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Abstract 

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a high risk of 
recurrence and poor clinical outcomes. However, the factors contributing to its relapse remain 
inadequately understood. In this study, we utilized transcriptomic data from The Cancer Genome 
Atlas (TCGA) to identify lncRNA pairs associated with both recurrence and immune response. A 
risk prediction model was constructed through the integration of LASSO regression, Cox 
proportional hazards analysis, and random forest algorithms. To validate its predictive capability, we 
employed an external validation cohort along with a backpropagation neural network (BPNN) to 
assess the model’s performance. Our findings indicate that the proposed risk model correlates 
strongly with multiple clinical features, including immune cell infiltration, response to 
immunotherapy, tumor mutational burden (TMB), and chemotherapy sensitivity. Additionally, a 
nomogram integrating risk scores with clinical parameters demonstrated superior predictive 
accuracy compared to models based solely on risk scores. Experimental validation confirmed that 
silencing LINC01605 significantly impaired TNBC cell proliferation, migration, and invasion. Overall, 
this risk model provides a novel approach for predicting tumor recurrence and prognosis in TNBC 
patients. The study also highlights the potential of LINC01605 as a therapeutic target, offering new 
perspectives for personalized treatment strategies. 
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Introduction 
Triple-negative breast cancer (TNBC) is an 

aggressive subtype characterized by the absence of 
estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor receptor-2 
(HER-2) expression [1]. Due to the lack of defined 
molecular targets, chemotherapy remains the 
standard treatment, but its efficacy is limited by 
toxicity and drug resistance [2]. Patients diagnosed 
with TNBC typically have a median overall survival 
(OS) of only 14.52 months [3, 4]. Recent advances in 
immunotherapy, particularly immune checkpoint 
inhibitors (ICIs), have shown promise in improving 

TNBC treatment outcomes [5]. Unlike other breast 
cancer subtypes, TNBC exhibits distinct molecular 
characteristics, including higher levels of 
tumor-infiltrating lymphocytes (TILs), which may 
enhance the response to immunotherapy [6]. 
However, TNBC’s heterogeneity limits ICI efficacy, 
underscoring the need for reliable biomarkers to 
predict treatment response and recurrence. 

Long noncoding RNAs (lncRNAs) are emerging 
as critical regulators in cancer, influencing tumor 
progression, immune modulation, and therapy 
resistance [7, 8]. Several lncRNA-based prognostic 
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models have been proposed for breast cancer, such as 
a metabolism-related lncRNA signature for predicting 
recurrence-free survival (RFS) [9]and immune-related 
lncRNAs as potential therapeutic targets for TNBC 
[10]. However, integrative models combining relapse 
prediction and immune profiling remain scarce. 

Immunotherapy efficacy depends on complex 
interactions between tumor cells and immune 
modulators within the tumor microenvironment 
(TME), which also plays a key role in tumor 
recurrence [11]. Some studies have demonstrated that 
lncRNAs are actively involved in modulating the 
immune landscape and influencing responses to 
immunotherapy [12-15]. Additionally, tumor- 
infiltrating lymphocytes have been proposed as 
biomarkers for early cancer detection and 
immunotherapy response prediction [16]. Despite 
these findings, there is still a lack of effective 
lncRNA-based models that integrate both relapse risk 
and immune profiling to enhance the accuracy of 
clinical decision-making. 

In this study, we introduce a novel risk 
assessment model based on lncRNA pairs to predict 
both tumor recurrence and immune infiltration in 
TNBC. Unlike traditional approaches that rely on 
absolute gene expression levels, our innovative 
lncRNA pairwise binary modeling uses relative 
expression to create a binary matrix (e.g., 1 if lncRNA 
A > B, 0 otherwise), effectively minimizing batch 
effects and standardization biases across datasets [17]. 
This approach enhances model robustness by 
reducing variability from regional, racial, or platform 
differences. We further strengthened the model 
through multi-algorithm feature selection, including 
LASSO regression, Cox proportional hazards analysis, 
and random forest, ensuring high predictive accuracy. 
Cross-cohort validation was performed using an 
external dataset and a backpropagation neural 
network (BPNN), which provided robust validation 
of the model’s performance across diverse patient 
populations. Additionally, functional validation of the 
hub lncRNA LINC01605 demonstrated its role in 
TNBC cell proliferation, migration, and invasion, 
underscoring its potential as a therapeutic target. This 
integrative approach offers a powerful tool for 
prognosis prediction and personalized treatment in 
TNBC. 

Materials and Methods 

Data acquisition 

We obtained transcriptome profiling data and 
corresponding clinical information from two publicly 

available databases: The Cancer Genome Atlas 
(TCGA) (https://portal.gdc.cancer.gov/) and the 
Gene Expression Omnibus (GEO) (https://www. 
ncbi.nlm.nih.gov/geo/). After excluding patients 
with incomplete clinical records, we established a 
cohort of 149 TNBC cases from TCGA for model 
construction and an external validation cohort of 106 
cases from the GSE281303 dataset in GEO. The overall 
study design and analytical workflow are presented 
in Figure 1. 

Identification of differentially expressed 
relapse- and immune-related genes 

We identified differentially expressed genes 
(DEGs) by comparing recurrence and non-recurrence 
patients using the limma R package, applying 
|log2-fold change (logFC)| > 1 and false discovery 
rate (FDR) < 0.05 as screening criteria. To explore the 
biological significance of these DEGs, we conducted 
gene set enrichment analysis (GSEA) using the 
clusterProfiler R package. To assess immune 
infiltration levels in each sample, we applied 
single-sample gene set enrichment analysis (ssGSEA). 
Unsupervised hierarchical clustering (K values from 2 
to 10) was performed using the ConsensusClusterPlus 
R package to categorize samples into immune 
subgroups. We then identified immune-related DEGs 
by comparing expression levels across different 
immune clusters. The intersection of relapse- 
associated DEGs and immune-related DEGs was 
considered as the final set of relapse- and 
immune-associated genes. The clustering results and 
DEG distribution were visualized using the online 
tool Sangerbox (http://vip.sangerbox.com/home. 
html) [18]. 

