed consensus clustering
to categorize PAAD samples according to ICD-related
gene expression while characterizing the immune
landscape using data from 502 HNSCC samples.
Although that approach broadened the general
applicability of the ICD gene signature across
multiple cancer types, it may not have fully captured
the immunosuppressive characteristics of the PAAD

contrasts with the immune-active (hot) phenotype
typical of HNSCC. In comparison, our use of
WGCNA  facilitated  the  identification  of
PAAD-specific ICD-associated hub gene modules,
improving disease specificity. By exclusively
analyzing PAAD-derived datasets, the resulting gene
signature was optimized for evaluating the tumor
immune microenvironment in this cancer type. These
methodological refinements enhance the precision
and translational relevance of our findings, offering a
valuable complement to the previous study.

The drug-sensitivity analyses further
underscored the clinical relevance of the ICD-related
hub gene signature established in this study. By
calculating Spearman correlation coefficients between
the signature scores and ICs values from the GDSC2
database, distinct patterns of drug sensitivity were
identified, offering potential strategies to optimize
therapeutic regimens for patients in the low- and

tumor microenvironment, which significantly = high-score groups.
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The protective function of AJMI1 is further
supported by its potential role in modulating the
tumor microenvironment. In this study, qPCR
analyses revealed significantly higher AJM1
expression in paracancerous tissues compared to
tumor tissues, suggesting that its downregulation
may contribute to tumor initiation and progression.
Similarly, in vitro assays, including CCK-§, EdU
incorporation, and colony formation, demonstrated
that silencing AJM1 significantly increased the
proliferation of PAAD cells. These findings suggest
that AJM1 functions as a tumor suppressor, limiting
the proliferative capacity of PAAD cells.

In conclusion, this study establishes an
ICD-related hub gene signature, constructed using
machine learning, that effectively predicts prognostic
outcomes in patients with PAAD. This signature
offers a promising framework for the personalized
management and therapeutic stratification of this
highly aggressive malignancy. Moreover, the
observed link between AJM1 downregulation and
increased tumor cell proliferation underscores the
potential importance of epithelial junction regulation
as a therapeutic target in PAAD. However, further
clinical validation will be necessary to confirm the
predictive and translational value of the proposed
signature in broader patient cohorts.
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