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Abstract

Objectives: To develop a deep learning (DL) model for the automated detection and diagnosis of breast
cancer utilizing automated breast volume scanner (ABVS) images, and to compare its diagnostic performance
with that of radiologists in screening ABVS examinations.

Methods: In this multicenter diagnostic study, ABVS data from 1,368 patients with breast lesions were
collected across three hospitals between November 2019 and April 2024. The DL model (VGGI19,
DenseNetl61, ResNetl101, and ResNet50) was developed to detect and classify lesions. One-tenth of the cases
from Hospital A were randomly selected as a fixed internal test set; the remaining data were randomly divided
into training and validation sets at an 8:2 ratio. External test sets were derived from Hospitals B and C.
Pathological findings served as the gold standard. Clinical applicability was assessed by comparing radiologists'
diagnostic performance with and without DL model assistance.

Results: For breast cancer detection, the DL model achieved an area under the receiver operating
characteristic curve (AUC) of 0.984 (95% Cl: 0.965-0.995) on the internal test set, 0.978 (95% Cl: 0.951-0.994)
on the external test set | (Hospital B), and 0.942 (95% Cl: 0.902-0.978) on the external test set 2 (Hospital C).
The model demonstrated significantly higher sensitivity (98.2%) and specificity (90.3%) than junior radiologists
(P < 0.05), while exhibiting comparable diagnostic reliability and accuracy to senior radiologists. Interpretation
time was significantly reduced for all radiologists when using the DL model (P < 0.05).

Conclusion: The DL model based on ABVS images significantly enhanced diagnostic performance and reduced
interpretation time, particularly benefiting junior radiologists.

Keywords: Breast cancer, Automated breast volume scanner, Ultrasound, Deep learning.

Introduction

Breast cancer is one of the leading causes of its mortality rate is on the rise globally. Early
cancer-related deaths among women worldwide, and  diagnosis and treatment of breast cancer can
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contribute to reducing mortality rates [1,2]. Wome n
of Asian descent exhibit higher breast tissue density,
which diminishes the sensitivity of conventional
mammography for cancer detection [3-6]. Breast
ultrasound (US) has been suggested as an additional
tool to mammography or as a standalone screening
method to enhance the accuracy of cancer detection
[7,8]. However, US examination outcomes are highly
operator-dependent,  limited by  suboptimal
reproducibility —and  significant inter-operator
variability [9].

The automated breast volume scanner (ABVS)
utilizes a specialized high-frequency broadband
transducer to perform automated breast scans,
generating consistent, standardized, and reproducible
high-resolution ultrasound images [10]. Studies
demonstrate that ABVS effectively overcomes the
limitations inherent in handheld ultrasound (HHUS)
while providing comparable diagnostic accuracy [11].
This system generates three-dimensional (3D) images
of breast lesions, enabling comprehensive
visualization from multiple perspectives, including
transverse, sagittal, and coronal planes. The
incorporation of morphological features within the
characteristic coronal plane has proven particularly
advantageous for enhancing early detection in dense
breast tissue and mitigating limitations associated
with preoperative breast lesion diagnosis. When
integrated with conventional mammography, ABVS
has been demonstrated to improve the cancer
detection rates [12,13]. However, the substantial
volume of images generated per ABVS scan
necessitates longer interpretation times, particularly
for less experienced radiologists. Furthermore, studies
suggest an increased dependency on radiologist
expertise for ABVS assessment [14].

In recent years, substantial advancements have
been achieved in the developing convolutional neural
networks (CNNs) employing deep learning (DL)
algorithms for medical images analysis [15-17]. DL
processes raw image pixels as input and
autonomously acquires complex patterns and features
through class annotations, thereby constructing a
comprehensive  hierarchical representation  of
extracted information [18,19]. CNNs autonomously
identify salient image features and acquire
classification capabilities during training, enabling the
incorporation of characteristics imperceptible to
human observers [20]. Deep learning networks
(DLNs) offer extensive utility in diagnostic imaging
and predictive modeling due to their demonstrated
advantages, including computational efficiency, high
accuracy, and reproducible performance [21,22]. The
implementation of DLNs for feature extraction in

Automated Breast Volume Scanner (ABVS) images
has enhanced diagnostic robustness during secondary
interpretation [23-25]. Although prior DL studies have
investigated ABVS applications, most models rely on
transverse and sagittal plane imagery, with a paucity
of DL methodologies leveraging ABVS coronal planes
for breast cancer diagnosis.

