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Abstract

Background: Gliomas, the predominant malignant neoplasm of the central nervous system, are
notorious for their recurrence and unfavourable prognosis. Immune cells play a pivotal role in the
progression of various solid tumors, including gliomas. This study aims to explore the potential causal
effect of immune cells on the risk of glioma and the association between immune cells and clinical
characteristics in glioma.

Materials and Methods: This study used the public genome-wide association studies (GWAS)
summary data of 731 immune cell traits and gliomas to perform two-sample Mendelian randomization
(MR) analysis. The MR analysis primarily employed the inverse variance weighting (IVW) method,
supplemented by three additional methods, alongside comprehensive pleiotropy and heterogeneity
analyses. In addition, 151 glioma samples were collected for RNA-Seq to construct the CSUXY cohort,
and RNA-Seq data and clinical information of 588 glioma samples in the TCGA cohort were collected.
The associations between immune cell abundance and clinical characteristics and drug sensitivity of each
sample were inferred in the two cohorts.

Results: Based on the IVW method, this study identified potential causal associations between 16
immune cell traits and the risk of glioma. The other three MR analysis methods had consistent causal
directions with the IVW method and there was no horizontal pleiotropy and heterogeneity. Higher levels
of immune cell infiltration were observed in IDH wild-type and 1p19q non-codel gliomas compared to
IDH mutant and 1p19q codel gliomas across both the CSUXY and TCGA cohorts. In addition, the
abundance of immune cells was also associated with the grade, histological subtype and prognosis of
gliomas. Finally, this study also identified broad associations between immune cell abundance and drug
sensitivity in glioma.

Conclusion: This study supports the causal effects of specific immune cell traits on glioma and confirms
the associations between immune cells and clinical characteristics, as well as drug sensitivity in glioma,
providing evidence for the development of immune cell-based biomarkers.
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Introduction

Glioma is a neuroepithelial tumor and the most
common primary malignant tumor in the central
nervous system. Its main characteristics include poor
prognosis, easy recurrence and resistance to a variety
of treatment modalities. The median survival of
high-grade gliomas is usually only 12 to 15 months,

while the 5-year survival rate is less than 5% [1,2].
Despite a multi-modality treatment strategy
comprising surgery, chemotherapy, radiation and/or
immunotherapy, the outcomes still remain dismal [3].
Therefore, finding new therapeutic strategies to meet
these challenges has become the core task of glioma
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research. Further exploration of the pathogenesis
factors and potential biomarkers of glioma will
contribute to the development of new therapeutic
strategies.

Recent advancements in tumor immunology
highlight the significant role of immune cells as key
components of the tumor microenvironment (TME),
playing a crucial part in regulating tumor progression
[4]. The interactions between these immune cells and
tumor cells can either inhibit or promote the
development of gliomas. This understanding is
essential for advancing the development of
immunotherapeutic agents. Immune cells have a
complex role in tumorigenesis; they can suppress
tumor growth by eliminating cancer cells, but they
may also facilitate tumor progression by providing
growth and survival factors [4,5].

For example, tumor-associated macrophages
(TAMs) represent the most abundant immune cell
population within the TME of glioma, accounting for
approximately 50% of the TME cells in gliomas [6,7].
These macrophages respond to various factors
secreted by cancer cells, releasing a range of growth
factors and cytokines, which play a crucial role in
promoting tumor development within the TME.
Studies have demonstrated that disrupting the
function of microglia and macrophages in mouse
models of gliomas significantly inhibits tumor
proliferation [8]. Furthermore, the high infiltration
rate of macrophages in gliomas is closely associated
with poor prognosis [9], a pattern that mirrors
observations in other tumor types [10].

In contrast, dendritic cells (DCs) have the
capability to recognize tumor antigens and transport
them to tumor-draining deep cervical lymph nodes,
thereby triggering T cell-mediated immune responses
[11-13]. Furthermore, dendritic cells can produce
chemokines that recruit cytotoxic T lymphocytes into
the TME, effectively inhibiting the progression of
gliomas [14,15]. Despite significant advancements in
the study of immune cells, the relationship between
immune cell traits and gliomas remains inconsistent.
It is essential to further investigate the causal
relationships and clinical implications between
immune cell traits and glioma.

Mendelian randomization (MR) leverages
genetic variants as instrumental variables (IVs) to
infer causal relationships between exposures (e.g.,
environmental factors, lifestyle choices, or immune
cell traits) and glioma outcomes [16,17]. Unlike
observational studies, which can be confounded by
biases such as measurement errors or external
variables, MR uses genetic variants that are randomly
assigned at conception, minimizing confounding and
providing more reliable results [18,19]. Additionally,

MR is less susceptible to measurement errors, as
genetic data is objective and precise compared to
self-reported data, which can be inaccurate [20].

