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Abstract

Developmental dysplasia of the hip (DDH) is a common pediatric orthopedic disorder that can lead to
lifelong disability if undetected. Ultrasound is the primary diagnostic modality but is subject to operator
dependence and inter-observer variability. To address this challenge, we propose an attention-enhanced
YOLOvI 1 framework for automated DDH classification. A dataset of 6,075 hip ultrasound images was
preprocessed with augmentation and dimensionality reduction via UMAP. The model integrates
Cross-Stage Partial (CSP) modules and C2PSA spatial attention to improve feature extraction, and was
trained using Focal Loss and loU Loss. It achieved 95.05% accuracy with an inference speed of 11.5 ms per
image, substantially outperforming MobileNetV3 and ShuffleNetV2. Grad-CAM visualizations confirmed
that the model consistently attends to the acetabular roof and femoral head, landmarks central to Graf
classification, thereby enhancing clinical interpretability. These findings demonstrate that the proposed
framework combines technical robustness with clinical relevance. Future work will emphasize
multi-center validation and multimodal integration to ensure generalizability and support widespread
clinical adoption.

Keywords: Developmental Dysplasia of the Hip (DDH), Ultrasound Imaging, Deep Learning, YOLOv1l, Medical Image
Classification, Automated Diagnosis.

1. Introduction

Developmental Dysplasia of the Hip (DDH) is a
prevalent pediatric orthopedic disorder that impairs
hip joint development in infants [1]. If undiagnosed or
untreated, DDH may progress to hip joint instability,
impaired mobility, and early-onset osteoarthritis,
ultimately diminishing quality of life. Timely and
accurate diagnosis is therefore essential to enable
early intervention and prevent long-term
complications. Ultrasound, particularly the Graf
classification system, remains the standard diagnostic
modality, as it assesses hip joint alignment through

key anatomical angles [2]. However, this approach
requires substantial clinical expertise, rendering it
highly susceptible to inter-observer variability [3].
Moreover, variations in image quality and infant
positioning further complicate interpretation, often
leading to diagnostic inconsistencies [4]. Given the
high prevalence of DDH and the limitations of
manual ultrasound interpretation, there is a pressing
need for an automated, deep learning-based
classification system to enhance diagnostic accuracy
and efficiency.
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Recent advances in deep learning have shown
substantial promise in automating medical image
analysis [5]. Convolutional Neural Networks (CNNs),
particularly architectures such as U-Net and Fully
Convolutional Networks (FCNs), have achieved high
accuracy in segmentation tasks across diverse medical
imaging modalities [6]. Nevertheless, most existing
deep learning approaches for DDH diagnosis have
focused on segmentation rather than direct
classification, and their success often relies on large,
expertly annotated datasets that are both costly and
time-consuming to obtain [7]. Furthermore,
CNN-based models must contend with challenges
such as dataset imbalance, variability in image
quality, and limited availability of labeled samples [8].
To address these challenges, this study introduces an
automated DDH classification framework based on
YOLOV11, a state-of-the-art real-time object detection
model [9]. Unlike conventional CNN-based
segmentation networks, YOLOvIl provides an
efficient and unified approach to simultaneously
detecting and classifying DDH-related hip structures
in ultrasound images, thereby improving diagnostic
accuracy and consistency [10]. In addition, the
framework leverages data augmentation to mitigate
class imbalance and employs UMAP for dataset
visualization [11]. By integrating advanced attention
mechanisms and optimized convolutional layers, the
proposed  method  enhances both  feature
representation and classification reliability.

In summary, this study makes the following
contributions. First, we propose an automated DDH
classification framework based on YOLOv1l],
optimized for real-time ultrasound diagnosis. Second,
we introduce a preprocessing pipeline that combines
UMAP-based visualization with data augmentation to
alleviate class imbalance and enhance model
robustness. Third, we integrate advanced spatial
attention mechanisms (C2PSA) into the YOLOv11
architecture to strengthen anatomical feature
recognition. Finally, we validate the proposed model
against lightweight benchmark networks,
demonstrating superior accuracy and inference speed
suitable for clinical application.