Therefore, to establish a novel automated
ultrasound diagnostic model for breast tumors, we
developed a DL model for automatic lesion detection
in ABVS images and differentiation between
malignant and benign lesions. The model's
performance was validated through internal and
external testing. Furthermore, we compared its
diagnostic performance with that of radiologists and

evaluated its utility in enhancing radiologists'
diagnostic accuracy.
Methods

Study design and participants

This study utilized ABVS images collected from
three hospitals between November 2019 and April
2024. We obtained ABVS data for the training,
validation, and internal test sets from the Breast
Imaging Database at Hospital A (Shanghai Tenth
People’s Hospital). The external test sets were
obtained from hospitals B (Zhongshan Hospital,
Fudan University) and C (Affiliated Hospital of
Nantong University). All patients in the study
underwent HHUS and ABVS examinations, with the
HHUS examinations aimed at validating the findings
of the ABVS. Patients subsequently underwent biopsy
or surgery within one month. Pathological findings
served as the gold standard. The inclusion criteria
were as follows: (1) patients aged > 18 years; (2)
patients whose breast lesions were evaluated with
HHUS and ABVS examinations; and (3) patients
whose lesions had not undergone biopsy or any
treatment prior to the ABVS examination. The
exclusion criteria for patients were as follows: (1)
incomplete data and clinical information; (2) the
features of the breast lesions could not be clearly
observed due to shadows behind the nipple or
poor-quality images; and (3) multiple lesions in one
breast. The clinical information of the patients and the
features of the breast lesions were recorded. This
multicenter study was approved by the institutional
review boards of the three participating centers
(approval No.SHSY-IEC-4.1/19-205/0). Informed
consent was waived by our Institutional Review
Board due to the retrospective nature of our study.
This  study was  registered at  https://
www.chictr.org.cn (No. ChiCTR2300074673).
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ABVS examinations

ABVS examinations were conducted using the
ACUSON 52000 US system (Siemens Medical
Solutions, Inc., Mountain View, CA, USA) with an
automated 5-14-MHz linear broadband transducer
(covering volumes of 154 x 16.8 x 6 cm), which
acquired 0.5-mm thick images in the transverse plane.
Image acquisition was performed by experienced
technologists. Patients were positioned in the supine
or lateral position with their arms above their head.
The appropriate scan depth was selected based on the
size of the breast to obtain a standardized ABVS
image. After the examination, the axial ABVS images
were sent to a dedicated workstation, where sagittal
and coronal images were reconstructed automatically
[26,27]. Finally, the transverse, sagittal, and coronal
ABVS images depicting the lesions were chosen for
further image segmentation and feature extraction.

Datasets

Following quality control, images were acquired
for the dataset from the Breast Imaging Database at
three hospitals. We compiled 1,152 breast lesions with
transverse, sagittal, and coronal images from 1,147
patients (aged 18-95 years) at hospital A. One-tenth of
the cases were randomly selected as the fixed test set,
while the remaining data were randomly divided into
a training set and a validation set at a ratio of 8:2,

ensuring no overlap among the three subsets. Two US
radiologists with over 5 years of experience
determined the boundaries and shapes of the lesions
from transverse, sagittal, and coronal images and
carefully marked the lesions. We obtained ABVS
images for external test sets from hospitals B (102
lesions from 102 patients) and C (119 lesions from 119
patients) to assess the generalizability of the DL
model. A flowchart detailing the study process is
presented in Figure 1.

Deep Learning Algorithm

The UNet segmentation model [28] was utilized
to segment the breast lesions within image sequences
across various planes. Segmentation mask images
were produced, with lesions appearing white against
a black background. Subsequently, the coordinates of
the external rectangular frame and the regional map
of the breast lesion at its coordinate position were
extracted. The breast lesions in the ABVS images were
precisely located and marked. The transverse, sagittal,
and coronal breast lesion region maps, extracted by
the UNet segmentation network, were fed into
common classification networks (VGG19,
DenseNet161, ResNet101, and ResNet50) [29]. These
networks extracted features from the three planes and
employed various fusion methods (Figure 2).

ABVS data collectiong of patients
with breast lesions in A hospital
from November 2019 to January
2022 (n=1548)

ABVS data collectiong of
patients with breast lesions in B
hospital from August and
December 2023 (n=182)

ABVS data collectiong of
patients with breast lesions in C
hospital from October 2023 and
April 2024 (n=161)
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Figure 1. Flowchart shows the eligibility criteria and process for deep learning (DL) model development and evaluation.
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Figure 2. Workflow of model development and the DL neural network architecture. The model was developed utilizing multiple-planar analysis (i.e., transverse, sagittal, and
coronal planes) within a DL framework. Within each processing pathway, the DL network extracts discriminative features by integrating spatial relationships via a ResNet
architecture. Features aggregated from the parallel pathways were subsequently concatenated and fused by the ensuing fully connected (FC) layers. The network accepts the
original image containing solely the lesion region as input and outputs the pathological binary classification alongside corresponding heatmaps visualizing salient regions.