Although randomized controlled trials (RCTs)
are considered the gold standard for establishing
causal effects, their practical implementation can be
challenging [21]. MR serves as an alternative to RCTs
by leveraging summary data from genome-wide
association studies (GWAS) and employing single
nucleotide polymorphisms (SNPs) to facilitate causal
inference [19]. This method enhances the reliability of
epidemiological research, making it less susceptible to
biases and providing more robust insights into the
relationships between various health-related variables
[16,17]. Therefore, it is worthwhile to use MR methods
to infer the potential causal relationship between
immune cell traits and glioma.

In addition, the rise of transcriptomic sequencing
has promoted the inference of immune cell infiltration
levels based on sequencing data. Previous studies
have also confirmed the reliability of estimating
immune cell infiltration from RNA sequencing
(RNA-Seq) data [22,23]. In this study, we combined
MR methods based on GWAS data and RNA-Seq data
of a large number of glioma samples to explore the
causal and clinical associations between immune cells
and glioma. This study aims to further reveal the
potential pathogenic factors and biomarkers of
glioma.

Methods

Data source

The GWAS summary data for immune cells used
in this study were derived from the study by Orru et
al. [24] and can be downloaded from IEU Open
GWAS  (https://gwas.mrcieu.ac.uk/) with the
accession ~ numbers  ebi-a-GCST90001391 to
ebi-a-GCST90002121. The GWAS cohort covered 731
broad immune traits from 3,757 Sardinians, including
absolute cell counts, median fluorescence intensities
of surface antigens, morphological parameters, and
relative cell counts. The GWAS summary data of
human gliomas was obtained from the FinnGen
database (https://www .finngen.fi/en) [25], and this
GWAS  cohort included glioblastoma and
astrocytoma. The data sources and characteristics of
immune cell and glioma GWAS cohorts were
summarized in Supplementary Table S1. For
transcriptomic analysis, we collected 151 glioma
samples from Xiangya Hospital, Central South
University for RNA-Seq, and complete follow-up
information was collected for all samples. The
collection of human tissues was approved by the
Medical Ethics Committee of Xiangya Hospital of
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Central South University (Approval number:
202401003) and written informed consent was
provided by all of the patients. This cohort was
named CSUXY, and the clinical characteristics of this
cohort were summarized in Supplementary Table S2.
We downloaded normalized RNA-Seq data and
clinical information of 588 glioma samples from The
Cancer Genome Atlas (TCGA) from UCSC Xena
(https:/ /xena.ucsc.edu/). All included patients had
primary tumors, and the samples were sourced from
their initial surgeries. In addition, we previously
collected nine fresh glioma samples from the
Department of Neurosurgery, Xiangya Hospital for
single-cell RNA sequencing (scRNA-seq). Detailed
information about the nine samples can be found in
the previous study [26].

Instrumental variable selection

In this study, SNPs were selected as IVs.
Although the conventional threshold for IVsis P <5 x
10% to minimize the risk of false positives, this
approach can be problematic in certain situations. For
instance, when the number of IVs exceeding this
threshold is small, the analysis may be inadequate, or
in some unbiased screening situations, the results may
be exaggerated [27]. The source literature for immune
cell GWAS data adopted a more lenient threshold of P
<1 x 10° [24], which may increase the risk of false
positives. After comprehensively considering the risk
of false positives and the number of IVs, we adopted a
genome-wide significance threshold of P <5 x 10 for
the selection of IVs related to immune cell traits. Ye et
al. also used this threshold to screen IVs for immune
cell traits [28]. To mitigate linkage disequilibrium
among the IVs, we applied a clumping distance of
10,000 kb and an R2 threshold of < 0.001 during the
clumping process to evaluate the SNPs. Furthermore,
to circumvent the issue of weak instrument bias, we
excluded SNPs with F statistics < 10 from the analysis.
Careful harmonization of the SNPs between the
exposure and outcome variables was ensured,
guaranteeing that they corresponded to the same
alleles. Additionally, we also eliminated SNPs with a
close association with glioma (P < 5 x 10%) and
palindromic SNPs. To rule out the possibility of
reverse causal associations, we conducted the Steiger
test, and we subsequently excluded SNPs that failed
to meet the test criteria.

