Int. J. Med. Sci. 2025, Vol. 22

%;JM [VYSPRING
vsﬁ INTERNATIONAL PUBLISHER

3763

International Journal of Medical Sciences
2025; 22(14): 3763-3778. doi: 10.7150/ijms.119142

Research Paper

Dual-Function RNA Biomarkers: Integrating Relapse
Prediction and Immune Profiling in Triple-Negative
Breast Cancer

Ying Wenl, Yuanyuan Tang?, Qiongyan Zoul™

1. Department of General Surgery, The Second Xiangya Hospital, Central South University, Clinical Research Center for Breast Disease in Hunan Province,
No. 139, Renmin Road, Changsha, Hunan, 410011, China.

2. Plastic surgery of breast cancer, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha,
Hunan, 410013, China.

P4 Corresponding author: Qiongyan Zou: zqy4311@csu.edu.cn.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/).
See https:/ /ivyspring.com/terms for full terms and conditions.

Received: 2025.06.08; Accepted: 2025.07.25; Published: 2025.08.11

Abstract

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a high risk of
recurrence and poor clinical outcomes. However, the factors contributing to its relapse remain
inadequately understood. In this study, we utilized transcriptomic data from The Cancer Genome
Atlas (TCGA) to identify IncRNA pairs associated with both recurrence and immune response. A
risk prediction model was constructed through the integration of LASSO regression, Cox
proportional hazards analysis, and random forest algorithms. To validate its predictive capability, we
employed an external validation cohort along with a backpropagation neural network (BPNN) to
assess the model’s performance. Our findings indicate that the proposed risk model correlates
strongly with multiple clinical features, including immune cell infiltration, response to
immunotherapy, tumor mutational burden (TMB), and chemotherapy sensitivity. Additionally, a
nomogram integrating risk scores with clinical parameters demonstrated superior predictive
accuracy compared to models based solely on risk scores. Experimental validation confirmed that
silencing LINCO1605 significantly impaired TNBC cell proliferation, migration, and invasion. Overall,
this risk model provides a novel approach for predicting tumor recurrence and prognosis in TNBC
patients. The study also highlights the potential of LINCO1605 as a therapeutic target, offering new
perspectives for personalized treatment strategies.
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Introduction

Triple-negative breast cancer (TNBC) is an
aggressive subtype characterized by the absence of
estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor-2
(HER-2) expression [1]. Due to the lack of defined
molecular targets, chemotherapy remains the
standard treatment, but its efficacy is limited by
toxicity and drug resistance [2]. Patients diagnosed
with TNBC typically have a median overall survival
(OS) of only 14.52 months [3, 4]. Recent advances in
immunotherapy, particularly immune checkpoint
inhibitors (ICIs), have shown promise in improving

TNBC treatment outcomes [5]. Unlike other breast
cancer subtypes, TNBC exhibits distinct molecular
characteristics,  including  higher levels  of
tumor-infiltrating lymphocytes (TILs), which may
enhance the response to immunotherapy [6].
However, TNBC's heterogeneity limits ICI efficacy,
underscoring the need for reliable biomarkers to
predict treatment response and recurrence.

Long noncoding RNAs (IncRNAs) are emerging
as critical regulators in cancer, influencing tumor
progression, immune modulation, and therapy
resistance [7, 8]. Several IncRNA-based prognostic

https://www.medsci.org



Int. J. Med. Sci. 2025, Vol. 22

models have been proposed for breast cancer, such as
a metabolism-related IncRNA signature for predicting
recurrence-free survival (RFS) [9]and immune-related
IncRNAs as potential therapeutic targets for TNBC
[10]. However, integrative models combining relapse
prediction and immune profiling remain scarce.

Immunotherapy efficacy depends on complex
interactions between tumor cells and immune
modulators within the tumor microenvironment
(TME), which also plays a key role in tumor
recurrence [11]. Some studies have demonstrated that
IncRNAs are actively involved in modulating the
immune landscape and influencing responses to
immunotherapy [12-15]. Additionally, tumor-
infiltrating lymphocytes have been proposed as
biomarkers for early cancer detection and
immunotherapy response prediction [16]. Despite
these findings, there is still a lack of effective
IncRNA-based models that integrate both relapse risk
and immune profiling to enhance the accuracy of
clinical decision-making.