The UNet segmentation network successfully
maintains both the local details and the global context
information of images during object segmentation.
Through pooling and upsampling operations, the
network adapts to structures at various scales. For
ABVS images, this means that the network can detect
and segment anatomical structures of different sizes
and shapes. In this study, EfficientNet-b0[30] was
employed as the feature extraction network for the
UNet segmentation network. The EfficientNet-b0
structure, incorporating innovative designs such as
deep separable convolution, provides robust feature
learning capabilities. In ABVS image segmentation
tasks, it aids in extracting information about
organizational structure, texture, and morphological
features from input images. The procedure for breast
lesion segmentation by UNet (EfficientNet-b0) on
ABVS images of the breast is as follows.

The convolution operation of the UNet
segmentation network in the encoder path: For each
layer 1, the convolution operation involves the
following formula:

Z} = o(W} +aj”" + b))

where Wil is the weight of the convolutional kernel,
al™! is the activation output of the previous layer, b! is
the bias term, and o is an activation function.

The upsampling and convolution operations of
the UNet segmentation network in the decoder path

involve formulas such as:

al = upsamle(al™)

Zi = o(W * [ar ", aj] + b))

Upsampling is an operation, such as bilinear
interpolation, that [al™%,al] indicates the result of the
previous layer's upsampling is connected with the
encoder output of the corresponding layer.

The implementation of UNet (EfficientNet-b0)
was based on the Segmentation Models Pytorch
library [https://github.com/qubvel/segmentation_
models.pytorch], which provides a modular
framework for constructing architecture encoder-
decoder  segmentation  models. @ The  Unet
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segmentation network delineates and localizes breast
lesions through the following procedure: the
segmentation mask produced by Unet model is
thresholdized to generate a binary image, wherein
breast lesions are designated as foreground (white)
and the background is rendered black. Connected
component analysis is applied to the binary image to
identify discrete regions, each representing an
individual lesion object. A bounding box is
subsequently computed for each connected region.
This process yields both a localization map
highlighting breast lesions and their corresponding
spatial coordinates. These lesion coordinates enable
the extraction of individual lesion regions, thereby
providing input data for a subsequent classification
model tasked with distinguishing benign from
malignant breast lesions.

During the design of the algorithm structure, the
methodology for data fusion across multiple planes
was incorporated. A neural network was devised to
process data from the transverse, sagittal, and coronal
planes, integrating their respective feature
representations to train a multimodal feature fusion
network. ResNet50 was selected as the foundational
architecture and subsequently refined. For each
individual plane, the network was initialized using
pretrained weights from ResNet50 on the ImageNet
dataset. The output layer of ResNet50 was modified to
comprise two nodes, corresponding to benign and
malignant classifications of breast nodules. The
optimizer employed Stochastic Gradient Descent
(SGD) with momentum, a learning rate of 0.001, and a
batch size of 64. Due to distinct variations in imaging
techniques and semantic features among the
transverse, sagittal, and coronal planes, feature fusion
was implemented via addition for the transverse and
sagittal planes, followed by concatenation with the
coronal features. Equations 1 and 2 define the
addition and concatenation operations, respectively.

c

c [
Zaga = ) K+ ¥) K= Y XixKi+ ) ¥ +K
i 1 i=1

1)

[ c
Zeoncar = ) X #Ki + ) ¥ Kise
i=1 i=1

2)

In Equation (1), X denotes the feature map of the
transverse plane, Y represents the feature map of the
sagittal plane, and K signifies the convolution
operation to be executed subsequent to feature fusion.
In Equation (2), X corresponds to the fusion feature
derived from the transverse and sagittal planes, Y
indicates the feature map of the coronal plane, and K

represents the convolution operation post feature
fusion. The parameter ¢ denotes the number of
channels in the feature map for both equations.

The concatenate feature fusion merges feature
maps along the channel dimension, thereby
increasing the number of features while maintaining
the information content per feature. The hybrid fusion
strategy combining addition and concatenation
operators is employed to integrate breast features.
This approach effectively addresses the limitations of
low semantic richness in single-plane features and
insufficient high-level breast feature representation,
consequently enhancing multimodal feature fusion
classification =~ performance  [31,32].  Critically,
concatenation reduces feature map channel
dimensionality. Consequently, a fully connected layer
is incorporated into the original ResNet50
architecture, reducing the dimensionality of the fused
feature maps to half the original size. During model
testing, a probability averaging method is applied to
the prediction outcomes. The predicted benign or
malignant probabilities for each image frame are
summed and subsequently divided by the total
number of lesion images to compute the mean
probability. A lesion is classified as malignant if its
malignancy probability exceeds the threshold value of
0.5; otherwise, it is classified as benign.