The remainder of this paper is organized as
follows. Section 2 reviews related work on DDH
diagnosis and deep learning in medical imaging.
Section 3 describes the proposed methodology,
including dataset acquisition, preprocessing, and
model architecture. Section 4 presents experimental
results and performance analyses. Section 5 discusses
the findings and their clinical implications, and
Section 6 concludes the study with future research
directions.

2. Related Work

2.1 Ultrasound-Based DDH Diagnosis and Graf
Classification

Due to the inherent challenges of accurately
delineating the proximal femur and acetabular
margin in neonatal hip X-ray imaging [12], ultrasound
has become the preferred modality for diagnosing
developmental dysplasia of the hip (DDH) [13].
Although its role in large-scale screening programs
remains debated [14], ultrasound continues to be
widely adopted across Europe [15]. Several diagnostic
approaches have been developed, including the Graf,
Harcke, Terjesen, and Suzuki methods, with the Graf
technique being the most widely accepted for
screening, diagnosis, and treatment monitoring of
DDH [16].

The Graf method relies on predefined
anatomical landmarks within the hip joint, identifying
five critical points: the iliac outer edge, the lower limb
of the ilium, the transition point where the bony
acetabular roof curves toward the ilium, the center of
the labrum, and the femoral head [17]. By
constructing three intersecting lines — the baseline, the
bony roof line, and the soft tissue covering line —two
key angles can be measured: the a angle (bony roof
angle) and the {3 angle (cartilage roof angle) [18, 19].
These parameters enable the classification of neonatal
hips into distinct categories:

e Typel (Normal Hip): a > 60°

e Type Illa/IIb (Immature Hip): 50° < a < 59°

e Type Illc/D (Dysplastic Hip): a < 50°

e Type lll/1V (Dislocated Hip): a < 43° [20-22].

Ultrasound  imaging  offers  significant
advantages, including ease of operation,
reproducibility, and the absence of ionizing radiation
[23]. However, the accuracy of the Graf method
depends heavily on strict adherence to standardized
imaging protocols [24]. Failure to capture the
standard plane can result in measurement errors and
subjective interpretation, thereby reducing the
reliability of a and p angle assessments [25, 26]. These
limitations underscore the importance of developing
automated image analysis techniques to improve
diagnostic precision and consistency.

2.2 Deep Learning for Medical Image Analysis

Deep learning has revolutionized medical image
analysis, demonstrating remarkable performance in
segmentation, classification, and anomaly detection
tasks across diverse clinical domains [27-29]. While
the concept of artificial neural networks (ANNS)
originated in 1943 [30, 31], the advent of deep learning
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in 2006 enabled the development of multi-layer
network architectures with enhanced representational
capacity [32]. Among these, Convolutional Neural
Networks (CNNs) have driven major breakthroughs
in applications such as disease diagnosis, semantic
segmentation, and object detection [33-35].

CNN-based approaches have become the
dominant paradigm in medical imaging [36, 37],
leveraging hierarchical feature extraction to achieve
high precision in identifying and localizing
pathological structures [38]. However, these methods
often require large-scale, expert-labeled datasets,
making data annotation labor-intensive and
time-consuming [39-41]. This challenge highlights the
need for scalable, automated, and real-time
classification systems that can reduce reliance on
manual labeling while maintaining diagnostic
accuracy [42, 43].

2.3 Deep Learning for DDH Classification

Convolutional Neural Networks (CNNs) have
shown encouraging results in ultrasound-based DDH
classification, particularly for segmenting femoral
head and acetabular structures [44]. Early studies
primarily employed conventional machine learning
techniques; however, the introduction of Fully
Convolutional Networks (FCNs), U-Net, and
transformer-based architectures has substantially
improved segmentation accuracy in recent years [45,
46]. Despite these advances, most existing methods
continue to emphasize segmentation rather than
direct classification of DDH severity.

For reliable classification, access to sufficiently
large and high-quality labeled datasets is essential
[47]. Yet, training on imbalanced datasets frequently
results in biased predictions, as underrepresented
classes are inadequately learned [48]. Moreover,
medical ultrasound images often suffer from noise,
speckle artifacts, and incomplete anatomical
visualization, all of which degrade CNN performance
[49, 50]. Preprocessing techniques such as noise
reduction and data augmentation can mitigate these
limitations, = but they  inevitably increase
computational complexity [48-50]. These challenges
underscore the necessity for more robust, efficient,
and clinically applicable classification frameworks
tailored to DDH diagnosis.