In this study, we introduce a novel risk
assessment model based on IncRNA pairs to predict
both tumor recurrence and immune infiltration in
TNBC. Unlike traditional approaches that rely on
absolute gene expression levels, our innovative
IncRNA pairwise binary modeling uses relative
expression to create a binary matrix (e.g., 1 if IncRNA
A > B, 0 otherwise), effectively minimizing batch
effects and standardization biases across datasets [17].
This approach enhances model robustness by
reducing variability from regional, racial, or platform
differences. We further strengthened the model
through multi-algorithm feature selection, including
LASSO regression, Cox proportional hazards analysis,
and random forest, ensuring high predictive accuracy.
Cross-cohort validation was performed using an
external dataset and a backpropagation neural
network (BPNN), which provided robust validation
of the model’s performance across diverse patient
populations. Additionally, functional validation of the
hub IncRNA LINC01605 demonstrated its role in
TNBC cell proliferation, migration, and invasion,
underscoring its potential as a therapeutic target. This
integrative approach offers a powerful tool for
prognosis prediction and personalized treatment in
TNBC.

Materials and Methods
Data acquisition

We obtained transcriptome profiling data and
corresponding clinical information from two publicly

3764
available databases: The Cancer Genome Atlas
(TCGA) (https://portal.gdc.cancer.gov/) and the

Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/geo/). After excluding patients
with incomplete clinical records, we established a
cohort of 149 TNBC cases from TCGA for model
construction and an external validation cohort of 106
cases from the GSE281303 dataset in GEO. The overall
study design and analytical workflow are presented
in Figure 1.

Identification of differentially expressed
relapse- and immune-related genes

We identified differentially expressed genes
(DEGs) by comparing recurrence and non-recurrence
patients using the limma R package, applying
|log2-fold change (logFC)| > 1 and false discovery
rate (FDR) < 0.05 as screening criteria. To explore the
biological significance of these DEGs, we conducted
gene set enrichment analysis (GSEA) using the
clusterProfiler R package. To assess immune
infiltration levels in each sample, we applied
single-sample gene set enrichment analysis (ssGSEA).
Unsupervised hierarchical clustering (K values from 2
to 10) was performed using the ConsensusClusterPlus
R package to categorize samples into immune
subgroups. We then identified immune-related DEGs
by comparing expression levels across different
immune clusters. The intersection of relapse-
associated DEGs and immune-related DEGs was
considered as the final set of relapse- and
immune-associated genes. The clustering results and
DEG distribution were visualized using the online
tool Sangerbox (http://vip.sangerbox.com/home.
html) [18].

Immunophenotyping and tumor
microenvironment analysis

The level of immune infiltration across different
immune phenotypes was visualized using the
pheatmap R package. We evaluated the tumor
microenvironment (TME) wusing the ESTIMATE
algorithm [19], which provides tumor purity, as well
as immune and stromal scores. These scores were
compared among different immune subgroups and
illustrated using violin plots. Human leukocyte
antigen (HLA), also known as the expression product
of human major histocompatibility complex (MHC)
glycoprotein, is closely related to the function of the
human immune system [20, 21]. Differences in HLA
expression across immune subgroups were presented
in boxplots using the ggpubr R package.
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Figure 1. Study design and analytical workflow for identifying potential biomarkers.
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Selection and pairing of IncRNAs

We conducted a correlation analysis between the
identified relapse- and immune-related DEGs and
IncRNAs to select differentially expressed IncRNAs
(DEIncRNAs). LncRNAs with a correlation coefficient
> 04 and p-value < 0.001 were retained. Next,
IncRNAs were paired systematically. If a pair
consisted of IncRNAs A and B, we defined a new
variable X such that: X =1 if the expression of A was
higher than B, X = 0 if the expression of A was lower
than B. This transformation converted the expression

matrix into a binary format, effectively minimizing
batch effects and standardization biases introduced
by regional differences, racial backgrounds, or
platform inconsistencies [18, 22]. This relative
expression-based approach has been shown to
enhance the robustness and generalizability of
prognostic models across diverse datasets, as
demonstrated in studies of hepatocellular carcinoma
and other cancers [22]. Pairs where the expression
ratio was consistently 0 or 1 in over 80% of samples
were excluded to ensure model stability.
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Construction of a risk assessment model

To identify IncRNA pairs associated with
prognosis, we performed univariate Cox regression
analysis. Candidate pairs were further refined using
the least absolute shrinkage and selection operator
(LASSO) regression, which was run 1,000 times using
the glmnet R package. We also employed random
forest (RF) analysis [23] to rank IncRNA pairs based
on their importance in predicting recurrence risk. The
randomForest R package was used for this step. The
overlapping IncRNA pairs identified by LASSO and
RF were then subjected to multivariate Cox regression
to compute their coefficients (3i). The final risk score
for each patient was calculated using the formula:
Risk Score = Y i * ExpX. The predictive performance
of the model was assessed using receiver operating
characteristic (ROC) curves, with an optimal cutoff
value determined by the survivalROC R package.