Image analysis

Junior Radiologists 1 and 2, each possessing 2
years of experience in breast US diagnosis and 1 year
in ABVS diagnosis; Middle Radiologists 3 and 4, each
possessing 5 years of experience in breast US
diagnosis and 3 years in ABVS diagnosis; and Senior
Radiologists 5 and 6, each possessing 9 years of
experience in breast US diagnosis and 5 years in ABVS
diagnosis, participated in the study. Radiologists 1 - 6
did not perform manual lesion demarcation; they
were provided solely with the primary ABVS images
and corresponding case numbers, operating
independently and without consultation to ensure
diagnostic objectivity. Each radiologist independently
reviewed the identical set of lesions and utilized the
fifth edition of the Breast Imaging-Reporting and Data
System (BI-RADS) lexicon [33,34] to assign a BI-RADS
category based on the transverse, sagittal, and coronal
image features.

Comparative analysis with radiologists'
interpretations

Employing the 5th edition of the BI-RADS
classification guidelines, BI-RADS 4A denotes lesions
with a low suspicion of malignancy (£ 10%
probability). This category served as the diagnostic
threshold to evaluate the performance of six
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radiologists. Subsequently, after a one-month interval,
the radiologists re-evaluated the cases incorporating
DL-derived malignancy assessments (benign or
malignant) to establish final diagnoses. The diagnostic
performance metrics—both with and without DL
assistance —alongside interpretation times, were
systematically compared.

Statistical analysis

Statistical analyses were conducted using IBM
SPSS Statistics (version 27). Continuous variables
were presented as the means * standard deviations
(SDs), while categorical variables were expressed as
frequencies and proportions. Categorical variables
were compared using the chi-square test or Fisher's
exact test, and continuous variables were analyzed
with t-tests. To evaluate diagnostic performance in the
test set, accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value
(NPV), and area under the receiver operating
characteristic curve (AUC) were calculated for both
the DL model and radiologists of varying experience
levels. Comparisons of sensitivity and specificity
between the DL method and the six radiologists, as
well as among the six individual radiologists without
versus with DL assistance, were performed using
McNemar's test. Reading times across radiologist
groups were compared via paired t-tests.
Interobserver agreement was assessed based on
categorization concordance between the DL model
and radiologists, with interreader correlations

quantified using Fleiss' kappa coefficient (k). The F1
score, defined as the harmonic mean of sensitivity and
PPV, served as a composite performance metric;
higher values indicated superior diagnostic efficacy.
All evaluation metrics were reported with 95%
confidence intervals (Cls). Statistical significance was
defined as P < 0.05.

Results

Patient inclusion and grouping

Between November 2019 and January 2022,
transverse, sagittal, and coronal images from 1,152
lesions of 1,147 patients were obtained from the ABVS
Imaging Database at A Hospital for training (832
lesions), validation (204 lesions), and internal testing
(116 lesions). Five patients presented with bilateral
breast tumors, resulting in a total of ten lesions. Of the
1,152 breast lesions 535 (46.4%) were malignant, and
617 (53.6%) were benign. The maximum diameter
ranged from 4-130 mm. Between August 2023 and
December 2023, 102 breast lesions from 102 patients
were obtained from Hospital B. Between October 2023
and April 2024, 119 breast lesions from 119 patients
were obtained from Hospital C. These lesions all
include transverse, sagittal, and coronal images,
forming an independent external test set to fairly
evaluate the DL method. The detailed patient
demographics, breast lesion characteristics, and
clinicopathological information for each group are
summarized in Table 1.

Table 1. Clinical and imaging characteristics of the training set, validation set, and test set.

Training set (n = 832) Validation set (n = 204)

Internal test set (n = 116)

External test set 1 (n=102)  External test set 2 (n =119)

M B M B M B M B M B

Number of lesions (n) 386 446 95 109 54 62 53 49 57 62
Age (years) 58.1+12.8 43.6+129 57.8+11.7 449+13.5 59.1+12.3 41.5+12.0 54.5+12.0 4331129 56.5+11.4 425+12.5
(mean * SD, range) (20 - 95) (18-79) (29 - 84) (20 -75) (30-79) (18-67) (37-89) (18-77) (40-85) (18-61)
Age

<40 years (n) 37 187 6 37 4 30 25 13 14 22

> 40 years (n) 349 259 89 72 50 32 28 36 43 40
Lesion size (mm) 33.5+19.3 18.8+9.9 29.6 +14.1 194+12.2 29.2+114 18.5+8.1 21.8+6.77 20.5+10.5 223+134 19.7+114
(mean * SD, range) (7 - 130) (4-91) (10 - 76) (4-83) (13-62) (8-49) (10-40) (6-60) (12-73) (7-58)
Lesion size
T1 (< 20 mm) 81 296 20 68 13 42 14 28 16 35
T2 (20 - 50 mm) 226 142 64 36 35 19 37 20 37 24
T3 (> 50 mm) 79 8 11 5 6 1 2 1 4 3
Histology types

Fibroadenoma 255 68 44 25 56
Adenosis 122 29 14 6 5
Other benign lesions® 69 12 4 18 1
Invasive ductal 248 48 42 41 48
carcioma

Ductal carcinoma in 53 19 1 2 4
situ

Other malignant 85 28 11 10 5
lesions”

a Includes hyperplasia, benign phyllodes tumours, papillomas, inflammation, and cysts.