2.4 YOLO-based Medical Image Classification

The You Only Look Once (YOLO) family of
models has been widely adopted for real-time object
detection and classification across diverse domains,
including medical imaging [51]. Recent iterations such
as YOLOv4, YOLOvV5, and YOLOvS8 have introduced
optimized backbone networks, attention mechanisms,

and enhanced feature fusion modules, leading to
notable improvements in both accuracy and
computational efficiency [52, 53]. Unlike conventional
CNN-based classification = approaches, YOLO
simultaneously performs object localization and
classification in a single forward pass, making it

highly suitable for time-sensitive diagnostic
applications.
The latest version, YOLOv11, incorporates

Cross-Stage Partial (CSP) connections, C2PSA spatial
attention mechanisms, and efficient convolutional
blocks, enabling superior feature extraction while
maintaining lightweight computational demands [54].
This architecture has already been applied
successfully in tasks such as chest X-ray
interpretation, ultrasound imaging, and medical
anomaly detection, where it has consistently
outperformed lightweight models such as MobileNet
and ShuffleNet in terms of classification accuracy and
inference speed [55-62].

Traditional ultrasound-based DDH diagnosis
remains dependent on manual interpretation, which
is inherently variable across operators. By contrast,
YOLO-based automated classification provides a fast,
accurate, and scalable alternative, ideally suited for
real-time clinical applications. Building on these
advances, the present study leverages YOLOv11 for
DDH classification, aiming to address persistent
challenges such as dataset imbalance, image noise,
and diagnostic inconsistency.

3. Methodology

3.1 Data Acquisition

Ultrasound images used in this study were
acquired using a diagnostic ultrasound system. The
dataset comprised 6,075 images stored in DICOM
format for static frames and AVI format for video
sequences. Images were categorized into ten
anatomical classes: hip, ankle, soft tissue, wrist,
shoulder, finger, knee, elbow, foot, and other.

For the assessment of Developmental Dysplasia
of the Hip (DDH), imaging primarily targeted key
anatomical structures including the femoral head,
acetabulum, and ilium. The Graf -classification
method, which evaluates hip joint stability through
the measurement of the a and P angles, was adopted
as the clinical reference standard. Figure 1 illustrates a
representative  hip  joint ultrasound image,
highlighting the femoral head’s position within the
acetabulum and labeling the femoral head, acetabu-
lum, and ilium — structures essential for determining
joint alignment and identifying abnormalities.

The dataset was collected from multiple clinical
sources to capture diversity in patient demographics,
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imaging protocols, and anatomical variations.
However, a marked class imbalance was observed:
the hip category contained a disproportionately high
number of images (5,159), compared with other
categories such as knee (13) and ankle (5). This
imbalance necessitated the use of data augmentation
strategies, described in Section 3.2.

3.2 Dataset Analysis and Preprocessing

3.2.1 Dataset Imbalance and Visualization

The dataset exhibited pronounced class
imbalance, which can bias model training and
compromise generalization performance. To evaluate
the distribution of samples, we employed Uniform
Manifold Approximation and Projection (UMAP), a
state-of-the-art dimensionality reduction technique
well-suited for high-dimensional medical imaging
data [51]. UMAP preserves both local and global data
structures, thereby providing a reliable representation
of class distribution.

As illustrated in Figure 2(a), the original dataset
was dominated by the hip class, which clustered
separately from the other anatomical categories.
Following the application of data augmentation, the
distribution became more balanced, as shown in
Figure 2(b). The numerical breakdown of each class
before and after augmentation is presented in Table 1.

3.2.2 Data Augmentation Strategy

To mitigate the effects of imbalance and enhance

model robustness, multiple augmentation techniques
were applied:

e Geometric Transformations: Random rotations
(£15°), translations, and scaling to simulate
variability in patient positioning.

e Intensity Adjustments: Gamma correction to
normalize differences in brightness and contrast
across scans.

o Elastic Deformations: Applied to approximate
natural soft tissue variability.

e Noise Injection and Bias Field Distortion:
Introduced random artifacts to replicate
real-world imaging conditions.