Immunophenotyping and tumor 
microenvironment analysis 

The level of immune infiltration across different 
immune phenotypes was visualized using the 
pheatmap R package. We evaluated the tumor 
microenvironment (TME) using the ESTIMATE 
algorithm [19], which provides tumor purity, as well 
as immune and stromal scores. These scores were 
compared among different immune subgroups and 
illustrated using violin plots. Human leukocyte 
antigen (HLA), also known as the expression product 
of human major histocompatibility complex (MHC) 
glycoprotein, is closely related to the function of the 
human immune system [20, 21]. Differences in HLA 
expression across immune subgroups were presented 
in boxplots using the ggpubr R package. 
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Figure 1. Study design and analytical workflow for identifying potential biomarkers.    

 
Selection and pairing of lncRNAs 

We conducted a correlation analysis between the 
identified relapse- and immune-related DEGs and 
lncRNAs to select differentially expressed lncRNAs 
(DElncRNAs). LncRNAs with a correlation coefficient 
> 0.4 and p-value < 0.001 were retained. Next, 
lncRNAs were paired systematically. If a pair 
consisted of lncRNAs A and B, we defined a new 
variable X such that: X = 1 if the expression of A was 
higher than B, X = 0 if the expression of A was lower 
than B. This transformation converted the expression 

matrix into a binary format, effectively minimizing 
batch effects and standardization biases introduced 
by regional differences, racial backgrounds, or 
platform inconsistencies [18, 22]. This relative 
expression-based approach has been shown to 
enhance the robustness and generalizability of 
prognostic models across diverse datasets, as 
demonstrated in studies of hepatocellular carcinoma 
and other cancers [22]. Pairs where the expression 
ratio was consistently 0 or 1 in over 80% of samples 
were excluded to ensure model stability. 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

3766 

Construction of a risk assessment model 
To identify lncRNA pairs associated with 

prognosis, we performed univariate Cox regression 
analysis. Candidate pairs were further refined using 
the least absolute shrinkage and selection operator 
(LASSO) regression, which was run 1,000 times using 
the glmnet R package. We also employed random 
forest (RF) analysis [23] to rank lncRNA pairs based 
on their importance in predicting recurrence risk. The 
randomForest R package was used for this step. The 
overlapping lncRNA pairs identified by LASSO and 
RF were then subjected to multivariate Cox regression 
to compute their coefficients (βi). The final risk score 
for each patient was calculated using the formula: 
Risk Score = ∑βi * ExpX. The predictive performance 
of the model was assessed using receiver operating 
characteristic (ROC) curves, with an optimal cutoff 
value determined by the survivalROC R package. 

Reverse validation by BNPP analysis 
To assess the robustness of key model features, 

we employed a back-propagation neural network 
(BPNN), a widely used method in supervised 
learning. The BPNN consists of an input layer, one or 
more hidden layers, and an output layer, with 
interconnected neurons refining their weights 
through iterative learning.[24]. During training, the 
network processes input data, generates initial 
predictions, and compares them to expected outputs. 
The resulting error is propagated backward, adjusting 
synaptic weights to minimize discrepancies and 
improve model accuracy [25]. To ensure effective 
model validation, TNBC patient data from the TCGA 
database were randomly split into two independent 
cohorts: 104 patients for training and 45 patients for 
validation, maintaining a 7:3 ratio. We employed the 
neuralnet, NeuralNetTools, and pROC R packages to 
conduct the reverse validation process. The model’s 
predictive performance was assessed using receiver 
operating characteristic (ROC) curves, providing an 
objective evaluation of classification accuracy. 

Clinical and prognostic evaluation of the 
model 

Kaplan‒Meier analysis was performed to 
compare the difference in survival in the high- or 
low-risk groups. The independence of the risk score as 
a prognostic factor was determined using univariate 
and multivariate Cox regression analyses. ROC 
curves were also plotted to compare the predictive 
power of the risk model with conventional 
clinicopathological characteristics. The boxplots 
demonstrated the differences in the risk score among 
groups sorted based on clinicopathological 
characteristics. A nomogram was constructed by 

integrating risk scores with clinical variables. The 
model’s predictive accuracy was assessed using 
concordance index (C-index) and calibration curves. 
Additionally, decision curve analysis (DCA) was 
conducted using logistic regression to estimate 
clinical utility. The R packages were survival, 
survminer, survivalROC, ggpubr, rms, regplot, pec, and 
ggDCA. 

Immune cell infiltration and functional analysis 
To explore the relationship between the risk 

model and immune cell infiltration, we utilized 
multiple computational algorithms, including XCELL, 
TIMER, QUANTISEQ, MCPCOUNTER, EPIC, 
CIBERSORT-ABS, and CIBERSORT. The correlation 
between the risk score and the abundance of immune 
cell types was visualized using a lollipop chart 
generated by the ggplot2 R package. Differences in 
immune function between high- and low-risk groups 
were further analyzed and illustrated in boxplots. 
Gene set variation analysis (GSVA) was conducted to 
compare functional enrichment between different risk 
groups. The analysis was performed using the GSVA, 
GSEABase, and limma R packages, with the result 
displayed in a heatmap. 

Association between the risk model and 
immune checkpoints, immunotherapy 
prediction response, somatic mutation and 
drug sensitivity 

To evaluate whether the risk score is linked to 
immune checkpoint-related genes, we examined the 
expression levels of immune checkpoint inhibitors 
(ICIs) such as PDCD1 (PD-1), CD274 (PD-L1), 
CTLA-4, and LAG3. The association between the risk 
score and ICIs was visualized using violin plots. To 
predict the likelihood of response to immunotherapy, 
we applied the Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm (http://tide.dfci.harvard. 
edu/) [26] and compared TIDE scores between high- 
and low-risk groups. Higher TIDE scores indicate a 
greater likelihood of immune evasion and reduced 
sensitivity to immunotherapy. We further analyzed 
the correlation between risk scores and tumor 
mutational burden (TMB) using mutation data from 
TCGA-TNBC. The maftools R package was used to 
generate waterfall plots depicting the mutation 
landscape in high- and low-risk groups. Additionally, 
we assessed the prognostic impact of TMB by 
stratifying patients into high- and low-TMB 
subgroups. To evaluate the potential of the risk model 
in predicting sensitivity to chemotherapy, we 
estimated the half-maximal inhibitory concentration 
(IC50) values of commonly used antitumor drugs in 
the TCGA-TNBC cohort. Drug sensitivity predictions 
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were made using the pRRophetic R package, and the 
differences in IC50 values between high- and low-risk 
groups were displayed using boxplots. 