RNA-seq of glioma samples

RNA-Seq was performed as described
previously [26,29,30]. Total RNA was extracted from
tissue samples using TRIzol® Reagent following the
manufacturer’s instructions. RNA quality and
quantity were rigorously assessed using the Agilent

5300 Bioanalyzer and ND-2000 NanoDrop. Only
high-quality RNA samples meeting strict criteria were
used for downstream processing: OD260/280 ratio of

1.8 -22, OD260/230 ratio = 2.0, RNA Integrity

Number (RIN) 2 6.5, 285:18S ribosomal RNA ratio >
1.0, and total RNA quantity > 1 pg. For library
preparation, 1 ug of total RNA was used to construct
the RNA-seq transcriptome library using the
lumina® Stranded mRNA Prep, Ligation Kkit.
Messenger RNA (mRNA) was isolated via polyA
selection using oligo(dT) beads, followed by
fragmentation to  generate  fragments  of
approximately 300 bp. Double-stranded cDNA was
synthesized using a SuperScript double-stranded
cDNA synthesis kit (Invitrogen, CA) with random
hexamer primers. The cDNA underwent end-repair,
phosphorylation, and 'A' base addition to prepare for
adapter ligation. Libraries were size-selected using 2%
Low Range Ultra Agarose to enrich for fragments of
~300 bp and amplified by PCR with Phusion DNA
polymerase (NEB) for 15 cycles. The final libraries
were quantified using Qubit 4.0 and validated for size
distribution using the Agilent Bioanalyzer. Paired-end
sequencing (2 x 150 bp) was performed on the
INlumina NovaSeq 6000 platform. Raw sequencing
reads were subjected to stringent quality control using
fastp. Adapter sequences and reads without insert
fragments were removed, and low-quality bases
(quality score < 20) were trimmed from the 3' end of
reads. Reads with remaining bases having quality
scores < 10 or an N (ambiguous base) ratio exceeding
10% were discarded. Additionally, reads shorter than
20 bp after trimming were excluded. These steps
produced high-quality clean reads for downstream
analysis. Quality metrics, including base composition
distribution, base quality distribution, and base error
rate distribution, were evaluated to confirm the
reliability of the sequencing data. Clean reads were
aligned to the reference genome in orientation-aware
mode using HISAT2. The alignment results were
assessed for sequencing saturation, gene coverage,
and distribution of reads across genomic regions and
chromosomes.  Transcriptome  assembly  was
performed using StringTie in a reference-based
approach, which reconstructed transcript structures
and quantified their abundances. Gene and transcript
expression levels were quantified using RSEM
(version 1.3.3) based on the number of reads mapped
to genomic regions. Expression levels were
normalized to transcripts per million (TPM) to
account for differences in sequencing depth and
transcript length across samples, enabling accurate
cross-sample comparisons.
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scRNA-seq and deconvolution analysis

scRNA-seq was performed on nine glioma
samples using the droplet-based 10x Genomics
platform (10x Genomics, Pleasanton, CA, USA). The
detailed quality control process and analysis methods
of scRNA-seq can be found in our previous published
research [26]. Briefly, after filtering, a total of 94629
high quality cells were retained for subsequent
analysis based on “Seurat” package. The Harmony
algorithm was used to remove batch effects between
samples. Classic cell markers were used to identify the
cell type of each cluster. The BayesPrism
deconvolution method was used to infer the cellular
composition of the CSUXY and TCGA cohorts based
on the expression matrix of the scRNA analysis
according to default parameters [31].

MR analysis

MR relies on three core assumptions to ensure
valid causal inference: (1) the genetic variants used as
instrumental variables (IVs) must be strongly
associated with the exposure of interest (relevance
assumption); (2) the genetic variants should not be
associated with any confounding factors that affect
the exposure-outcome relationship (independence
assumption); and (3) the genetic variants must
influence the outcome only through the exposure of
interest, with no direct or alternative pathways
(exclusion restriction assumption). To explore the
causal relationship between immune cell traits and
glioma, we employed four different methods for MR
analysis. =~ These methods included inverse
variance-weighted (IVW) [32], MR-Egger regression
[33], weighted median [34], and weighted mode [35].
A comparative study previously demonstrated the
superior power of the IVW method under specific
conditions [34]. In light of this, our study primarily
focuses on the findings obtained using the IVW
method, while considering the results from the other
three methods as supplementary information. To
address potential biases, especially horizontal
pleiotropy, we implemented several robust methods
and sensitivity analyses. First, we performed
MR-Egger regression, which provides an estimate of
causal effect that is less sensitive to pleiotropy by
allowing for an intercept term that captures
directional pleiotropy. Horizontal pleiotropy was
assessed using the MR-Egger intercept, where a
P-ntercept < 0.05 indicated the presence of horizontal
pleiotropy. Heterogeneity among the included single
SNPs in each analysis was evaluated using Cochran’s
Q test in IVW and MR-Egger methods, with a
significance level of p < 0.05 indicating high
heterogeneity. In  addition, we  conducted
leave-one-out analyses to identify and exclude

potential outlier SNPs that might disproportionately
influence the results due to pleiotropic effects. All MR
analyses were performed using the “TwoSampleMR”
(version 0.5.7) and “MendelianRandomization”
(version 0.8.0) packages. A suggestive causal
association was defined as a p < 0.05.