These augmentation strategies improved class
balance and promoted better generalization, as
demonstrated by the more uniform UMAP
distribution shown in Figure 2(b).

Table 1. Dataset Distribution Before and After Augmentation.

Class Original Original Test ~ Augmented Augmented
Training Set Set Training Set ~ Test Set

Hip 5,159 573 5,159 573

Shoulder 178 19 890 95

Knee 13 4 56 20

Ankle 5 1 25 5

Wrist 31 5 155 25

Finger 14 3 70 15

Elbow 12 4 60 20

Foot 4 1 20 5

Soft Tissue 5 4 20 20

Figure 1. Ultrasound Image of the Hip Joint in Developmental Dysplasia of the Hip (DDH).

https://www.medsci.org



Int. J. Med. Sci. 2025, Vol. 22

4240

c-dvi n

ot

'M';‘,p s

wrist
other
softtissue
knee

hip

foot
ankle

elbow

Z-dVinn

C

shoulder
finger

(a) Original dataset distribution showing class imbalance.

(b) After data augmentation, demonstrating improved class representation.

Figure 2. UMAP Visualization of Dataset Distribution.

3.3 Proposed YOLOVvI 1-Based Classification
Model

The proposed YOLOv11-based framework was
designed to automate DDH classification from
ultrasound images while maintaining both high
inference speed and diagnostic accuracy.

3.3.1 Model Architecture

Figure 3 presents an overview of the YOLOv11

architecture adapted for this study. The framework
introduces several key innovations:
(1) Backbone (Feature Extraction)

e (C3k2 Blocks: An efficient implementation of
Cross-Stage Partial (CSP) bottlenecks, improving
gradient flow and feature reuse [52].

e Spatial Pyramid Pooling - Fast (SPPF): Reduces
computational cost while retaining multi-scale
feature representation.
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C2PSA Attention Mechanism: Enhances spatial
feature learning, enabling the model to focus on
clinically relevant anatomical regions.

(2) Neck (Feature Aggregation)

Combines Feature Pyramid Network (FPN) and
Path Aggregation Network (PAN) structures.

C3k2 blocks replace traditional C2f blocks,

Backbone

£ Pie

« <

Neck

yielding higher efficiency without compromising
accuracy

(3) Head (Prediction)

Outputs bounding boxes, class probabilities, and

confidence scores in a single forward pass,
thereby supporting real-time classification.

Head

6406403

320%320*64*W

Con

160*160*128*W

160*160*128*W
— 80*80*512*W
l Upsample
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Figure 3. YOLOvI | Model Architecture.
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As shown in Figure 3, these components work
synergistically to extract discriminative anatomical
features, aggregate multi-scale information, and
deliver accurate classification under real-time
constraints. The integration of CSP and C2PSA
modules is particularly critical for modeling complex
hip structures in noisy ultrasound environments.

Together, these architectural improvements
enable the YOLOv11 framework to achieve both high
diagnostic accuracy and computational efficiency,
rendering it suitable for deployment in point-of-care
ultrasound systems.

3.4 Training Procedure

The training procedure for the YOLOv11-based
classification model consisted of data preprocessing,
model training, hyperparameter optimization, and
performance evaluation. The pipeline was designed to
maximize generalization, minimize overfitting, and
ensure robust classification across imbalanced classes.

3.4.1 Model Training and Optimization

The model was trained to simultaneously
optimize feature extraction, localization, and
classification. Training was conducted using the
AdamW optimizer, which balances convergence
speed and generalization by incorporating weight
decay regularization. A cosine annealing learning rate
schedule was applied, beginning with an initial
learning rate of 0.001 and gradually decaying to
stabilize learning and reduce overfitting.

To address class imbalance, Focal Loss was
employed, reducing the influence of easily classified
samples while emphasizing harder-to-classify cases.
For localization refinement, IoU Loss was used to
improve bounding box predictions and ensure
accurate delineation of hip joint structures. The final
training configuration was as follows:

¢ Initial Learning Rate: 0.001 (cosine decay)

e Batch Size: 16

e Number of Epochs: 100

e Optimizer: AdamW with weight decay = 0.01

e Loss Functions: (1) Focal Loss for classification,
(2) IoU Loss for localization

To improve generalization, the dataset was
augmented with random rotations, brightness
adjustments, and noise injection, as described in
Section 3.2.2. Importantly, patient-level data splitting
was applied to prevent information leakage: all
images from the same patient were assigned
exclusively to one partition. An 80/20 split at the
patient level was used for development
(training/validation), followed by 5-fold

cross-validation, also stratified by patient, to ensure
robustness. This design eliminated identical-patient
overlap across folds, providing an unbiased estimate
of model generalization.