Validation of key lncRNAs through clinical 
samples 

To confirm the clinical relevance of key lncRNAs 
in our risk model, we collected TNBC tumor tissues 
and adjacent normal tissues from patients diagnosed 
at The Second Xiangya Hospital. Total RNA was 
extracted using TRIzol™ reagent (Thermo Fisher 
Scientific, China) and reverse-transcribed into 
complementary DNA (cDNA) using the Hiscript II 
Reverse Transcriptase Kit (Vazyme Biotech Co., Ltd.), 
following the manufacturer’s protocol. Real-time 
quantitative polymerase chain reaction (RT-qPCR) 
was performed to quantify the expression of selected 
lncRNAs. The reactions were conducted using the 
SYBR Green qPCR Supermix kit (Invitrogen, 
Carlsbad, CA, USA). The amplification conditions 
were as follows: initial denaturation at 95°C for 3 
minutes, followed by 40 cycles of denaturation at 95°C 
for 5 seconds and annealing/extension at 60°C for 30 
seconds. The primer sequences for all target lncRNAs 
and the endogenous control GAPDH are provided in 
Supplementary Table 1. 

Cell culture and transfection 
The human TNBC cell lines MDA-MB-231, 

BT549, and SUM159 were cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) (GIBCO, USA) 
supplemented with 10% fetal bovine serum (FBS) and 
1% penicillin-streptomycin. Cells were maintained 
under standard conditions at 37°C in a humidified 
atmosphere containing 5% CO₂. Plasmids for 
LINC01605 overexpression and small interfering 
RNAs (siRNAs) targeting LINC01605 were 
synthesized by Tsingke (Beijing, China). Empty 
vectors were used as negative controls (NC). 
Transfection of plasmids or siRNAs was performed 
using Lipofectamine™ 2000 (Invitrogen, USA), 
following the manufacturer’s protocol. The sequences 
of LINC01605-targeting siRNAs were as follows: 
siRNA-1: 5’-GAGTCTTGAAGAATAAGAAGCCA 
CA-3’; siRNA-2: 5’-TCTTGAAGAATAAGAAGCC 
ACAGCT-3’; siRNA-NC: 5’-GAGGTTGAATAAGAA 
GAACCTCACA-3’. Cells were incubated for 48 hours 
post-transfection, and transfection efficiency was 
evaluated using RT-qPCR. 

Cell counting kit-8 (CCK-8) assay 
At 24 hours post-transfection, MDA-MB-231 and 

BT549 cells were harvested and seeded into 96-well 
plates at a density of 5 × 10³ cells/well. The cells were 
incubated for 0, 24, 48, and 72 hours. At each time 

point, 10% CCK-8 reagent was added to each well and 
incubated for 2 hours. The optical density (OD) was 
measured at 450 nm using a Thermo Scientific 
Multiskan FC microplate reader to evaluate cell 
viability. 

Colony formation assay 
For long-term proliferation analysis, cells were 

seeded into 6-well plates at a density of 1 × 10³ 
cells/well and cultured for 1-2 weeks until visible 
colonies formed. The colonies were then: Fixed with 
4% paraformaldehyde for 15 minutes. Stained with 
0.5% crystal violet for 30 minutes at room 
temperature. Washed with phosphate-buffered saline 
(PBS) and air-dried. Colony images were captured, 
and the number of colonies was quantified using 
ImageJ software (NIH, USA). 

Wound healing assay 
Cells were seeded into 6-well plates and grown 

to 90-100% confluence. A sterile 200-µL pipette tip 
was used to create a scratch in the cell monolayer. 
After washing with PBS to remove detached cells, 
serum-free DMEM was added. Wound areas were 
imaged at 0 and 24 hours using an Olympus inverted 
microscope (Japan) and quantified using ImageJ 
software to calculate wound closure rate. Experiments 
were performed in triplicate, with results expressed as 
mean ± standard deviation (SD). Statistical analysis 
was conducted using Student’s t-test for normally 
distributed data or Wilcoxon rank-sum test for 
non-normal data, with P < 0.05 considered significant. 

Transwell invasion assay 
Transwell chambers (8.0 µm pore size, Corning, 

USA) were used to assess cell invasion. Serum-free 
DMEM (200 µL) containing 2 × 10⁵ transfected cells 
was added to the upper chamber, with 500 µL DMEM 
supplemented with 10% FBS in the lower chamber as 
a chemoattractant. After 24 hours, invaded cells were 
fixed, stained with 0.5% crystal violet, and counted 
under a BX51 microscope (Olympus, Japan). 
Experiments were performed in triplicate, with results 
expressed as mean ± SD. Statistical analysis used 
Student’s t-test or Wilcoxon rank-sum test based on 
data distribution, with P < 0.05 considered significant. 

Statistical analysis 
All statistical analyses were conducted using R 

version 4.0.3 (https://www.R-project.org/) and 
GraphPad Prism software (version 8.0.1, La Jolla, CA, 
USA). For comparisons between the two groups, a 
t-test was performed when the data followed a 
normal distribution. If the data did not meet 
normality assumptions, a nonparametric test was 
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applied. The Wilcoxon rank-sum test was used to 
assess differences in ICIs, TMB, immune infiltration, 
and drug sensitivity between the groups. All 
statistical analyses were two-sided, with p < 0.05 
considered statistically significant. The significance 
levels were defined as follows: *p < 0.05, **p < 0.01, 
***p < 0.001. 