" Includes mucinous carcinoma, invasive lobular carcinoma, malignant phyllodes tumor, and invasive carcinoma of no specific type. M = Malignant; B = Benign. External test
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set 1: B Hospital. External test set 2: C Hospital
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Figure 3. Decision curve analysis comparing the performance of four DL models in predicting breast cancer. All models demonstrated clinical utility within the threshold
probability range of 45% to 95%. ResNet50 demonstrated a significantly higher net benefit than the other three models.

Table 2. Performance of different models based on the three-plane data feature fusion of ABVS images.

Model Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) F1 score
VGG19 0.870 0.919 0.904 0.891 0.897 0.964 (0.933-0.985) 0.887
DenseNet161 0.926 0.887 0.877 0.932 0.905 0.972 (0.950-0.988) 0.901
ResNet101 0.870 0.903 0.887 0.889 0.888 0.956 (0.929-0.988) 0.879
ResNet50 0.982 0.903 0.898 0.983 0.940 0.984 (0.965-0.995) 0.938

Performance of DL models

To simulate the clinical workflow of radiologists,
who consider multiplane US images when making
assessments, we merged the malignancy risk
probabilities from various planes to generate an
overall probability for lesion-level US imaging
evaluation. Within the internal test set, we assessed
the performance of the model by utilizing different
plane US images, and measuring the AUC of the
receiver operating characteristic curve (ROC) and F1
score (Figure 3). When the transverse, sagittal, and
coronal planes were combined, ResNet50 achieved
the best sensitivity (98.2%), and VGG19 performed
best in terms of specificity (91.9%). Compared with
the other models (VGG19, DenseNet161, ResNet101),
the ResNet50 model had higher sensitivity (98.2%),
NPV (98.3%), and accuracy (94.0%) (Table 2).
According to the transverse and sagittal planes, the
ResNet50 model achieved an AUC of 0.963. With the
additional coronal planes, the model attained a
significantly better AUC of 0.984. The three planes
accomplished superior performance to the two
planes. The evaluation of the AUC on lesion-level US
images demonstrated superior performance on both

two-plane and three-plane assessments compared
with single-plane US images. For external test set 1,
the DL model also had better sensitivity (96.2%),
accuracy (90.2%), and an F1 score of 0.911. For
external test set 2, the DL model also had better
sensitivity (93.0%) and an F1 score of 0.876. Table 3
summarizes the statistical comparisons among
various planes.

Visualization and auxiliary diagnosis functions
of the DL model

To visualize the capabilities of the DL model, the
gradient-weighted  class  activation = mapping
(Grad-CAM) method was used to generate heatmaps
(Figures 4 and 5). These heatmaps can highlight the
most indicative areas of ABVS images, thereby
interpreting the predictive mechanism of the DL
model. This process reveals the contribution of each
pixel in these images to the prediction of breast
lesions. We observed that the DL model focused on
the region where the lesion intersected with the
surrounding breast glands. The basis of this
prediction can assist radiologists in understanding the
rationale behind the decisions made by the DL model.

https://www.medsci.org
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Table 3. Performance of the ResNet50 model based on single, double and the three planes of ABVS images in test set.

Plane Sensitivity Specificity PPV NPV Accuracy AUC (95% CI) F1 score
Transverse 0.870 0.855 0.839 0.883 0.862 0.946 (0.916-0.977) 0.855
Sagittal 0.796 0.919 0.896 0.838 0.862 0.952 (0.919-0.984) 0.843
Coronal 0.796 0.952 0.935 0.843 0.879 0.938 (0.895-0.975) 0.860
Feature fusion 1 0.889 0.903 0.889 0.903 0.897 0.963 (0.938-0.989) 0.889
Feature fusion 2 0.982 0.903 0.898 0.983 0.940 0.984 (0.965-0.995) 0.938
Feature fusion 2° 0.962 0.837 0.864 0.954 0.902 0.978 (0.951-0.994) 0.911
Feature fusion 2° 0.930 0.823 0.828 0.927 0.874 0.942 (0.902-0.978) 0.876

Feature fusion 1: transverse and sagittal feature fusion; Feature fusion 2: transverse, sagittal and coronal feature fusion
* external test set 1 " external test set 2

US image Heatmap Probability plot

Transversal

Sagittal

Coronal

Figure 4. ABVS image and feature map visualization of breast tumor segmentation. ABVS image and corresponding feature map from a 24-year-old female patient presenting with
aright breast mass, pathologically confirmed as fibroadenoma. The DL model predicted a benign classification (denoted by the green frame) for binary categorization, with a mean
benign probability of 0.99. The superimposed heatmaps delineate diagnostically significant regions within each image. Areas depicted in warm colors (e.g., red, yellow) correspond
to stronger correlations with the prediction outcome. Conversely, regions in cool colors (e.g., green, blue) indicate weaker predictive correlations. For benign tumors, the model
derived its diagnostic prediction through comprehensive pixel-wise analysis within the segmented tumor region.