3.4.2 Evaluation Metrics

Model performance was evaluated using four
standard metrics:

e Accuracy (ACC): Proportion of
classified cases among all predictions.

_ TP +TN

~ TP+TN+FP+FN

e Precision (P): Proportion of correctly identified
positive cases among all predicted positives,
reflecting the ability to avoid false positives.

p— TP
~ TP +FP

e Recall (R): Proportion of correctly identified
positive cases among all actual positives,
reflecting sensitivity and the ability to reduce
false negatives.

correctly

Acc

_ TP
" TP+ FN

e F1-Score: Harmonic mean of precision and recall,
providing a balanced measure of model
performance.

R

P xR
P+R

The proposed model was benchmarked against
lightweight classification architectures, MobileNetV3
and ShuffleNetV2, with comparisons focusing on
accuracy, inference time, and computational
efficiency. In addition, 5-fold cross-validation was
performed to validate the consistency and robustness
of results across different dataset partitions.

F1 score =2 X

4. Results and Discussion

4.1 Performance Comparison

The YOLOv11l-based DDH classification model
was first evaluated on the independent test set and
compared  with  two  lightweight baseline
architectures, MobileNetV3 and ShuffleNetV2.
Performance was assessed using four metrics:
Accuracy, Precision, Recall, and F1-Score. The results
are summarized in Table 2.

As shown in Table 2, YOLOv11l achieved the
highest performance across all metrics, with an
overall accuracy of 95.05%. This represents a
substantial improvement of nearly 20% in accuracy
compared with MobileNetV3 (75.6%) and more than
23% compared with ShuffleNetV2 (71.9%). Precision
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and recall values for YOLOv11 were also consistently
higher, resulting in the highest F1-Score (95.05%).

These results highlight the effectiveness of
incorporating CSP and C2PSA modules into the
YOLOV11 architecture, which improved the model’s
capacity to capture clinically relevant anatomical
structures in ultrasound images. The superior
performance across multiple evaluation metrics
demonstrates that the proposed framework not only
outperforms lightweight alternatives but also
provides reliable classification suitable for real-time
clinical deployment.

4.2 Confusion Matrix Analysis

To further assess classification performance, a
confusion matrix was generated for YOLOv11, as
presented in Figure 4. The matrix illustrates the
distribution of correct and incorrect predictions across
different DDH categories, providing detailed insights
into class-specific strengths and weaknesses.

As shown in Figure 5, both training and
validation losses decreased steadily throughout the
training process, with no evidence of divergence

between the two curves. This pattern indicates stable
learning dynamics and suggests that overfitting was
effectively mitigated. The application of data
augmentation  and  regularization  strategies
contributed to this stability by improving
generalization and reducing susceptibility to noise or
class imbalance.

The consistent convergence observed in both
curves demonstrates that the model successfully
captured discriminative features of hip anatomy
without sacrificing generalization capacity. These
results further validate the suitability of the proposed
training strategy, confirming its robustness in
handling heterogeneous ultrasound data.

Table 2. Performance Comparison of YOLOvI I, MobileNetV3,
and ShuffleNetV2.

Confusion Matrix Normalized

Predicted
knee hip foot finger elbow ankle

other

softtissue  shoulder

wrist
|

e 1 ] 1
finger foot hip knee
True

! '
ankle elbow

background

Figure 4. Confusion Matrix of YOLOvI | Model.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)
YOLOv11 95.05 94.88 95.22 95.05
MobileNetV3 75.6 76.1 74.5 75.3
ShuffleNetV2 71.9 72.4 70.8 71.6
1.0
0.8
0.04
0.6
0.10
-04
0.40
=02
0.96
! \ ! | ' -0.0
other shoulder softtissue wrist  background
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Figure 5. Training and Validation Loss Curves for YOLOvI I.
Overall, the model achieved high classification ' '
accuracy across the majority of categories. However, Table . 3. Inference speed and computational efficiency
. . . comparison.