Results 
GSEA of relapse- and immune-related genes in 
TNBC 

Gene Set Enrichment Analysis (GSEA) revealed 
that TNBC recurrence was associated with DNA 
replication, homologous recombination, and amino 
acid metabolism pathways, while immune-related 
pathways such as the MAPK, NOTCH, P53, leukocyte 
transendothelial migration, chemokine, cytokine‒
cytokine receptor interaction and B-cell receptor 
signaling pathways were negatively enriched in 
recurrent tumors (Figure 2A, B). These findings 
suggest that tumor recurrence is most likely 
associated with some carcinogenic pathways and 
immune cell functions. 

Immune subgroup classification and tumor 
microenvironment analysis 

We performed unsupervised hierarchical 
clustering to determine the optimal number of 
clusters (K). The consensus matrix (CM) plots (Figure 
2C) illustrate clustering patterns across different K 
values, with the most distinct and least noisy 
separation observed at K = 3, as indicated by the 
darkest blue squares. The cumulative distribution 
function (CDF) plots (Figure 2D) show the cumulative 
consensus distributions for various K values, where 
the slope of the CDF curve gradually stabilizes at K = 
3, suggesting an optimal clustering resolution. 
Additionally, the relative change in the area under the 
CDF curve (Figure 2E) further supports K = 3 as a 
stable clustering choice. Lastly, the average 
consistency evaluation plot (Figure 2F) confirms that 
the highest within-group consistency is achieved at K 
= 3, reinforcing its suitability for sample classification. 

Analysis using the ESTIMATE algorithm 
demonstrated that Immunity-H patients exhibited 
significantly higher immune and stromal scores, 
while Immunity-L patients had the lowest immune 
infiltration and highest tumor purity (Figure 2G, H). 
Additionally, human leukocyte antigen (HLA) gene 
expression levels were significantly elevated in the 

Immunity-H group compared to the Immunity-L 
group (Figure 2I), further supporting the validity of 
our immunophenotyping strategy. 

Construction and evaluation of the lncRNA 
pairs-based risk model 

To explore potential molecular factors associated 
with tumor recurrence and immune response in 
TNBC, we analyzed transcriptomic data from the 
TCGA-TNBC cohort. A total of 196 differentially 
expressed genes (DEGs) were identified between 
recurrence and non-recurrence groups (|log₂FC| > 1, 
FDR < 0.05), while 1,241 immune-related DEGs were 
identified through immune subgroup clustering 
(Figure 3A, B). By intersecting these datasets, 12 key 
genes were found to be associated with both tumor 
recurrence and immune response (Figure 3C). Based 
on the identified relapse- and immune-associated 
genes, we constructed 6,390 lncRNA pairs using a 
relative expression-based pairing strategy. After 
filtering for prognostic relevance, 25 lncRNA pairs 
were selected through univariate Cox regression 
analysis (p < 0.005, Supplementary Table 2). 
Subsequently, LASSO further confirmed that 12 pairs 
were related to prognosis (Figure 3D, E), and random 
forest analysis indicated that 20 pairs were related to 
relapse risk (Figure 3F). Figure 3G displays 10 
overlapping pairs, out of which 7 were selected as the 
basis of the risk model after performing multivariate 
Cox regression (Figure 3H, Supplementary Table 3). 
The model’s predictive performance was assessed 
using ROC curve analysis, yielding an area under the 
curve (AUC) of 0.916, confirming strong prognostic 
accuracy (Figure 3I). It is worth noting that patients 
with high-risk scores exhibited a significantly poorer 
prognosis in comparison to those with low-risk scores 
(p < 0.001, Figure 3J). Using the established risk score 
formula, the model was further validated in the 
GSE281303 dataset, where similar predictive 
performance was observed (AUC = 0.782, 
Supplementary Figure 1). Furthermore, to enhance 
confidence in our findings, we employed the BPNN 
for independent validation. The BPNN was 
configured with 2 hidden layers, 5 nodes, and the 
output of the algorithm was whether the patient 
would experience a relapse (Figure 3K). The BPNN 
was trained using a 7:3 split of TCGA-TNBC patients 
(104 training, 45 validation). The model demonstrated 
excellent classification performance, with AUC values 
of 0.985 and 0.812 in the training and validation sets, 
respectively (Figure 3L, M). 
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Figure 2. Enrichment analysis and consensus clustering for determining the optimal K-value and validating the immune typing strategy. (A, B) Gene Set 
Enrichment Analysis (GSEA) of signaling pathways enriched in non-recurrence vs. recurrence subgroups. (C) Consensus matrix (CM) plots at K = 3, showing optimal cluster 
separation. (D) Cumulative distribution function (CDF) plots for K-values ranging from 2 to 10. (E) Area under the CDF curve, indicating the stability of clustering at K = 3. (F) 
Average consistency analysis, confirming K = 3 as the most stable clustering solution. (G) Heatmap of tumor microenvironment (TME)-related scores, including tumor purity, 
ESTIMATE, immune, and stromal scores. (H) Comparisons of TME-related scores across different immune subgroups. (I) Boxplot of HLA gene expression levels across immune 
subgroups. ***p < 0.001. 
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Figure 3. Construction and validation of a risk assessment model based on lncRNA pairs. (A, B) Volcano plots of differentially expressed genes (DEGs) related to 
recurrence and immune response. (C) Venn diagram showing the intersection of relapse- and immune-related DEGs. (D, E) Feature selection of lncRNA pairs using LASSO 
regression. (F) Random forest (RF) error rate analysis, with error rates for relapsed and non-relapsed groups shown in red and green, respectively. The overall model error rate 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

3771 

is shown in black. (G) Selection of 10 lncRNA pairs identified by LASSO and RF algorithms. (H) Final risk assessment model comprising 7 key lncRNA pairs. (I) Receiver 
Operating Characteristic (ROC) curve, showing the optimal cutoff value determined at the maximum inflection point. (J) Kaplan-Meier survival curves comparing overall survival 
between high-risk and low-risk groups. (K) Validation of key model features using a backpropagation neural network (BPNN). (L, M) ROC curves for training and test sets, 
demonstrating the model’s classification accuracy. 