Comparison of diagnostic performance specificity than junior radiologists (94.4% vs. 60.2%;
between the DL model and radiologists 96.8% vs. 78.2%; P < 0.05; respectively). Moreover, the
sensitivity of US diagnosis by senior radiologists
(94.4%) was superior to that of middle radiologists
(89.8%). Compared with each individual radiologist,
the ResNet50 model achieved systematically better
sensitivity and specificity than junior radiologists in
the internal test set (P < 0.05) and reached the level of
senior radiologists with high reliability and accuracy
(Table 5).

Radiologists with varying levels of experience
observed greater accuracy in assessing breast US
lesions on three-plane US images compared to
two-plane US images (Table 4). The accuracy of
diagnosis by radiologists 5 and 6 was higher than that
of radiologists 1 - 4. In the independent evaluation of
lesions without the assistance of DL, senior
radiologists demonstrated greater sensitivity and
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Transversal

Sagittal

Coronal

US image

Heatmap

Probability plot

Figure 5. Visualization of ABVS images and feature maps for breast tumor segmentation. A 50-year-old woman presented with a palpable breast mass, which was
histopathologically confirmed as invasive ductal carcinoma. The DL model predicted malignancy (indicated by a red frame for binary classification) with a mean malignancy risk
probability of 0.93. These heatmaps depict the approximate locations of the lesion in each image. For malignant tumors, the model focuses more on the tumor periphery rather

than the entire tumor area.

Table 4. Comparison of diagnostic performance among the six radiologists at different levels, according to internal test set base on the

transverse and sagittal two-plane and transverse, sagittal and coronal three-plane.

Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) AUC (95% CI)
Two-plane R1 60.3 (70/116) 75.9 (41/54) 46.8 (29/62) 55.4 (41/74) 69.0 (29/42)  0.614 (0.511-0.716)
R2 73.3 (85/116) 59.3 (32/54) 85.5 (53/62) 78.0 (32/41) 70.1 (53/75)  0.724 (0.628-0.819)
R3 87.9 (102/116) 74.1 (40/54) 100.0 (62/62) 100.0 (40/40)  81.6 (62/76)  0.870 (0.797-0.943)
R4 95.7 (111/116) 98.1 (53/54) 93.5 (58/62) 93.0 (53/57) 98.3 (58/59)  0.958 (0.917-1.000)
R5 91.4 (106/116) 81.5 (44/54) 100.0 (62/62) 100.0 (44/44) 86.1 (62/72) 0.907 (0.844-0.971)
R6 94.8 (110/116) 98.1 (53/54) 91.9 (57/62) 91.4 (53/58) 98.3 (57/58)  0.950 (0.905-0.995)
Three-plane R1 65.6 (76/116) 66.7 (36/54) 64.5 (40/62) 62.1 (36/58) 69.0 (40/58)  0.656 (0.555-0.756)
R2 74.1 (86/116) 53.7 (29/54) 91.9 (57/62) 853(29/34)  69.5(57/82)  0.728 (0.633-0.824)
R3 91.4 (106/116) 83.3 (45/54) 98.4 (61/62) 97.8 (45/46) 87.1(61/70)  0.909 (0.846-0.971)
R4 96.6 (112/116) 96.3 (52/54) 96.8 (60/62) 96.3 (52/54) 96.8 (60/62)  0.965 (0.927-1.000)
R5 95.7 (111/116) 92.6 (50/54) 98.4 (61/62) 98.0 (50/51) 93.8 (61/65)  0.955 (0.910-1.000)
R6 95.7 (111/116) 96.3 (52/54) 95.2 (59/62) 945(52/55)  93.8(59/61)  0.957 (0.915-1.000)

Data represent the percentages, data in parentheses are used to calculate percentages.

BI-RADS, Breast Imaging Reporting and Data System; R, radiologist; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating
characteristic curve; CI, confidence interval.
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Table 5. Comparison of diagnostic performance and reading time between the groups of radiologists at different levels with and without

DL-assisted.
Different levels of radiologist group  Index Without DL With DL P1 P2
Junior R1 Reading Time (s) 414+93 17.0+5.7 <0.001
Sensitivity 66.7 77.8 0.026 1.000
Specificity 64.5 79.0 <0.001 <0.001
R2 Reading Time (s) 39.7+8.6 18.2+8.4 0.048
Sensitivity 53.7 81.5 <0.001 0.003
Specificity 91.9 98.4 0.228 0.027
Middle R3 Reading Time (s) 36.1+5.4 144+ 4.6 <0.001
Sensitivity 83.3 87.0 0.182 0.617
Specificity 98.4 98.4 0.371 /
R4 Reading Time (s) 38.2+6.5 15.6 +3.8 <0.001
Sensitivity 96.3 98.1 0.680 1.000
Specificity 96.8 96.8 0.680 /
Senior R5 Reading Time (s) 33.0£6.8 10.8+5.2 <0.001
Sensitivity 92.6 96.3 0.680 0.617
Specificity 98.4 93.5 0.371 0.249
R6 Reading Time (s) 309+2.0 103 +1.6 <0.001
Sensitivity 96.3 100 0.671 0.479
Specificity 95.2 98.4 1.000 0.479

P1 values indicate a comparison between the AI model and the different levels of radiologist groups without Al assistance.