some degree of misclassification was observed.
Specifically, overlap occurred between Type Ila and  Model Parameters (M) FLOPs (B) Inference Time
Type IIb hips, reflecting their inherent anatomical (ms/image)
imilarity and the subtle differences in a angle oo 127 i e
simularity ang MobileNetV3 5.4 2.19 12.0
measurements that challenge even experienced ¢ onetvo 23 146 114

clinicians. In addition, certain Type IIl cases were
misclassified as Type Ilc, likely due to similarities in
femoral head positioning.

These findings indicate that while the model
performs robustly overall, borderline categories
remain the most challenging to differentiate. This
limitation parallels the clinical reality, where even
expert  sonographers  occasionally  encounter
difficulties distinguishing between adjacent Graf
types. Such results suggest that additional strategies,
such as refined preprocessing, multi-view ultrasound
integration, or hybrid Al-physician decision-making
could further improve classification accuracy in these
borderline cases.

4.3 Training and Validation Loss Analysis

The training and validation loss curves for the
YOLOvV11 model are presented in Figure 5. These
curves depict the optimization trajectory across 100
epochs, illustrating both convergence behavior and
generalization performance.

4.4 Inference Speed and Computational
Efficiency

Inference efficiency is a critical factor for
real-time DDH screening. Table 3 compares the
number of parameters, FLOPs, and inference time per
image for YOLOv11, MobileNetV3, and
ShuffleNetV2.

Although YOLOV11 contains a larger number of
parameters (12.9M) and higher computational
complexity = (49.4B  FLOPs) compared with
MobileNetV3 and ShuffleNetV2, its inference speed
remained competitive at 11.5 ms per image. This
demonstrates that the architectural
optimizations—including CSP modules, spatial
attention mechanisms, and efficient convolutional
blocks —effectively balanced accuracy with efficiency.

The results confirm that YOLOvV11 is capable of
achieving real-time performance without
compromising diagnostic precision. This balance
between computational cost and inference speed
makes the framework well-suited for integration into
point-of-care ultrasound systems, where rapid
diagnostic feedback is essential.

4.5 Comparison with Previous Studies

To contextualize the performance of the
proposed framework, we compared it against prior
deep learning approaches for DDH classification.
Table 4 summarizes the results.

As shown in Table 4, YOLOv1l achieved a
classification accuracy of 95.05%, outperforming
earlier CNN- and ResNet-based models by a margin
of 6-8%. This improvement can be attributed to three
factors: (i) the use of a larger dataset collected over
multiple years, (ii) architectural enhancements such as
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CSP modules and C2PSA spatial attention, and (iii)
robust data augmentation strategies that alleviated
class imbalance.

Table 4. Comparison with Existing DDH Classification Models.

Study Model Used Accuracy  Dataset
(%) Size
Sezer et al. (2020) [13] CNN + Data 87.3 2,500
Augmentation images
Chlapoutakis et al. (2022) ResNet-50 89.1 3,200
[24] images
This Study YOLOv11 95.05 6,075
images
Compared with earlier approaches, which

primarily emphasized segmentation or employed
conventional CNN backbones, the proposed model
provides a more scalable and clinically practical
solution. Its superior accuracy, combined with
real-time inference speed, underscores its potential for
deployment in routine DDH screening workflows.

4.6 Ablation Study

To evaluate the individual contributions of the
Cross-Stage Partial (CSP) modules and the C2PSA
spatial attention mechanism, an ablation study was
conducted under four experimental settings: (1)
YOLOv11 without CSP, (2) YOLOv11 without C2PSA,
(3) YOLOv11 without both modules, and (4) the full
model (CSP + C2PSA). The results are summarized in
Table 5.

As shown in Table 5, removal of either CSP or
C2PSA resulted in a noticeable decline in performance
compared with the full model. Excluding CSP

primarily reduced recall, indicating its importance for
enhancing sensitivity in detecting dysplastic hips. In
contrast, the absence of C2PSA led to lower precision,
suggesting that spatial attention was critical for
guiding the network toward anatomically relevant
regions and minimizing false positives. The combined
use of CSP and C2PSA produced the best overall
performance, underscoring their complementary roles
in improving both feature extraction and anatomical
interpretability.