 

Assessment of the independent prognostic 
value and clinical evaluation of the risk model 

To determine whether the risk model provided 
independent prognostic value, we performed 
univariate and multivariate Cox regression analyses. 
The risk score remained a significant independent 
predictor of TNBC prognosis, even after adjusting for 
clinicopathological characteristics (Figure 4A, B). 
Moreover, the risk score outperformed traditional 
clinicopathological features in ROC curve 
comparisons, confirming its superior predictive 
power (Figure 4C). Boxplot analysis showed that 
higher risk scores were significantly associated with 
advanced clinical stage, larger tumor size (T stage), 
and lymph node involvement (N stage) (Figure 4D-F). 
These findings highlight the clinical relevance of the 
risk model in stratifying TNBC patients. A nomogram 
integrating the risk score with clinical parameters was 
constructed to improve individual patient risk 
assessment. The C-index (0.918) indicated strong 
predictive capability, and calibration curves 
demonstrated high agreement between predicted and 
actual survival probabilities (Figure 4G-I). Decision 
curve analysis (DCA) further confirmed that the 
nomogram provided greater clinical benefits than the 
risk score alone (Figure 4J). This conclusion was 
validated at multiple time points, including 3, 5, and 
10 years. 

The correlation of risk score and immune cell 
infiltration, predicted immunotherapy 
response, and ICIs 

Whether the prediction model was related to the 
tumor immune microenvironment needs to be further 
investigated. We evaluated the immune infiltration 
status among the samples using XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT- 
ABS, and CIBERSORT algorithms. A high-risk score 
was positively correlated with M2 macrophage, 
cancer-associated fibroblast infiltration, stromal score, 
endothelial cells and hematopoietic stem cells (Figure 
5A). Meanwhile, it was negatively associated with the 
level of most immune infiltrating cells and their 
corresponding immune function (Figure 5B). TIDE 
score is a good predictor of the efficacy of anti-PD1 
and anti-CTLA4 therapy that reflects tumor immune 
dysfunction and exclusion in patients [26]. To assess 
potential responses to immune checkpoint inhibitor 
therapy, we analyzed the expression of key immune 
checkpoints (PD-L1, PD-1, CTLA-4, LAG3, IDO1). 

High-risk patients showed lower expression of 
multiple ICIs and higher TIDE scores, suggesting 
reduced sensitivity to immunotherapy (Figure 5C, D). 

Risk score correlates with TMB and 
chemotherapy sensitivity 

Further analysis revealed that high-risk patients 
exhibited lower TMB (Figure 6A). Survival analysis 
showed that low-TMB patients had worse overall 
survival, and combined TMB-risk stratification 
identified patients with the poorest prognosis (Figure 
6B, C). Moreover, the waterfall plot ranks the 
frequency of gene mutations in low-risk and high-risk 
patients (Supplementary Figure 2). 

We also examined whether the risk score could 
predict chemotherapy response. High-risk patients 
had higher IC50 values for multiple chemotherapeutic 
agents, including bortezomib, cisplatin, cytarabine, 
cyclophosphamide, docetaxel and paclitaxel, 
suggesting lower drug sensitivity (Figure 6D). 
Information on the sensitivity to another 38 drugs, 
including not only chemotherapy drugs but also 
inhibitors of various carcinogenic pathways and 
enzymes, is listed in Supplementary Figure 3. Gene 
set variation analysis (GSVA) further indicated that 
high-risk group was enriched for drug metabolism 
cytochrome P450 and ECM receptor interaction, 
whereas low-risk group exhibited enrichment in 
immune-related pathways (Supplementary Figure 4). 

Functional validation of hub lncRNA in TNBC 
The expression levels of lncRNA pairs in TNBC 

tissues and adjacent normal breast tissues were 
quantified using RT-qPCR. The results revealed that 
five key lncRNA pairs (AC002401.4|AC091435.2, 
FAM30A|AC112715.1, LINC01605|AC007292.1, 
LINC02562|AC026369.2, and NALT1|AC007292.1) 
were upregulated, while two pairs (AC091182.2| 
LINC02345 and SMIM25|LINC01023) were 
downregulated (Figure 7A). To further explore the 
biological significance of these lncRNAs, we selected 
LINC01605, which demonstrated the most significant 
prognostic impact, for experimental validation. 
RT-qPCR analysis confirmed that LINC01605 
expression was significantly elevated in human TNBC 
cell lines compared to MCF10A (normal mammary 
epithelial cells) (Figure 7B). Additionally, RT-qPCR 
was used to assess the efficiency of LINC01605 
knockdown (Figure 7C) and overexpression (Figure 
7D) in MDA-MB-231 and BT549 cells. Functional 
assays revealed that LINC01605 knockdown 
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significantly inhibited cell proliferation (CCK-8 and 
colony formation assays), migration (wound healing 
assay), and invasion (transwell assay). Conversely, 
LINC01605 overexpression promoted these cellular 

processes (Figure 7E-L). These findings suggest that 
LINC01605 plays a crucial role in TNBC progression 
and may serve as a potential therapeutic target. 

 

 
Figure 4. Clinical evaluation of the lncRNA pair-based risk model. (A, B) Forest plots from univariate and multivariate Cox regression analyses, demonstrating the 
prognostic significance of the risk score. (C) Comparison of ROC curves between the risk model and clinicopathological features, confirming the superior predictive 
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performance of the risk score. (D, E, F) Association between risk score and clinical parameters, including clinical stage, T stage, and N stage. (G) Nomogram for predicting 1-, 
3-, and 5-year survival rates in TNBC patients. (H, I) C-index and calibration curves, assessing the accuracy and calibration of the nomogram. (J) Decision curve analysis (DCA), 
comparing the clinical benefit of different models: Nomogram, Risk score, “All” strategy, and “None” strategy. 