Immune infiltration analysis

We performed immune infiltration analysis
according to the methods used in previous studies
[23,36-38]. Specifically, we collected a gene set of 28
immune cells from the study of Charoentong et al.
[39], and then we quantified the relative level of
immune cell infiltration in each sample using the
single-sample gene set enrichment analysis (ssGSEA)
method based on the R package “GSVA”. In addition,
we used the quanTlIseq algorithm to quantify the
absolute proportions of the 10 immune cell types in
each sample [40].

Drug sensitivity analysis

As previously described [41], we obtained the
gene expression data of 809 tumor cell lines and
corresponding response data for each cell line from
the Genomics of Drug Sensitivity in Cancer (GDSC)
database. The data was normalized and converted to
IC5 values. Subsequently, the ICso values for each
drug were estimated for individual glioma patients
using the oncoPredict algorithm [42] based on the
gene expression profiles of cell lines and the drug
response data.

Statistical analysis

Statistical comparisons between two groups
were conducted using either an unpaired Student's
t-test or a Wilcoxon rank sum test. On the other hand,
when comparing differences among more than two
groups, either a one-way ANOVA or a Kruskal-Wallis
test was employed. Univariate Cox regression was
used to assess the prognostic significance of
individual immune cells. Spearman’s correlation
analysis was used to quantify the correlation between
two groups. All statistical calculations were
performed using R software (version 4.3.1) and p <
0.05 was regarded as statistically significant.

Results

Causal effects of immune cell traits on the risk
of glioma

In this study, we used two-sample MR analysis
to explore the causal effects of 731 immune cell traits
on the risk of glioma. The SNPs used for each immune
cell trait were summarized in Supplementary Table
S3, and the F statistics of theses SNPs ranged from
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19.62 to 2435.82, with an average of 41.26, indicating
that these SNPs were strong IVs. The results of MR
analysis of all immune cell traits on glioma were
summarized in Supplementary Table S4. Figure 1
summarizes the causal effects of 16 immune cell traits
on glioma risk based on IVW analysis. Among these,
four B cell traits showed significant associations: IgD-
CD27- B cell %B cell (OR = 0.70, 95%CI = 0.49~1.00, p
= 0.047) was negatively correlated with glioma risk,
while CD19 on IgD+ CD38dim B cell (OR = 1.11,
95%CI =1.00~1.24, p = 0.042), CD27 on CD24+ CD27+
B cell (OR =1.24, 95%CI = 1.02~1.50, p = 0.031), and
CD27 on unswitched memory B cell (OR = 1.21,
95%CI = 1.00~1.46, p = 0.048) were positively
correlated with glioma risk. In addition, IVW analysis
showed that six T cell traits were associated with
glioma, including CD8dim T cell %T cell (OR = 0.70,
95%Cl = 0.49~1.00, p = 0.047), CD4+ CD8dim T
cell %lymphocyte (OR = 0.70, 95%CI = 0.50~0.98, p =
0.038), CD8 on HLA DR+ CD8+ T cell (OR = 0.86,
95%CI = 0.75~0.99, p = 0.040) and CD3 on CD39+
resting CD4 regulatory T cell (Tregs) (OR = 0.69,
95%CI = 0.52~0.93, p = 0.016), which were negatively
correlated with the risk of glioma, and CD28+
CD45RA+ CD8+ T cell Absolute Count (OR = 1.04,
95%CI = 1.01~1.08, p = 0.015) and SSC-A on CD8+T
cell (OR =1.35, 95%CI = 1.23~1.63, p = 0.001), which
were positively correlated with glioma. CD8+ T cells
are critical components of the anti-tumor immune
response, as they directly target and eliminate tumor
cells through cytotoxic activity. The negative
correlation between CD8 on HLA DR+ CD8+ T cells
and glioma risk highlights the anti-tumor immune
role of mature CD8+ T cells. In addition, IVW analysis
also found that FSC-A on HLA DR+ Natural Killer
(OR = 0.78, 95%CI = 0.67~0.92, p = 0.003), CCR2 on
CD14-CD16+ monocyte (OR = 0.83, 95%Cl =
0.69~1.00, p = 0.046) and CD14 on Monocytic MDSCs
(OR = 0.72, 95%CI = 0.56~0.93, p = 0.012) were
negatively correlated with the risk of glioma, and
Granulocyte Absolute Count (OR = 1.50, 95%CI =
1.12~2.02, p = 0.007), CD16+ monocyte %monocyte
(OR =141, 95%CI =1.03~1.93, p = 0.032) and CD45 on
CD33+HLA DR+CD14dim (OR = 1.29, 95%CI =
1.07~1.54, p = 0.007) were positively correlated with
the risk of glioma. Monocytes can differentiate into
TAMSs, which are known to promote tumor growth,
angiogenesis, and immune suppression in the glioma
microenvironment. The association of CD16+
monocyte %monocyte with glioma emphasizes the
potential role of monocytes and their derivatives in
the pathogenesis of glioma. The results of the other
three MR analysis methods showed the same causal
direction as the IVW analysis, supporting and

supplementing the IVW analysis. Figure 2 presents
scatter plots illustrating the genetic associations
between the 16 immune cell traits and glioma risk.
Each plot displays the SNP-exposure and
SNP-outcome associations, with the slope of the
regression line representing the causal effect
estimated by MR analysis.