Reverse validation by BNPP analysis

To assess the robustness of key model features,
we employed a back-propagation neural network
(BPNN), a widely used method in supervised
learning. The BPNN consists of an input layer, one or
more hidden layers, and an output layer, with
interconnected neurons refining their weights
through iterative learning.[24]. During training, the
network processes input data, generates initial
predictions, and compares them to expected outputs.
The resulting error is propagated backward, adjusting
synaptic weights to minimize discrepancies and
improve model accuracy [25]. To ensure effective
model validation, TNBC patient data from the TCGA
database were randomly split into two independent
cohorts: 104 patients for training and 45 patients for
validation, maintaining a 7:3 ratio. We employed the
neuralnet, NeuralNetTools, and pROC R packages to
conduct the reverse validation process. The model’s
predictive performance was assessed using receiver
operating characteristic (ROC) curves, providing an
objective evaluation of classification accuracy.

Clinical and prognostic evaluation of the
model

Kaplan-Meier analysis was performed to
compare the difference in survival in the high- or
low-risk groups. The independence of the risk score as
a prognostic factor was determined using univariate
and multivariate Cox regression analyses. ROC
curves were also plotted to compare the predictive
power of the risk model with conventional
clinicopathological characteristics. The boxplots
demonstrated the differences in the risk score among
groups sorted based on clinicopathological
characteristics. A nomogram was constructed by

integrating risk scores with clinical variables. The
model’s predictive accuracy was assessed using
concordance index (C-index) and calibration curves.
Additionally, decision curve analysis (DCA) was
conducted using logistic regression to estimate
clinical utility. The R packages were survival,
survminer, survivalROC, ggpubr, rms, regplot, pec, and
g3DCA.

Immune cell infiltration and functional analysis

To explore the relationship between the risk
model and immune cell infiltration, we utilized
multiple computational algorithms, including XCELL,
TIMER, QUANTISEQ, MCPCOUNTER, EPIC,
CIBERSORT-ABS, and CIBERSORT. The correlation
between the risk score and the abundance of immune
cell types was visualized using a lollipop chart
generated by the ggplot2 R package. Differences in
immune function between high- and low-risk groups
were further analyzed and illustrated in boxplots.
Gene set variation analysis (GSVA) was conducted to
compare functional enrichment between different risk
groups. The analysis was performed using the GSVA,
GSEABase, and limma R packages, with the result
displayed in a heatmap.

Association between the risk model and
immune checkpoints, immunotherapy
prediction response, somatic mutation and
drug sensitivity

To evaluate whether the risk score is linked to
immune checkpoint-related genes, we examined the
expression levels of immune checkpoint inhibitors
(ICIs) such as PDCD1 (PD-1), CD274 (PD-L1),
CTLA-4, and LAG3. The association between the risk
score and ICIs was visualized using violin plots. To
predict the likelihood of response to immunotherapy,
we applied the Tumor Immune Dysfunction and
Exclusion (TIDE) algorithm (http://tide.dfci.harvard.
edu/) [26] and compared TIDE scores between high-
and low-risk groups. Higher TIDE scores indicate a
greater likelihood of immune evasion and reduced
sensitivity to immunotherapy. We further analyzed
the correlation between risk scores and tumor
mutational burden (TMB) using mutation data from
TCGA-TNBC. The maftools R package was used to
generate waterfall plots depicting the mutation
landscape in high- and low-risk groups. Additionally,
we assessed the prognostic impact of TMB by
stratifying patients into high- and low-TMB
subgroups. To evaluate the potential of the risk model
in predicting sensitivity to chemotherapy, we
estimated the half-maximal inhibitory concentration
(ICs0) values of commonly used antitumor drugs in
the TCGA-TNBC cohort. Drug sensitivity predictions
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were made using the pRRophetic R package, and the
differences in IC50 values between high- and low-risk
groups were displayed using boxplots.

Validation of key IncRNAs through clinical
samples

To confirm the clinical relevance of key IncRNAs
in our risk model, we collected TNBC tumor tissues
and adjacent normal tissues from patients diagnosed
at The Second Xiangya Hospital. Total RNA was
extracted using TRIzol™ reagent (Thermo Fisher
Scientific, China) and reverse-transcribed into
complementary DNA (cDNA) using the Hiscript 1I
Reverse Transcriptase Kit (Vazyme Biotech Co., Ltd.),
following the manufacturer’s protocol. Real-time
quantitative polymerase chain reaction (RT-qPCR)
was performed to quantify the expression of selected
IncRNAs. The reactions were conducted using the
SYBR Green gPCR Supermix kit (Invitrogen,
Carlsbad, CA, USA). The amplification conditions
were as follows: initial denaturation at 95°C for 3
minutes, followed by 40 cycles of denaturation at 95°C
for 5 seconds and annealing/extension at 60°C for 30
seconds. The primer sequences for all target IncRNAs
and the endogenous control GAPDH are provided in
Supplementary Table 1.