 
Figure 5. Association between risk score and immune characteristics. (A) Lollipop plot showing correlations between risk score and tumor-infiltrating immune cells. 
(B) Comparison of immune cell function between high-risk and low-risk groups. (C) Predicted response to immune checkpoint inhibitors (ICIs) in high- and low-risk groups 
based on TIDE score analysis. (D) Violin plots illustrating expression levels of immune checkpoint-related genes in different risk groups. 
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Figure 6. Relationship between the risk model, tumor mutational burden (TMB), and chemotherapy response. (A) Boxplot comparing TMB levels between 
high-risk and low-risk groups. (B) Kaplan-Meier survival curves for high-TMB and low-TMB patients. (C) Prognostic stratification based on a combination of risk score and TMB. 
(D) Boxplots depicting the correlation between risk score and IC50 values of 12 commonly used chemotherapeutic drugs (another 38 drugs are presented in Supplementary 
Figure 3). 

 

Discussion 
TNBC remains a major clinical challenge due to 

its aggressive nature, high recurrence rate, and 
limited targeted treatment options. The lack of 
hormone receptors and HER2 expression makes 
conventional endocrine or targeted therapies 
ineffective, leaving chemotherapy as the primary 
treatment. However, tumor recurrence continues to 
pose a significant obstacle, necessitating the 

development of novel prognostic models and 
therapeutic strategies [12, 27]. 

Compared to other breast cancer subtypes, 
TNBC exhibits higher levels of tumor-infiltrating 
lymphocytes (TILs), PD-L1 expression, and TMB, 
making it a promising candidate for immune 
checkpoint inhibitor therapy [28]. Nonetheless, the 
heterogeneous nature of TNBC means that not all 
patients respond favorably to immunotherapy, 
emphasizing the need for biomarkers that can predict 
treatment response and recurrence risk [29].  
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Figure 7. Functional validation of LINC01605 in TNBC. (A) RT-qPCR analysis showing differential expression of key lncRNA pairs in TNBC tissues. (B) LINC01605 
expression levels in TNBC cell lines (MDA-MB-231, BT549, SUM159) and normal mammary epithelial cells (MCF10A). (C, D) RT-qPCR confirming LINC01605 knockdown 
efficiency in MDA-MB-231 and overexpression efficiency in BT549 cells. (E, F) CCK-8 assay demonstrating the effect of LINC01605 on cell viability. (G, H) Colony formation 
assay showing the impact of LINC01605 on TNBC cell proliferation. (I, J) Wound healing assay assessing the role of LINC01605 in cell migration (scale bar: 200 µm). (K, L) 
Transwell assay evaluating the effect of LINC01605 on cell invasion (scale bar: 50 µm). * p < 0.05, **p < 0.01, ***p < 0.001. 
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In this study, we developed a lncRNA-based risk 
model utilizing a refined cyclical single pairing 
method and a binary matrix, which allowed for the 
identification of lncRNA pairs differentially expressed 
in cancerous and normal tissues.In this study, we 
developed a lncRNA-based risk model utilizing a 
refined cyclical single pairing method and a binary 
matrix, which allowed for the identification of 
lncRNA pairs differentially expressed in cancerous 
and normal tissues. Unlike traditional approaches 
that rely on absolute expression levels, our method 
reduces variability introduced by factors such as 
regional differences, racial backgrounds, and platform 
inconsistencies [22]. Our risk model offers significant 
potential for clinical translation in TNBC 
management. The risk score can guide adjuvant 
therapy decision-making by identifying high-risk 
patients who may benefit from intensified treatment 
regimens, such as combination chemotherapy or 
novel targeted therapies, thereby optimizing 
therapeutic outcomes. Furthermore, integrating 
lncRNA-based signatures into liquid biopsy platforms 
could enable non-invasive monitoring of disease 
progression and treatment response, facilitating early 
detection of recurrence and personalized treatment 
adjustments [30]. These applications highlight the 
model’s utility in advancing precision medicine for 
TNBC patients. 

Although our experimental results confirm the 
oncogenic role of LINC01605 in promoting TNBC cell 
proliferation, migration, and invasion, the precise 
molecular mechanism remains to be elucidated. 
Recent studies in nasopharyngeal carcinoma have 
shown that LINC01605 can activate the NF-κB 
pathway, forming a positive feedback loop that 
enhances tumor proliferation and survival [31]. Since 
NF-κB signaling is known to facilitate immune 
evasion by promoting pro-inflammatory cytokine 
release, PD-L1 expression and T cell exclusion [32]. 
Furthermore, lncRNAs have been reported to regulate 
antigen presentation and checkpoint pathways such 
as PD-1/PD-L1, implying a potential role for 
LINC01605 in shaping the immunosuppressive tumor 
microenvironment [33]. These mechanisms may 
underlie the observed negative correlation between 
LINC01605 expression and immune infiltration in our 
model, warranting further investigation into 
LINC01605-mediated modulation of immune escape 
in TNBC. 

A critical factor influencing TNBC prognosis is 
the interaction between tumor-infiltrating immune 
cells and immune checkpoints, which plays a crucial 
role in determining the efficacy of immune checkpoint 
blockade therapy [34]. Our findings revealed a 
negative correlation between the risk score and 

immune cell infiltration, suggesting that high-risk 
patients may exhibit immune evasion and reduced 
sensitivity to ICIs (p < 0.05). Moreover, TIDE score 
analysis further indicated that high-risk patients were 
more prone to immune escape mechanisms, 
supporting the clinical relevance of our model in 
predicting immunotherapy outcomes. Given that key 
immune checkpoints such as PDCD1 (PD-1), CTLA-4, 
LAG3, and IDO1 act as negative immune regulators, 
their lower expression in high-risk patients implies a 
diminished response to immune checkpoint blockade 
therapy [35-38]. Although some ICIs, such as 
atezolizumab and pembrolizumab, have been 
approved for TNBC treatment, chemotherapy 
remains the mainstay therapy for both early-stage and 
advanced TNBC [39]. Our study demonstrated that 
risk scores were significantly associated with 
chemotherapeutic drug sensitivity, highlighting the 
potential utility of this model in guiding personalized 
treatment selection. 