Next, we performed various sensitivity analyses
on the MR analysis results between immune cell traits
and glioma. The results of the horizontal pleiotropy
analysis based on MR-Egger method were
summarized in Supplementary Table S5, and the
results of the heterogeneity analysis based on IVW
and MR-Egger methods were summarized in
Supplementary Table S6. As shown in Figure 1, we
found no obvious horizontal pleiotropy or
heterogeneity in the aforementioned 16 causal
associations (all p > 0.05). Figure 3 shows the results of
leave-one-out sensitivity analyses for the 16 immune
cell traits. The consistent causal estimates across all
analyses, with no single SNP driving the results,
indicate the robustness of our findings and the
absence of outlier SNPs. These results further support
the complex and critical role of immune cells in the
development of glioma.

Immune cells in gliomas correlate with clinical
characteristics

To further explore the relationship between
immune cells and tumor clinical characteristics in
glioma, we collected 151 glioma samples and
performed RNA-Seq to establish the CSUXY cohort.
In this cohort, we used the ssGSEA method to infer
the relative abundance of 28 immune cells in gliomas
and found that almost all immune cells in IDH
wild-type gliomas were more abundant than those in
IDH mutant gliomas (Figure 4A), such as activated
CD8+ T cells and macrophages. Similarly, the
abundance of immune cells was higher in 1p19q
non-codel gliomas than in 1p19q codel gliomas
(Figure 4B). For different grades of glioma, we found
that both grade I and IV gliomas had higher immune
cell infiltration than grade II-III gliomas (Figure 4C).
This observation may be attributed to the limited
sample size of grade I gliomas (n=4) and requires
validation in larger cohorts. It is possible that immune
infiltration in grade I gliomas represents an early
anti-tumor immune response aimed at controlling
tumor growth at its initial stages. Activated CD8+ T
cells, known for their cytotoxic activity, may infiltrate
the tumor microenvironment to target neoplastic cells
before the tumor develops advanced immune evasion
mechanism.
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Outcome No.of SNP
Glioma 11

Method
VW
MR Egger

Exposure
IgD- CD27- B cell %B cell

Weighted median

Weighted mode
W%
MR Egger

CD19 on IgD+ CD38dim B cell Glioma 14

Weighted median

Weighted mode
\%
MR Egger

CD27 on CD24+ CD27+ B cell Glioma 20

Weighted median

Weighted mode
vw
MR Egger

CD27 on unswitched memory B cell Glioma 24

Weighted median

Weighted mode
VW
MR Egger

CD28+ CD45RA+ CD8+ T cell Absolute Count Glioma 25

Weighted median

Weighted mode
vw
MR Egger

CD8dim T cell %T cell Glioma 10

Weighted median

Weighted mode
\A%
MR Egger

CD4+ CD8dim T cell %lymphocyte Glioma 9

Weighted median

Weighted mode
vw
MR Egger

CD8 on HLA DR+ CD8+ T cell Glioma 14

Weighted median

Weighted mode
VW
MR Egger

SSC-A on CD8+ T cell Glioma 14

Weighted median

Weighted mode
vw
MR Egger

CD3 on CD39+ resting CD4 regulatory T cell Glioma 9

Weighted median

Weighted mode
WA
MR Egger

Granulocyte Absolute Count Glioma 14

Weighted median

Weighted mode
vw
MR Egger

FSC-A on HLA DR+ Natural Killer Glioma 12

Weighted median

Weighted mode
\2%
MR Egger

CCR2 on CD14- CD16+ monocyte Glioma 16

Weighted median

Weighted mode
vw
MR Egger

CD16+ monocyte %monocyte Glioma 11

Weighted median

Weighted mode
VW
MR Egger

CD45 on CD33+ HLA DR+ CD14dim Glioma 7

Weighted median

Weighted mode
VW
MR Egger

CD14 on Monocytic Myeloid—-Derived Suppressor Cells Glioma 9

Weighted median

Weighted mode

OR(95% CI) P value Pleiotropy (p value) Heterogeneity (Q, p value)

0.70 (0.49 to 1.00) 0.047 12.457; 0.255
0.53 (0.25 to 1.16) 0.145 0.457 11.676; 0.232
0.59 (0.39 to 0.89) 0.011