P2 values indicate a comparison between the the different levels of radiologist group with Al assistance and without Al assistance.

DL = Deep Learning

Upon incorporating the DL method for a second
diagnosis in the internal test set, there was a notable
improvement in the diagnostic sensitivity of junior
radiologists, which increased significantly from 60.2%
to 79.7%. Similarly, the specificity improved from
782% to 88.7% (both P < 0.05). In contrast, the
sensitivity and specificity of the middle and senior
radiologists remained comparable to those in the first
diagnosis, with no statistically significant differences
observed (all P > 0.05). Furthermore, the diagnostic
accuracy of all six radiologists improved significantly,
enhancing the diagnostic performance of junior
radiologists in terms of accuracy (from 69.9% to
84.4%, P < 0.05) (Figure 6).

Among all the radiologists, the reading time of
the senior radiologists was shorter than that of the
junior radiologists. The reading time of all the
radiologists in the DL-assisted mode was shorter than
that in the non-DL mode (P < 0.05). For all the
radiologists, the average reading times with and
without the DL-assisted mode were 14.4 seconds and
36.5 seconds, respectively. Table 5 provides a
comprehensive overview of the specific changes in
each diagnostic index for the six radiologists when the
DL model was used. The results clearly indicate that
the integration of the DL model positively enhances
the diagnostic capabilities of radiologists.

Interobserver agreement in the test set

We compared the agreement between the DL
model and the six radiologists in the internal test set.
For the binary classification of benign and malignant

lesions, the DL model demonstrated almost perfect
agreement (x=0.809 and 0.810, 95% CI: 0.701 - 0.916
and 0.702 - 0.918) with the senior radiologists (5 and
6), substantial agreement (k=0.755 and 0.792, 95% CL:
0.635 - 0.875 and 0.680 - 0.904) with the middle
radiologists (3 and 4), and moderate to mild
agreement (x=0.222 and 0.454, 95% CI: 0.055 - 0.389
and 0.295 - 0.613) with the junior radiologists (1 and
2), respectively. The senior radiologists exhibited
substantial agreement with the middle radiologists.
The details are presented in Table 6.

Discussion

The lack of consensus among inter- and
intra-readers in ABVS examinations is widely
recognized, and significant overlap exists in the US
imaging features of benign and malignant lesions [8].
The efficacy of radiological decision-making relies on
both the expertise and experience of the radiologist, as
well as their workload [35,36]. We developed and
validated a DL model for predicting breast cancer risk
by analyzing and learning US features derived from
ABVS images. Utilizing multiple image planes, this
DL model closely replicates the standard clinical
breast US scanning protocol and diagnostic reasoning.
A comparative performance analysis demonstrated
that the DL model achieved significantly superior
diagnostic accuracy compared to junior radiologists.
Furthermore, the diagnostic accuracy of the six
radiologists improved significantly when utilizing the
DL model as an assistive tool. Patryk et al. [36]
employed a deep CNN with ABVS for breast lesion
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detection and classification, reporting a sensitivity of
90.9% and an accuracy of 91.0%, achieving
near-perfect agreement with ground truth and
performing comparably to human readers. Our study
demonstrated diagnostic accuracy comparable to
those reported by Wang et al. [37]. The application of
this novel DLN based on ABVS images holds
potential for enhancing the diagnostic performance of
junior radiologists. Collectively, these results indicate
that the DL model can effectively evaluate breast
lesions with diagnostic efficacy comparable to that of
experienced radiologists.

The application of ABVS is associated with
prolonged reading times and an increased rate of
false-negative lesion identification. Research by Yang
et al. [26] demonstrated that a significantly shorter
reading time can be achieved without compromising
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experienced readers utilizing the concurrent-reading
protocol. Our study yielded comparable findings. The
proposed approach effectively facilitates the
identification of suspicious lesions within ABVS
datasets and provides valuable insights for accurate
lesion classification, thereby contributing to
significant improvements in diagnostic outcomes. The
reading time for all participating radiologists was
reduced in the DL-assisted mode relative to the
non-DL mode, underscoring the utility of DL
assistance for both junior and senior radiologists. The
integration of DL models into clinical practice may
serve as a dependable adjunct for experienced
radiologists,  offering  supplementary insights,
reducing diagnostic time expenditure, and furnishing
expert-level guidance to junior radiologists.
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Figure 6. The confusion matrices for the DL model predicting breast cancer in (a) the internal test set, (b) external test set 1, and (c) external test set 2. The receiver operating
characteristic (ROC) curves illustrate the performance of the DL model and radiologists groups groups across varying experience levels with versus without DL assistance in (d)

the internal test set, (€) external test set 1, and (f) external test set 2.
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Table 6. Interobserver agreement among six radiologists and ResNet50 model.