Emerging research has revealed additional 
dimensions in the interplay between lncRNAs and 
tumor immunity. Certain lncRNAs can modulate 
antigen presentation by influencing MHC class I/II 
molecule expression or interfering with antigen 
processing pathways, thereby shaping immune 
recognition [40]. Others have been implicated in 
promoting immune resistance by regulating 
checkpoint molecules (e.g., PD-L1) or suppressing 
effector T cell infiltration [41]. Moreover, the advent of 
spatial transcriptomics and single-cell multi-omics 
now enables the mapping of lncRNA expression in 
relation to specific immune cell niches within the 
tumor microenvironment [42, 43]. These technologies 
hold promise for identifying spatially restricted 
lncRNA-immune interactions that contribute to 
immune evasion, and may uncover novel therapeutic 
targets. As the field evolves, integrating spatial and 
functional information will be crucial to unravel the 
complex roles of lncRNAs in immune modulation and 
resistance to immunotherapy. 

Despite the promising results, this study has 
several limitations. (1) our model was developed and 
validated using retrospective transcriptomic data 
from the TCGA and GEO datasets, but external 
validation across multiple, prospective, and 
multi-center cohorts was not conducted. Future 
studies are needed to assess the model’s 
generalizability in broader clinical settings. (2) 
although LINC01605 was experimentally validated as 
a potential oncogenic lncRNA in TNBC, the molecular 
mechanisms by which it regulates immune evasion 
and tumor progression remain to be fully elucidated. 
Investigation into associated RNA-binding proteins, 
downstream signaling pathways, and epigenetic 
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modifications will be essential for mechanistic 
understanding. (3) while our model incorporates 
lncRNA pairs to improve robustness, it does not 
integrate other layers of biological regulation such as 
somatic mutations, methylation, proteomics, or 
spatial transcriptomics, which may further enhance its 
predictive performance. (4) only one lncRNA from the 
model (LINC01605) was functionally validated; the 
roles of other lncRNAs included in the risk signature 
remain to be verified in future studies. (5) our cohorts 
did not include patients treated with ICIs, limiting the 
direct clinical applicability of our model in the context 
of immunotherapy. Incorporating ICI-treated cohorts 
in future validation efforts will be important to 
confirm the model’s utility for guiding 
immunotherapy decisions. 

Conclusion 
In summary, we developed a novel relapse- and 

immune-related lncRNA pair-based model that 
effectively predicts tumor recurrence, prognosis, and 
immunotherapy response in TNBC. The nomogram 
constructed using the risk score provides an 
innovative tool for patient stratification, aiding in the 
identification of those who may benefit from 
immunotherapy and chemotherapy. Furthermore, our 
study highlights LINC01605 as a promising target for 
therapeutic intervention. Future investigations should 
aim to validate these findings in larger patient cohorts 
and explore the mechanistic role of LINC01605 in 
TNBC progression. 

Supplementary Material 
Supplementary figures and tables.  
https://www.medsci.org/v22p3763s1.pdf 

Acknowledgments 
We would like to thank all participants to 

offering their information in this study. 

Funding 
This work was supported by the China Primary 

Health Care Foundation (cphcf-2023-091). 

Data availability statement 
The datasets generated and analyzed during the 

current study are available in The Cancer Genome 
Atlas (TCGA, https://portal.gdc.cancer.gov/) and 
the Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/).  

Ethics statement 
The experiment protocol was approved by the 

Research Ethics Committee of the Second Xiangya 

Hospital of Central South University (2023Z0369). The 
study obtained informed consent from all patients 
and was in accordance with the Declaration of 
Helsinki. 

Author contributions 
Ying Wen performed the conceptualization, data 

curation, formal analysis, validation, visualization 
and writing–original. Yuanyuan Tang performed the 
investigation, methodology, resources, software and 
supervision. Qiongyan Zou provided 
conceptualization, funding acquisition, project 
administration, supervision and writing–review & 
editing. All authors approved the final version to be 
published. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N. 

Triple-negative breast cancer--current status and future directions. Ann Oncol. 
2009; 20: 1913-27. 

2. Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and challenges of 
immunotherapy in triple-negative breast cancer. Biochim Biophys Acta Rev 
Cancer. 2021; 1876: 188593. 

3. Gobbini E, Ezzalfani M, Dieras V, Bachelot T, Brain E, Debled M, et al. Time 
trends of overall survival among metastatic breast cancer patients in the 
real-life ESME cohort. Eur J Cancer. 2018; 96: 17-24. 

4. Damaskos C, Garmpis N, Garmpi A, Nikolettos K, Sarantis P, 
Georgakopoulou VE, et al. Investigational Drug Treatments for 
Triple-Negative Breast Cancer. J Pers Med. 2021; 11. 

5. Heeke AL, Tan AR. Checkpoint inhibitor therapy for metastatic triple-negative 
breast cancer. Cancer Metastasis Rev. 2021; 40: 537-47. 

6. Makiguchi T, Tanaka H, Kamata K, Taima K, Kurose A, Tasaka S. 
Immune-mediated thrombocytopenia induced with durvalumab after 
chemoradiotherapy in a non-small cell lung cancer patient: A case report. 
Thorac Cancer. 2021. 

7. Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer 
Cell. 2016; 29: 452-63. 

8. Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in 
cancer. Oncogene. 2017; 36: 5661-7. 

9. Ma JY, Liu SH, Chen J, Liu Q. Metabolism-related long non-coding RNAs 
(lncRNAs) as potential biomarkers for predicting risk of recurrence in breast 
cancer patients. Bioengineered. 2021; 12: 3726-36. 

10. Li YX, Wang SM, Li CQ. Four-lncRNA immune prognostic signature for 
triple-negative breast cancer Running title: Immune lncRNAs predict 
prognosis of TNBC. Math Biosci Eng. 2021; 18: 3939-56. 

11. Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, et al. Immunotherapy: Reshape 
the Tumor Immune Microenvironment. Front Immunol. 2022; 13: 844142. 

12. Ji X, Lu Y, Tian H, Meng X, Wei M, Cho WC. Chemoresistance mechanisms of 
breast cancer and their countermeasures. Biomed Pharmacother. 2019; 114: 
108800. 