0.56 (0.37 to 0.86) 0.024

1.11 (1.00 to 1.24) 0.042 10.852; 0.623
1.13 (1.00 to 1.27) 0.084 0.773 10.765; 0.549
1.11(0.97 to 1.27) 0.142

1.12 (0.99 to 1.26) 0.102

1.24 (1.02 to 1.50) 0.031 22.188; 0.274
1.38 (0.94 to 2.02) 0.116 0.518 21.666; 0.247
1.39 (1.09 to 1.77) 0.009

1.39 (1.10 to 1.76) 0.013

1.21 (1.00 to 1.46) 0.048 21.871;0.528
1.28 (0.88 to 1.87) 0.216 0.732 21.751; 0.474
1.54 (1.18 to 2.00) 0.001

1.51 (1.10 to 2.07) 0.017

1.04 (1.01 to 1.08) 0.015 25.513; 0.378
1.04 (1.01 to 1.08) 0.033 0.888 25.491; 0.325
1.04 (1.00 to 1.08) 0.055

1.04 (1.00 to 1.08) 0.035

0.65 (0.43 t0 0.98) 0.039 10.833; 0.287
0.52 (0.19 to 1.45) 0.245 0.657 10.554; 0.228
0.63 (0.36 to 1.09) 0.097

0.53 (0.25 to 1.15) 0.141

0.70 (0.50 to 0.98) 0.038 5.946; 0.653
0.64 (0.30 to 1.33) 0.266 0.781 5.863; 0.555
0.62 (0.41 t0 0.93) 0.020

0.65 (0.42 to 1.01) 0.092

0.86 (0.75 t0 0.99) 0.040 13.315; 0.427
0.85 (0.70 to 1.03) 0.122 0.835 13.265; 0.350
0.88 (0.73 t0 1.07) 0.199

0.87 (0.73 to 1.05) 0.172

1.35 (1.12 to 1.63) 0.001 11.609; 0.559
1.29 (1.02 to 1.62) 0.052 0.468 11.047; 0.524
1.35 (1.03 to 1.77) 0.028

1.33 (1.07 to 1.65) 0.022

0.69 (0.52 t0 0.93) 0.016 10.769; 0.215
0.64 (0.37 to 1.11) 0.154 0.741 10.590; 0.157
0.72 (0.49 to 1.08) 0.111

0.72 (0.44 to 1.16) 0.211

1.50 (1.12 to 2.02) 0.007 3.672; 0.994
1.33 (0.79 to 2.24) 0.310 0.581 3.351; 0.992
1.52 (1.01 to 2.30) 0.046

1.51 (0.95 to 2.40) 0.102

0.78 (0.67 t0 0.92) 0.003 10.889; 0.452
0.76 (0.61 to 0.94) 0.031 0.668 10.681; 0.382
0.79 (0.63 to 1.00) 0.051

0.80 (0.63 to 1.00) 0.076

0.83 (0.69 to 1.00) 0.046 11.101; 0.745
0.78 (0.61 to 1.01) 0.079 0.530 10.688; 0.710
0.87 (0.67 to 1.13) 0.301

0.85 (0.67 to 1.08) 0.196

1.41 (1.03 to 1.93) 0.032 6.411;0.779
1.18 (0.67 to 2.07) 0.578 0.469 5.841; 0.755
1.12 (0.74 to 1.70) 0.598

1.06 (0.64 to 1.77) 0.818

1.29 (1.07 to 1.54) 0.007 2.367;0.883
1.30 (1.02 to 1.66) 0.086 0.891 2.346; 0.799
1.31 (1.03 to 1.67) 0.031

1.32 (1.03 to 1.69) 0.068

0.72(0.56 to 0.93) 0.012 11.158; 0.192
0.94 (0.53 to 1.67) 0.841 0.351 9.768; 0.202
0.66 (0.48 to 0.91) 0.010

0.57 (0.34 to 0.94) 0.059

T 1T T T 1
0 051152 25

Figure 1. Two sample MR results of causal effects of immune cell traits on glioma. Data are expressed as an odds ratio (OR) with corresponding 95% confidence
interval (Cl). The forest plot also includes the results of sensitivity analyses. * P <0.05, ** P <0.01.