Table 5. Ablation Study of CSP and C2PSA Modules.

Model Variant Accuracy  Precision  Recall ~ F1-Score
(%) (%) (%) (%)

YOLOvV11 without CSP 91.8 91.2 91.5 91.3

YOLOV11 without C2PSA  92.6 92.1 92.3 92.2

YOLOv11 without CSP +  90.9 90.3 90.7 90.5

C2PSA

Full Model (CSP + C2PSA) 95.05 94.88 95.22 95.05

These findings confirm that the architectural
modifications introduced in YOLOv11 are not only
computationally efficient but also essential for
achieving clinically meaningful performance in DDH
classification.

4.7 Explainability Analysis

To improve interpretability and foster clinical
acceptance, we generated Gradient-weighted Class
Activation Mapping (Grad-CAM) and attention
heatmaps for representative cases. As illustrated in
Figure 6, the model consistently focused on the
acetabular roof and femoral head —key anatomical
landmarks central to the Graf classification system.

Figure 6. Grad-CAM visualizations of YOLOvVI |-based DDH classification. (a) Normal hip: the model predominantly focuses on the acetabular roof and femoral head.
(b) Dysplastic hip: stronger activation is observed around the shallow acetabular roof and displaced femoral head. These attention patterns align with Graf classification

landmarks, supporting clinical interpretability and acceptance.
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In normal hips, Grad-CAM highlighted
concentrated attention on the acetabular roof and
femoral head, confirming that the model relies on
clinically  relevant  structures for  accurate
classification. In dysplastic hips, stronger activations
were observed around the shallow acetabular roof
and the displaced femoral head, patterns that align
closely with radiologists’ visual assessments.

These findings suggest that the model’s
decision-making process is not only data-driven but
also anatomically meaningful. By attending to regions
routinely evaluated by clinicians, the proposed
framework enhances transparency and builds trust,
thereby facilitating its potential integration into
real-time, point-of-care diagnostic workflows.

4.8 Clinical Workflow Integration

To facilitate clinical adoption, we envision
several pathways through which the proposed model
could be integrated into routine workflows across
different care settings.

Neonatal screening clinics. During routine hip
ultrasound examinations, the system can be
embedded directly within the ultrasound console or a
connected edge device. It provides (i) real-time
quality feedback, such as alerts for non-standard
planes or probe instability, (ii) live classification
overlays to support immediate triage (normal vs.
dysplastic/immature), and (iii) structured outputs
including key frames and confidence scores for
documentation. This integration reduces the need for
repeat scans, shortens examination time, and
enhances diagnostic efficiency in high-volume
screening settings.

Primary healthcare and community hospitals. In
resource-limited or non-specialist environments, the
framework can function as a decision-support tool.
Cases classified with low confidence are flagged for
secondary review by pediatric orthopedists, while
high-confidence normal cases may be safely
discharged with follow-up instructions. This
hub-and-spoke model optimizes referral pathways,
reduces unnecessary specialist consultations, and
ensures that expert attention is focused on the most
complex cases.

Training and quality assurance. Explainability
features, such as Grad-CAM heatmaps, provide
immediate feedback by highlighting clinically
relevant structures (e.g., acetabular roof, femoral
head). These visualizations can be used as teaching
aids for junior sonographers and as part of
standardized training programs. From a quality
assurance perspective, periodic audits of flagged
cases and drift monitoring can be implemented to
ensure sustained accuracy after deployment.

Human-in-the-loop safeguards. The model is
designed to complement, not replace, physician
expertise. Safety features include threshold-based
alerts, confidence-calibrated reporting, and
mandatory human review for ambiguous or
low-confidence cases. These safeguards ensure that
final diagnostic responsibility remains with clinicians
while leveraging Al to improve efficiency and
consistency.

5. Discussion

The proposed YOLOvl1l-based framework
demonstrates both technical innovation and clinical
applicability for automated DDH classification.