13. Baldominos P, Barbera-Mourelle A, Barreiro O, Huang Y, Wight A, Cho JW, et 
al. Quiescent cancer cells resist T cell attack by forming an 
immunosuppressive niche. Cell. 2022; 185: 1694-708.e19. 

14. Vishnubalaji R, Shaath H, Elango R, Alajez NM. Noncoding RNAs as potential 
mediators of resistance to cancer immunotherapy. Semin Cancer Biol. 2020; 65: 
65-79. 

15. Pi Y-N, Qi W-C, Xia B-R, Lou G, Jin W-L. Long Non-Coding RNAs in the 
Tumor Immune Microenvironment: Biological Properties and Therapeutic 
Potential. Frontiers in immunology. 2021; 12: 697083-. 

16. Sun Y, Zhang C. The types of tumor infiltrating lymphocytes are valuable for 
the diagnosis and prognosis of breast cancer. Front Genet. 2022; 13: 1019062. 

17. Li W, Zhan Y, Peng C, Wang Z, Xu T, Liu M. A model based on 
immune-related lncRNA pairs and its potential prognostic value in 
immunotherapy for melanoma. Funct Integr Genomics. 2023; 23: 91. 

18. Shen W, Song Z, Zhong X, Huang M, Shen D, Gao P, et al. Sangerbox: A 
comprehensive, interaction-friendly clinical bioinformatics analysis platform. 
Imeta. 2022; 1: e36. 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

3778 

19. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia 
W, et al. Inferring tumour purity and stromal and immune cell admixture 
from expression data. Nat Commun. 2013; 4: 2612. 

20. Parham P. Function and polymorphism of human leukocyte antigen-A,B,C 
molecules. Am J Med. 1988; 85: 2-5. 

21. Kamal S, Kerndt CC, Lappin SL. Genetics, Histocompatibility Antigen. 
StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, 
StatPearls Publishing LLC.; 2022. 

22. Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, et al. Immune-Related lncRNA 
to Construct Novel Signature and Predict the Immune Landscape of Human 
Hepatocellular Carcinoma. Mol Ther Nucleic Acids. 2020; 22: 937-47. 

23. Kursa MB. Robustness of Random Forest-based gene selection methods. BMC 
Bioinformatics. 2014; 15: 8. 

24. Ruan F, Ding X, Li H, Wang Y, Ye K, Kan H. Back propagation neural network 
model for medical expenses in patients with breast cancer. Math Biosci Eng. 
2021; 18: 3690-8. 

25. Lin F. Supervised Learning in Neural Networks: Feedback-Network-Free 
Implementation and Biological Plausibility. IEEE Trans Neural Netw Learn 
Syst. 2022; 33: 7888-98. 

26. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction 
and exclusion predict cancer immunotherapy response. Nat Med. 2018; 24: 
1550-8. 

27. So JY, Ohm J, Lipkowitz S, Yang L. Triple negative breast cancer (TNBC): 
Non-genetic tumor heterogeneity and immune microenvironment: Emerging 
treatment options. Pharmacology & therapeutics. 2022; 237: 108253. 

28. Agostinetto E, Losurdo A, Nader-Marta G, Santoro A, Punie K, Barroso R, et 
al. Progress and pitfalls in the use of immunotherapy for patients with triple 
negative breast cancer. Expert Opin Investig Drugs. 2022; 31: 567-91. 

29. Mezni E, Behi K, Gonçalves A. Immunotherapy and breast cancer: an 
overview. Curr Opin Oncol. 2022; 34: 587-94. 

30. Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et 
al. Liquid biopsies come of age: towards implementation of circulating tumour 
DNA. Nat Rev Cancer. 2017; 17: 223-38. 

31. Zhao W, Xin L, Tang L, Li Y, Li X, Liu R. A positive feedback loop between 
LINC01605 and NF-κB pathway promotes tumor growth in nasopharyngeal 
carcinoma. RNA Biol. 2022; 19: 482-95. 

32. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. 
Cell. 2010; 140: 883-99. 

33. Pi YN, Qi WC, Xia BR, Lou G, Jin WL. Long Non-Coding RNAs in the Tumor 
Immune Microenvironment: Biological Properties and Therapeutic Potential. 
Front Immunol. 2021; 12: 697083. 

34. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast 
cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin 
Oncol. 2016; 13: 674-90. 

35. Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway. 
Nat Rev Immunol. 2018; 18: 153-67. 

36. Pai CS, Simons DM, Lu X, Evans M, Wei J, Wang YH, et al. Tumor-conditional 
anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related 
toxicity. J Clin Invest. 2019; 129: 349-63. 

37. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG3 (CD223) as a 
cancer immunotherapy target. Immunol Rev. 2017; 276: 80-96. 

38. Zhai L, Ladomersky E, Lenzen A, Nguyen B, Patel R, Lauing KL, et al. IDO1 in 
cancer: a Gemini of immune checkpoints. Cell Mol Immunol. 2018; 15: 447-57. 

39. Kwapisz D. Pembrolizumab and atezolizumab in triple-negative breast 
cancer. Cancer Immunol Immunother. 2021; 70: 607-17. 

40. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015; 21: 
1253-61. 

41. Yang F, Yang Y, Qiu Y, Tang L, Xie L, Guan X. Long Non-Coding RNAs as 
Regulators for Targeting Breast Cancer Stem Cells and Tumor Immune 
Microenvironment: Biological Properties and Therapeutic Potential. Cancers 
(Basel). 2024; 16. 

42. Guo Q, Liu Q, He D, Xin M, Dai Y, Sun R, et al. LnCeCell 2.0: an updated 
resource for lncRNA-associated ceRNA networks and web tools based on 
single-cell and spatial transcriptomics sequencing data. Nucleic Acids Res. 
2025; 53: D107-d15. 

43. Yang D, Li C, Kong Y, Pei Y, Miao B, Dai G, et al. Deciphering the 
Temporal-Spatial Interactive Heterogeneity of Long Non-Coding RNAs and 
RNA-Binding Proteins in Living Cells at Single-Cell Resolution. J Am Chem 
Soc. 2024; 146: 20878-90. 