Cell culture and transfection

The human TNBC cell lines MDA-MB-231,
BT549, and SUM159 were cultured in Dulbecco’s
Modified Eagle Medium (DMEM) (GIBCO, USA)
supplemented with 10% fetal bovine serum (FBS) and
1% penicillin-streptomycin. Cells were maintained
under standard conditions at 37°C in a humidified
atmosphere containing 5% CO,. Plasmids for
LINC01605 overexpression and small interfering
RNAs (siRNAs) targeting LINC01605 were
synthesized by Tsingke (Beijing, China). Empty
vectors were used as negative controls (NC).
Transfection of plasmids or siRNAs was performed
using Lipofectamine™ 2000 (Invitrogen, USA),
following the manufacturer’s protocol. The sequences
of LINCO01605-targeting siRNAs were as follows:
siRNA-1:  5-GAGTCTTGAAGAATAAGAAGCCA
CA-3; siRNA-2: 5-TCTTGAAGAATAAGAAGCC
ACAGCT-3’; siRNA-NC: 5-GAGGTTGAATAAGAA
GAACCTCACA-3'. Cells were incubated for 48 hours
post-transfection, and transfection efficiency was
evaluated using RT-qPCR.

Cell counting kit-8 (CCK-8) assay

At 24 hours post-transfection, MDA-MB-231 and
BT549 cells were harvested and seeded into 96-well
plates at a density of 5 x 10 cells/well. The cells were
incubated for 0, 24, 48, and 72 hours. At each time

point, 10% CCK-8 reagent was added to each well and
incubated for 2 hours. The optical density (OD) was
measured at 450 nm using a Thermo Scientific
Multiskan FC microplate reader to evaluate cell
viability.

Colony formation assay

For long-term proliferation analysis, cells were
seeded into 6-well plates at a density of 1 x 10°
cells/well and cultured for 1-2 weeks until visible
colonies formed. The colonies were then: Fixed with
4% paraformaldehyde for 15 minutes. Stained with
0.5% crystal violet for 30 minutes at room
temperature. Washed with phosphate-buffered saline
(PBS) and air-dried. Colony images were captured,
and the number of colonies was quantified using
Image] software (NIH, USA).

Wound healing assay

Cells were seeded into 6-well plates and grown
to 90-100% confluence. A sterile 200-uL pipette tip
was used to create a scratch in the cell monolayer.
After washing with PBS to remove detached cells,
serum-free DMEM was added. Wound areas were
imaged at 0 and 24 hours using an Olympus inverted
microscope (Japan) and quantified using Image]
software to calculate wound closure rate. Experiments
were performed in triplicate, with results expressed as
mean * standard deviation (SD). Statistical analysis
was conducted using Student’s t-test for normally
distributed data or Wilcoxon rank-sum test for
non-normal data, with P < 0.05 considered significant.

Transwell invasion assay

Transwell chambers (8.0 um pore size, Corning,
USA) were used to assess cell invasion. Serum-free
DMEM (200 pL) containing 2 x 10° transfected cells
was added to the upper chamber, with 500 uL DMEM
supplemented with 10% FBS in the lower chamber as
a chemoattractant. After 24 hours, invaded cells were
fixed, stained with 0.5% crystal violet, and counted
under a BX51 microscope (Olympus, Japan).
Experiments were performed in triplicate, with results
expressed as mean = SD. Statistical analysis used
Student’s t-test or Wilcoxon rank-sum test based on
data distribution, with P < 0.05 considered significant.

Statistical analysis

All statistical analyses were conducted using R
version 4.0.3 (https://www.R-project.org/) and
GraphPad Prism software (version 8.0.1, La Jolla, CA,
USA). For comparisons between the two groups, a
t-test was performed when the data followed a
normal distribution. If the data did not meet
normality assumptions, a nonparametric test was
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applied. The Wilcoxon rank-sum test was used to
assess differences in ICIs, TMB, immune infiltration,
and drug sensitivity between the groups. All
statistical analyses were two-sided, with p < 0.05
considered statistically significant. The significance
levels were defined as follows: *p < 0.05, **p < 0.01,
***p < 0.001.