In addition, GBM had a higher abundance of

immune cell infiltration compared to other
histological subtypes of glioma, while
oligodendroglioma had the lowest immune

infiltration (Figure 4D). Univariate Cox analysis
showed that the abundance of most immune cells was
associated with poor prognosis in glioma (Figure 4E).
We then used the TCGA cohort for validation
analysis. Consistent with the CSUXY cohort, IDH
wild-type and 1p19q non-codel gliomas had higher
levels of immune cell infiltration than IDH mutant
and 1p19q codel gliomas (Figure 5A-B). Grade IV
gliomas had higher levels of immune infiltration than

grade II-III gliomas (Figure 5C). In terms of
histological subtypes, GBM also had the highest level
of immune cell infiltration, while oligodendroglioma
had the lowest level (Figure 5D). Interestingly, in the
TCGA cohort, although the abundance of most
immune cells was associated with poor prognosis in
glioma, a higher abundance of activated B cells and
eosinophils was associated with better prognosis in
glioma (Figure 5E). Furthermore, we quantified the
absolute proportions of 10 types of immune cells in
both internal and external using the quanTIseq
algorithm (Supplementary Table S7,58). The immune
cell composition of different samples in glioma has
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obvious heterogeneity (Supplementary Figure S1).
Most immune cells in gliomas were myeloid-derived
cells such as M2 macrophages, while the absolute
proportion of T-cells is very low, indicating the
dominant role of suppressive macrophages in the
TME of glioma (Figure 6). This result is also consistent
with previous studies [6,7]. From a clinical
perspective, in both the CSUXY and TCGA cohorts,
the proportion of M2 macrophages was significantly
higher in IDH wild-type and 1p19q non-codel gliomas
compared to IDH mutant and 1p19q codel gliomas
(Figure 6A,B). Conversely, the proportion of NK cells
was significantly lower in IDH wild-type and 1p19q
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non-codel gliomas (Figure 6A,B). These findings
suggest a predominance of immunosuppressive cells
in IDH wild-type and 1p19q non-codel gliomas.
Similarly, in both cohorts, the proportion of M2
macrophages was significantly higher in grade IV
gliomas compared to grade II-III gliomas, while the
opposite was true for NK cells (Figure 6C). Regarding
the distribution of immune cells across different
glioma subtypes, M2 macrophages were most

abundant in GBM and least abundant in
oligodendroglioma, whereas NK cells were least
abundant in GBM and most abundant in
oligodendroglioma (Figure 6D).
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Figure 2. The scatter plots of causal effects of immune cell traits on glioma. (A) Potential causal effects of four B cell traits on glioma. (B) Potential causal effects of
six T cell traits on glioma. (C) Potential causal effect of granulocyte absolute count on glioma. (D) Potential causal effect of FSC-A on HLA DR+ natural killer cells on glioma. (E)
Potential causal effects of three monocyte traits on glioma. (F) Potential causal effect of CD14 on monocytic myeloid-derived suppressor cells on glioma.
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Figure 3. Leave-one-out plots for two sample MR results of causal effects of immune cell traits on glioma. (A) Leave-one-out plots of four B cell traits on glioma.
(B) Leave-one-out plots of six T cell traits on glioma. (C) Leave-one-out plot of granulocyte absolute count on glioma. (D) Leave-one-out plot of FSC-A on HLA DR+ natural
killer cells on glioma. (E) Leave-one-out plots of three monocyte traits on glioma. (F) Leave-one-out plot of CD14 on monocytic myeloid-derived suppressor cells on glioma.

Forest plot of causal estimates omitting each variant in turn.

In addition, we performed scRNA-seq on nine
glioma samples and identified seven major cell types
based on the expression of signature genes (Figure
7A,B). We then performed deconvolution analysis on
the CSUXY and TCGA cohorts based on the
scRNA-seq results to infer the cell composition.
Consistent with previous results, scRNA-seq-based
analysis also showed that in addition to tumor cells

and oligodendrocytes, the most common immune cell
type was macrophages, while the absolute
proportions of T cells and B cells were low (Figure
7B-F). In both the CSUXY and TCGA cohorts, IDH
wild-type and 1p19q non-codel gliomas had higher
proportions of macrophages, fibroblasts, and T cells
compared with IDH mutant and 1p19q codel gliomas
(Figure 7C,D). Regarding different grades of glioma,
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in both cohorts, the proportions of macrophages,
fibroblasts, and T cells were significantly higher in
grade IV gliomas than in grade II-III gliomas (Figure
7E). For different glioma subtypes, macrophages,
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fibroblasts, and T cells were most abundant in GBM
and least abundant in oligodendrogliomas (Figure
7F).
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Figure 4. The relationship between immune cells and clinical characteristics in CSUXY cohort. (A) The abundance differences of immune cells between IDH
mutant and IDH wild-type gliomas. (B) The abundance differences of immune cells between 1p19q codel and 1p19q non-codel gliomas. (C) The abundance differences of
immune cells among different WHO grades. (D) The abundance differences of immune cells among different histological subtypes. (E) Univariate Cox regression analysis of
overall survival for 28 immune cells in glioma. * P<0.05, ** P<0.01, ** P<0.001, **** P<0.0001.
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Figure 5. The relationship between relative immune cells abundance and clinical characteristics in TCGA cohort. (A) The abundance differences of immune
cells between IDH mutant and IDH wild-type gliomas. (B) The abundance differences of immune cells between 1p19q codel and 1p19q non-codel gliomas. (C) The abundance
differences of immune cells among different WHO grades. (D) The abundance differences of immune cells among different histological subtypes. (E) Univariate Cox regression
analysis of overall survival for 28 immune cells in glioma. * P < 0.05, ** P<0.01, *** P<0.001, *** P < 0.0001.
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Figure 6. The relationship between absolute immune cell proportion and clinical characteristics in CSUXY and TCGA cohorts. (A) The proportion
differences of immune cells between IDH mutant and IDH wild-type gliomas. (B) The proportion differences of immune cells between 1p19q codel and 1p19q non-codel gliomas.
(C) The proportion differences of immune cells among different WHO grades. (D) The proportion differences of immune cells among different histological subtypes. * P < 0.05,