Kappa value (95% CI)

R1 R2 R3

R4 R5 R6

ResNet50 0.222 (0.055- 0.389)  0.454 (0.295 - 0.613) 0.755 (0.635-0.875)  0.792 (0.680 - 0.904)  0.809 (0.701 - 0.916) 0.810 (0.702 - 0.918)
R1 0.314 (0.242 - 0.386) 0.315(0.239-0.391)  0.222(0.137-0.307) ~ 0.249 (0.167 - 0.331) 0.303 (0.140 - 0.466)
R2 0.504 (0.422-0.586)  0.419 (0.336 - 0.502)  0.428 (0.344 - 0.512) 0.510 (0.432 - 0.588)
R3 0.755 (0.694 - 0.816)  0.805 (0.749 - 0.861) 0.733 (0.675 - 0.791)
R4 0.844 (0.794 - 0.894) 0.844 (0.794 - 0.894)
R5 0.861 (0.814 - 0.908)

The primary objective of DL application in this
domain is to optimize clinical workflows and enhance
diagnostic  accuracy. Evaluating US images
traditionally involves a time-consuming and iterative
process. DL algorithms, in contrast, efficiently process
extensive volumes of image data without
fatigue-related degradation, demonstrating high
throughput and stability throughout the diagnostic
procedure. Furthermore, DL excels in recognizing
complex patterns, rendering it particularly suitable
for image interpretation tasks demanding the capture
of nuanced details, analogous to human neural
network capabilities [38]. Specifically, the DL model
demonstrates robust capabilities in the automated
identification and delineation of breast lesions [39].
Beyond diagnostic assistance, the model precisely
localizes lesions and characterizes their extent,
thereby augmenting the interpretability of clinical
findings. Integration of DL models into US
workstations offers potential for real-time radiological
assistance. Deployment of DL technology as an
auxiliary tool can improve diagnostic accuracy,
particularly benefiting less experienced radiologists.
Moreover, DL model implementation addresses
challenges stemming from resource disparities. In
developed regions characterized by high clinical
workloads, DL models can mitigate escalating
medical demands. Similarly, in resource-limited
remote settings, DL models help mitigate geographic
disparities in the distribution of specialized medical
expertise and personnel.

In clinical practice, radiologists can continually
and dynamically observe lesion evolution and
three-dimensional characteristics while integrating
multiple clinical parameter [40]. To simulate the
radiologist's clinical workflow, the DL model was
developed using ABVS images, enabling multi-planar
lesion visualization during routine examinations. The
developed DL model demonstrated comparability
and generalizability during validation, along with
superior diagnostic accuracy. An additional
advantage of this DL model is its inherent robustness.
The model was constructed utilizing a diverse dataset
comprising 1,373 cases collected from three distinct

hospitals. These images were acquired by various
operators employing different imaging devices. This
heterogeneity = in  geographic  origin,  case
characteristics, and imaging sources enhances the
model's reproducibility. The AUC for the internal test
set of the DL model was 0.984, and for the external test
set 1, it was 0.978; for external test set 2, it was 0.942.
These results indicate that the model exhibited
outstanding performance in accurately identifying
breast cancer risk.

There are several limitations in this study. First,
the DL model was developed exclusively using
grayscale US images; incorporating multimodal
images data, such as color Doppler and elastography,
may enhance the model performance. Second, the
distribution of lesions across diagnostic classifications
was uneven. Future studies should aim to include a
broader spectrum of breast lesions to ensure more
comprehensive representation of diverse pathological
tumor types and to enrich the database. Third,
subsequent research should investigate the potential
of DL models for classifying molecular subtypes of
breast cancer and for accurately characterizing
BRCA1/2 mutation status. Further exploration is also
needed regarding the optimal integration of DL
models into routine clinical workflows. Advancing
these research directions holds significant potential
for enhancing the diagnostic capabilities of DL models
in breast cancer and facilitating personalized
treatment strategies.

Conclusions

The DL model utilizing ABVS images
demonstrates expert-level capability in discriminating
between benign and malignant breast lesions.
Radiologist performance, particularly among junior
radiologists, is significantly enhanced when assisted
by the DL model, as evidenced by improved
diagnostic accuracy and reduced interpretation time.

This DL approach fundamentally transforms
conventional breast ultrasound practices by
facilitating efficient, automated screening and

classification of breast tumors.
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