Results

GSEA of relapse- and immune-related genes in
TNBC

Gene Set Enrichment Analysis (GSEA) revealed
that TNBC recurrence was associated with DNA
replication, homologous recombination, and amino
acid metabolism pathways, while immune-related
pathways such as the MAPK, NOTCH, P53, leukocyte
transendothelial migration, chemokine, cytokine—
cytokine receptor interaction and B-cell receptor
signaling pathways were negatively enriched in
recurrent tumors (Figure 2A, B). These findings
suggest that tumor recurrence is most likely
associated with some carcinogenic pathways and
immune cell functions.

Immune subgroup classification and tumor
microenvironment analysis

We performed unsupervised hierarchical
clustering to determine the optimal number of
clusters (K). The consensus matrix (CM) plots (Figure
2C) illustrate clustering patterns across different K
values, with the most distinct and least noisy
separation observed at K = 3, as indicated by the
darkest blue squares. The cumulative distribution
function (CDF) plots (Figure 2D) show the cumulative
consensus distributions for various K values, where
the slope of the CDF curve gradually stabilizes at K =
3, suggesting an optimal clustering resolution.
Additionally, the relative change in the area under the
CDF curve (Figure 2E) further supports K = 3 as a
stable clustering choice. Lastly, the average
consistency evaluation plot (Figure 2F) confirms that
the highest within-group consistency is achieved at K
= 3, reinforcing its suitability for sample classification.

Analysis using the ESTIMATE algorithm
demonstrated that Immunity-H patients exhibited
significantly higher immune and stromal scores,
while Immunity-L patients had the lowest immune
infiltration and highest tumor purity (Figure 2G, H).
Additionally, human leukocyte antigen (HLA) gene
expression levels were significantly elevated in the

Immunity-H group compared to the Immunity-L
group (Figure 2I), further supporting the validity of
our immunophenotyping strategy.

Construction and evaluation of the IncRNA
pairs-based risk model

To explore potential molecular factors associated
with tumor recurrence and immune response in
TNBC, we analyzed transcriptomic data from the
TCGA-TNBC cohort. A total of 196 differentially
expressed genes (DEGs) were identified between
recurrence and non-recurrence groups ( |log,FC| > 1,
FDR < 0.05), while 1,241 immune-related DEGs were
identified through immune subgroup clustering
(Figure 3A, B). By intersecting these datasets, 12 key
genes were found to be associated with both tumor
recurrence and immune response (Figure 3C). Based
on the identified relapse- and immune-associated
genes, we constructed 6,390 IncRNA pairs using a
relative expression-based pairing strategy. After
filtering for prognostic relevance, 25 IncRNA pairs
were selected through univariate Cox regression
analysis (p < 0.005, Supplementary Table 2).
Subsequently, LASSO further confirmed that 12 pairs
were related to prognosis (Figure 3D, E), and random
forest analysis indicated that 20 pairs were related to
relapse risk (Figure 3F). Figure 3G displays 10
overlapping pairs, out of which 7 were selected as the
basis of the risk model after performing multivariate
Cox regression (Figure 3H, Supplementary Table 3).
The model’s predictive performance was assessed
using ROC curve analysis, yielding an area under the
curve (AUC) of 0.916, confirming strong prognostic
accuracy (Figure 3I). It is worth noting that patients
with high-risk scores exhibited a significantly poorer
prognosis in comparison to those with low-risk scores
(p <0.001, Figure 3]). Using the established risk score
formula, the model was further validated in the
GSE281303 dataset, where similar predictive
performance was observed (AUC = 0.782,
Supplementary Figure 1). Furthermore, to enhance
confidence in our findings, we employed the BPNN
for independent wvalidation. The BPNN was
configured with 2 hidden layers, 5 nodes, and the
output of the algorithm was whether the patient
would experience a relapse (Figure 3K). The BPNN
was trained using a 7:3 split of TCGA-TNBC patients
(104 training, 45 validation). The model demonstrated
excellent classification performance, with AUC values
of 0.985 and 0.812 in the training and validation sets,
respectively (Figure 3L, M).
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Figure 2. Enrichment analysis and consensus clustering for determining the optimal K-value and validating the immune typing strategy. (A, B) Gene Set
Enrichment Analysis (GSEA) of signaling pathways enriched in non-recurrence vs. recurrence subgroups. (C) Consensus matrix (CM) plots at K = 3, showing optimal cluster
separation. (D) Cumulative distribution function (CDF) plots for K-values ranging from 2 to 10. (E) Area under the CDF curve, indicating the stability of clustering at K = 3. (F)
Average consistency analysis, confirming K = 3 as the most stable clustering solution. (G) Heatmap of tumor microenvironment (TME)-related scores, including tumor purity,
ESTIMATE, immune, and stromal scores. (H) Comparisons of TME-related scores across different immune subgroups. (1) Boxplot of HLA gene expression levels across immune
subgroups. ***p < 0.001.
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Figure 3. Construction and validation of a risk assessment model based on IncRNA pairs. (A, B) Volcano plots of differentially expressed genes (DEGs) related to
recurrence and immune response. (C) Venn diagram showing the intersection of relapse- and immune-related DEGs. (D, E) Feature selection of IncRNA pairs using LASSO
regression. (F) Random forest (RF) error rate analysis, with error rates for relapsed and non-relapsed groups shown in red and green, respectively. The overall model error rate
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is shown in black. (G) Selection of 10 IncRNA pairs identified by LASSO and RF algorithms. (H) Final risk assessment model comprising 7 key IncRNA pairs. (I) Receiver
Operating Characteristic (ROC) curve, showing the optimal cutoff value determined at the maximum inflection point. (J) Kaplan-Meier survival curves comparing overall survival
between high-risk and low-risk groups. (K) Validation of key model features using a backpropagation neural network (BPNN). (L, M) ROC curves for training and test sets,