From a technical perspective, several
architectural enhancements directly contributed to the
model’s superior performance. The incorporation of
Cross-Stage Partial (CSP) blocks improved gradient
flow and feature reuse, thereby enhancing recall and
sensitivity for detecting dysplastic hips. The addition
of the C2PSA spatial attention mechanism enabled the
model to focus on anatomically meaningful regions,
reducing false positives and improving precision.
Results from the ablation study confirmed the
complementary roles of these modules, with the full
model achieving the highest overall accuracy (95.05%)
and real-time inference speed (11.5 ms per image).
When compared with lightweight baselines such as
MobileNetV3 and ShuffleNetV2, the proposed
framework consistently demonstrated superior
performance across multiple metrics, underscoring
the importance of architectural optimization.
Moreover, the integration of Focal Loss and IoU Loss
effectively addressed challenges related to class
imbalance and localization, ensuring stable training
and robust generalization.

From a clinical perspective, the framework
represents an important step toward standardizing
DDH screening, which remains subject to significant
inter-observer variability under the Graf classification
system. By enabling real-time automated
classification, the model can support clinicians in
neonatal screening clinics and community healthcare
settings, where operator expertise is often limited.
Potential applications include immediate feedback
during scanning, triage support through abnormal
case flagging, and automated report generation to
reduce  documentation  burden.  Importantly,
explainability = analyses such as Grad-CAM
demonstrated that the model consistently focused on
the acetabular roof and femoral head, key anatomical
landmarks used in clinical practice. This alignment
with established diagnostic criteria enhances
transparency, fosters clinician trust, and strengthens
the case for clinical adoption.
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Despite these strengths, several limitations must
be acknowledged. First, although the dataset
comprised more than 6,000 ultrasound images, all
data were obtained from a single institution. This may
restrict generalizability due to variations in imaging
equipment, acquisition protocols, and patient
demographics. To address this limitation, future work
will emphasize external validation across multiple
centers and populations. Second, although
patient-level data splitting was applied to eliminate
information leakage, prospective clinical validation
remains necessary to fully assess performance in
real-world workflows. Finally, while ultrasound is the
gold standard for infant DDH screening,
incorporating multimodal imaging modalities such as
X-ray and MRI could broaden diagnostic capability
and improve precision.

In summary, the proposed YOLOvV11 framework
integrates ablation-validated architectural
innovations, real-time feasibility, and clinically
meaningful explainability. Its potential applications
extend beyond technical accuracy to address practical
challenges in neonatal screening and primary care
environments. Future research should prioritize
multi-center validation, prospective deployment in
point-of-care ultrasound systems, and multimodal
integration to ensure robust clinical translation and
maximize the framework’s impact in standardized
DDH diagnosis.

6. Conclusion

In this study, we  developed an
attention-enhanced YOLOv11l framework for the
automated classification of developmental dysplasia
of the hip (DDH) from ultrasound images. By
integrating Cross-Stage Partial (CSP) modules and
C2PSA spatial attention, the model achieved superior
performance, with an accuracy of 95.05% and an
inference speed of 11.5 ms per image. Ablation
experiments confirmed the complementary roles of
CSP and C2PSA, demonstrating their collective
impact on improving both sensitivity and precision.

Beyond technical performance, the framework
provides tangible clinical benefits. Real-time
classification and interpretable visualizations,
supported by Grad-CAM heatmaps, align with
established diagnostic landmarks such as the
acetabular roof and femoral head. These features
enhance transparency, reduce inter-observer
variability, and facilitate integration into neonatal
screening clinics and community healthcare settings,
particularly where operator expertise may be limited.

To ensure unbiased evaluation, patient-level
data splitting was employed to prevent information
leakage, providing a reliable estimate of clinical

performance. Nevertheless, the reliance on a
single-institution dataset remains a limitation. Future
work will focus on multi-center external validation,
prospective  deployment  within  point-of-care
ultrasound systems, and multimodal integration (e.g.,
X-ray and MRI) to further expand diagnostic
capability and generalizability.

In conclusion, this work demonstrates both
technical innovation and clinical practicality. By
combining ablation-validated architectural
improvements, explainability, and workflow-oriented
design, the proposed YOLOv1l framework
establishes a foundation for clinically deployable,
Al-assisted DDH screening. Future research directed
toward multi-center validation and multimodal
expansion will be essential for translating this
framework into standardized clinical practice and
maximizing its impact in pediatric orthopedic care.
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