demonstrating the model’s classification accuracy.

Assessment of the independent prognostic
value and clinical evaluation of the risk model

To determine whether the risk model provided
independent prognostic value, we performed
univariate and multivariate Cox regression analyses.
The risk score remained a significant independent
predictor of TNBC prognosis, even after adjusting for
clinicopathological characteristics (Figure 4A, B).
Moreover, the risk score outperformed traditional
clinicopathological ~ features in ROC  curve
comparisons, confirming its superior predictive
power (Figure 4C). Boxplot analysis showed that
higher risk scores were significantly associated with
advanced clinical stage, larger tumor size (T stage),
and lymph node involvement (N stage) (Figure 4D-F).
These findings highlight the clinical relevance of the
risk model in stratifying TNBC patients. A nomogram
integrating the risk score with clinical parameters was
constructed to improve individual patient risk
assessment. The C-index (0.918) indicated strong
predictive  capability, and calibration curves
demonstrated high agreement between predicted and
actual survival probabilities (Figure 4G-I). Decision
curve analysis (DCA) further confirmed that the
nomogram provided greater clinical benefits than the
risk score alone (Figure 4J). This conclusion was
validated at multiple time points, including 3, 5, and
10 years.

The correlation of risk score and immune cell
infiltration, predicted immunotherapy
response, and ICls

Whether the prediction model was related to the
tumor immune microenvironment needs to be further
investigated. We evaluated the immune infiltration
status among the samples using XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-
ABS, and CIBERSORT algorithms. A high-risk score
was positively correlated with M2 macrophage,
cancer-associated fibroblast infiltration, stromal score,
endothelial cells and hematopoietic stem cells (Figure
5A). Meanwhile, it was negatively associated with the
level of most immune infiltrating cells and their
corresponding immune function (Figure 5B). TIDE
score is a good predictor of the efficacy of anti-PD1
and anti-CTLA4 therapy that reflects tumor immune
dysfunction and exclusion in patients [26]. To assess
potential responses to immune checkpoint inhibitor
therapy, we analyzed the expression of key immune
checkpoints (PD-L1, PD-1, CTLA-4, LAG3, IDO1).

High-risk patients showed lower expression of
multiple ICIs and higher TIDE scores, suggesting
reduced sensitivity to immunotherapy (Figure 5C, D).

Risk score correlates with TMB and
chemotherapy sensitivity

Further analysis revealed that high-risk patients
exhibited lower TMB (Figure 6A). Survival analysis
showed that low-TMB patients had worse overall
survival, and combined TMB-risk stratification
identified patients with the poorest prognosis (Figure
6B, C). Moreover, the waterfall plot ranks the
frequency of gene mutations in low-risk and high-risk
patients (Supplementary Figure 2).

We also examined whether the risk score could
predict chemotherapy response. High-risk patients
had higher 1Csp values for multiple chemotherapeutic
agents, including bortezomib, cisplatin, cytarabine,
cyclophosphamide,  docetaxel and  paclitaxel,
suggesting lower drug sensitivity (Figure 6D).
Information on the sensitivity to another 38 drugs,
including not only chemotherapy drugs but also
inhibitors of various carcinogenic pathways and
enzymes, is listed in Supplementary Figure 3. Gene
set variation analysis (GSVA) further indicated that
high-risk group was enriched for drug metabolism
cytochrome P450 and ECM receptor interaction,
whereas low-risk group exhibited enrichment in
immune-related pathways (Supplementary Figure 4).

Functional validation of hub IncRNA in TNBC

The expression levels of IncRNA pairs in TNBC
tissues and adjacent normal breast tissues were
quantified using RT-qPCR. The results revealed that
five key IncRNA pairs (AC002401.4|AC091435.2,
FAM30A | AC112715.1, LINCO01605 | AC007292.1,
LINC02562 | AC026369.2, and NALT1|AC007292.1)
were upregulated, while two pairs (AC091182.2|
LINC02345 and  SMIM25|LINC01023)  were
downregulated (Figure 7A). To further explore the
biological significance of these IncRNAs, we selected
LINCO01605, which demonstrated the most significant
prognostic impact, for experimental validation.
RT-gPCR analysis confirmed that LINC01605
expression was significantly elevated in human TNBC
cell lines compared to MCF10A (normal mammary
epithelial cells) (Figure 7B). Additionally, RT-qPCR
was used to assess the efficiency of LINC01605
knockdown (Figure 7C) and overexpression (Figure
7D) in MDA-MB-231 and BT549 cells. Functional
assays revealed that LINC01605 knockdown

https://www.medsci.org



Int. J. Med. Sci. 2025, Vol. 22 3772

significantly inhibited cell proliferation (CCK-8 and  processes (Figure 7E-L). These findings suggest that
colony formation assays), migration (wound healing  LINCO01605 plays a crucial role in TNBC progression
assay), and invasion (transwell assay). Conversely, = and may serve as a potential therapeutic target.
LINCO01605 overexpression promoted these cellular
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Figure 4. Clinical evaluation of the IncRNA pair-based risk model. (A, B) Forest plots from univariate and multivariate Cox regression analyses, demonstrating the
prognostic significance of the risk score. (C) Comparison of ROC curves between the risk model and clinicopathological features, confirming the superior predictive
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performance of the risk score. (D, E, F) Association between risk score and clinical parameters, including clinical stage, T stage, and N stage. (G) Nomogram for predicting 1-,
3-, and 5-year survival rates in TNBC patients. (H, I) C-index and calibration curves, assessing the accuracy and calibration of the nomogram. (J) Decision curve analysis (DCA),
comparing the clinical benefit of different models: Nomogram, Risk score, “All” strategy, and “None” strategy.
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Figure 6. Relationship between the risk model, tumor mutational burden (TMB), and chemotherapy response. (A) Boxplot comparing TMB levels between
high-risk and low-risk groups. (B) Kaplan-Meier survival curves for high-TMB and low-TMB patients. (C) Prognostic stratification based on a combination of risk score and TMB.
(D) Boxplots depicting the correlation between risk score and IC50 values of 12 commonly used chemotherapeutic drugs (another 38 drugs are presented in Supplementary

Figure 3).

Discussion

TNBC remains a major clinical challenge due to
its aggressive nature, high recurrence rate, and
limited targeted treatment options. The lack of
hormone receptors and HER2 expression makes
conventional endocrine or targeted therapies
ineffective, leaving chemotherapy as the primary
treatment. However, tumor recurrence continues to
pose a significant obstacle, necessitating the

development of novel prognostic models and
therapeutic strategies [12, 27].

Compared to other breast cancer subtypes,
TNBC exhibits higher levels of tumor-infiltrating
lymphocytes (TILs), PD-L1 expression, and TMB,
making it a promising candidate for immune
checkpoint inhibitor therapy [28]. Nonetheless, the
heterogeneous nature of TNBC means that not all
patients respond favorably to immunotherapy,
emphasizing the need for biomarkers that can predict

treatment response and recurrence risk [29].
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In this study, we developed a IncRNA-based risk
model utilizing a refined cyclical single pairing
method and a binary matrix, which allowed for the
identification of IncRNA pairs differentially expressed
in cancerous and normal tissues.In this study, we
developed a IncRNA-based risk model utilizing a
refined cyclical single pairing method and a binary
matrix, which allowed for the identification of
IncRNA pairs differentially expressed in cancerous
and normal tissues. Unlike traditional approaches
that rely on absolute expression levels, our method
reduces variability introduced by factors such as
regional differences, racial backgrounds, and platform
inconsistencies [22]. Our risk model offers significant
potential for clinical translation in TNBC
management. The risk score can guide adjuvant
therapy decision-making by identifying high-risk
patients who may benefit from intensified treatment
regimens, such as combination chemotherapy or
novel targeted therapies, thereby optimizing
therapeutic outcomes. Furthermore, integrating
IncRNA-based signatures into liquid biopsy platforms
could enable non-invasive monitoring of disease
progression and treatment response, facilitating early
detection of recurrence and personalized treatment
adjustments [30]. These applications highlight the
model’s utility in advancing precision medicine for
TNBC patients.

Although our experimental results confirm the
oncogenic role of LINC01605 in promoting TNBC cell
proliferation, migration, and invasion, the precise
molecular mechanism remains to be elucidated.
Recent studies in nasopharyngeal carcinoma have
shown that LINCO01605 can activate the NF-xB
pathway, forming a positive feedback loop that
enhances tumor proliferation and survival [31]. Since
NF-xB signaling is known to facilitate immune
evasion by promoting pro-inflammatory cytokine
release, PD-L1 expression and T cell exclusion [32].
Furthermore, IncRNAs have been reported to regulate
antigen presentation and checkpoint pathways such
as PD-1/PD-L1, implying a potential role for
LINCO01605 in shaping the immunosuppressive tumor
microenvironment [33]. These mechanisms may
underlie the observed negative correlation between
LINCO01605 expression and immune infiltration in our
model, warranting further investigation into
LINC01605-mediated modulation of immune escape
in TNBC.

A critical factor influencing TNBC prognosis is
the interaction between tumor-infiltrating immune
cells and immune checkpoints, which plays a crucial
role in determining the efficacy of immune checkpoint
blockade therapy [34]. Our findings revealed a
negative correlation between the risk score and

immune cell infiltration, suggesting that high-risk
patients may exhibit immune evasion and reduced
sensitivity to ICIs (p < 0.05). Moreover, TIDE score
analysis further indicated that high-risk patients were
more prone to immune escape mechanisms,
supporting the clinical relevance of our model in
predicting immunotherapy outcomes. Given that key
immune checkpoints such as PDCD1 (PD-1), CTLA-4,
LAG3, and IDO1 act as negative immune regulators,
their lower expression in high-risk patients implies a
diminished response to immune checkpoint blockade
therapy [35-38]. Although some ICls, such as
atezolizumab and pembrolizumab, have been
approved for TNBC treatment, chemotherapy
remains the mainstay therapy for both early-stage and
advanced TNBC [39]. Our study demonstrated that
risk scores were significantly associated with
chemotherapeutic drug sensitivity, highlighting the
potential utility of this model in guiding personalized
treatment selection.

Emerging research has revealed additional
dimensions in the interplay between IncRNAs and
tumor immunity. Certain IncRNAs can modulate
antigen presentation by influencing MHC class 1/11
molecule expression or interfering with antigen
processing pathways, thereby shaping immune
recognition [40]. Others have been implicated in
promoting immune resistance by regulating
checkpoint molecules (e.g.,, PD-L1) or suppressing
effector T cell infiltration [41]. Moreover, the advent of
spatial transcriptomics and single-cell multi-omics
now enables the mapping of IncRNA expression in
relation to specific immune cell niches within the
tumor microenvironment [42, 43]. These technologies
hold promise for identifying spatially restricted
IncRNA-immune interactions that contribute to
immune evasion, and may uncover novel therapeutic
targets. As the field evolves, integrating spatial and
functional information will be crucial to unravel the
complex roles of IncRNAs in immune modulation and
resistance to immunotherapy.

Despite the promising results, this study has
several limitations. (1) our model was developed and
validated using retrospective transcriptomic data
from the TCGA and GEO datasets, but external
validation across multiple, prospective, and
multi-center cohorts was not conducted. Future
studies are needed to assess the model’s
generalizability in broader clinical settings. (2)
although LINC01605 was experimentally validated as
a potential oncogenic IncRNA in TNBC, the molecular
mechanisms by which it regulates immune evasion
and tumor progression remain to be fully elucidated.
Investigation into associated RNA-binding proteins,
downstream signaling pathways, and epigenetic
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modifications will be essential for mechanistic
understanding. (3) while our model incorporates
IncRNA pairs to improve robustness, it does not
integrate other layers of biological regulation such as
somatic mutations, methylation, proteomics, or
spatial transcriptomics, which may further enhance its
predictive performance. (4) only one IncRNA from the
model (LINC01605) was functionally validated; the
roles of other IncRNAs included in the risk signature
remain to be verified in future studies. (5) our cohorts
did not include patients treated with ICls, limiting the
direct clinical applicability of our model in the context
of immunotherapy. Incorporating ICI-treated cohorts
in future validation efforts will be important to
confirm the model's utility for guiding
immunotherapy decisions.

Conclusion

In summary, we developed a novel relapse- and
immune-related IncRNA pair-based model that
effectively predicts tumor recurrence, prognosis, and
immunotherapy response in TNBC. The nomogram
constructed using the risk score provides an
innovative tool for patient stratification, aiding in the
identification of those who may benefit from
immunotherapy and chemotherapy. Furthermore, our
study highlights LINC01605 as a promising target for
therapeutic intervention. Future investigations should
aim to validate these findings in larger patient cohorts
and explore the mechanistic role of LINC01605 in
TNBC progression.
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