** P<0.01, ** P<0.001, ¥ P<0.0001.
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Figure 7. The relationship between absolute immune cell proportion and clinical characteristics in CSUXY and TCGA cohorts based on scRNA-seq. (A)
The dot plot shows the expression of characteristic genes in seven cell types. The size of the dots indicates the proportion of cells expressing a specific marker, and the color
indicates the average expression level of the markers. (B) The UMAP plot of the seven main cell types in glioma. (C) The proportion differences of immune cells between IDH
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P <0.0001.
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Immune cells in gliomas correlate with drug
sensitivities

We have shown in a previous study that the
TME status of tumors is associated with drug
sensitivity [23], so we speculated that the infiltration
abundance of specific immune cells may be associated
with the drug sensitivity of gliomas. Based on the
response data of 198 drugs from GDSC, we estimated
the IC50 value of each sample in CSUXY and TCGA
cohorts and then calculated the correlation of each
drug’s IC50 value with specific immune cells.
Detailed information and targets of each drug were
summarized in Supplementary Table S9. As shown in
Figure 8A, in the CSUXY cohort, CD56dim natural
killer cells were significantly positively correlated
with the IC50 values of RTK inhibitors such as
Savolitinib and AZD3759, representing lower
sensitivity to RTK inhibitors. Effector memory CD4+
T cells were specifically negatively correlated with the
IC50 values of BMS.754807, JQ1, and Doramapimod.
Other immune cells were positively correlated with
the IC50 values of nearly half of drugs, and negatively
correlated with the IC50 values of the other half of
drugs. In particular, most immune cells were strongly
positively correlated with the IC50 values of cell cycle
or DNA damage-related drugs such as B1.2536,
Linsitinib, and Pyridostatin. These results were
replicated in the TCGA cohort (Figure 8B). The
extensive associations observed between immune
cells and drug IC50 values imply the promising utility
of immune cells as potential biomarkers for predicting
drug sensitivity in glioma.

Discussion

Gliomas are notorious for their high malignancy
and poor prognosis, necessitating further exploration
of risk factors and biomarkers for gliomas [43]. While
the complex role of immune cells in the development
and progression of gliomas has been established [38],
further research is needed to determine whether
immune cells are associated with glioma risk.
Exploring the potential of immune cells as biomarkers
for gliomas also holds significant translational
significance. In this study, we analyzed 731 immune
cell traits using MR method and identified 16 immune
cell traits that may affect glioma susceptibility.
Furthermore, through the analysis of internal and
external transcriptomics cohorts, we examined the
association between the abundance of 28 immune
cells and the clinical characteristics of glioma, and
explored the correlation between immune cells and
drug sensitivity.

Our analysis revealed that specific immune cell
traits, particularly certain B and T cell populations, are

associated with glioma risk. B cells play a
multifaceted and often underappreciated role in
glioma, where they can infiltrate the tumor
microenvironment and adopt regulatory functions.
Recent studies suggest that infiltrating B cells can
produce immunosuppressive cytokines such as IL-10

and TGEF-f, as well as express immune checkpoint

molecules like PD-L1, which contribute to the
establishment of an immunosuppressive milieu that
favors tumor progression [44]. These B cells are often
found in an immature state, resembling plasmablasts,
and express markers characteristic of regulatory B
cells (Bregs), indicating a potential blockade in their
maturation process [44]. In terms of B cells, we
observed that CD27 on CD24+ CD27+ B cell and CD27
on unswitched memory B cell were positively
correlated with glioma risk, suggesting that CD27 on
B cell might play a role in tumor development. CD27
is a memory B-cell marker [45], and the CD27
expression has been used to distinguish between
memory and naive B cells [46]. The significance of
CD27 expression on B cells in the context of tumors
remains sparsely reported. However, recent studies
suggest that memory B cells may play a crucial role in
tumor immunity and are associated with the
prognosis of various solid tumors [47], especially the
stressed memory B cells which correlate with poorer
prognosis in most tumors [48]. Interestingly, in our
internal cohort (CSUXY) consisting of 151 glioma
samples, the abundance of memory B cells was
significantly negatively correlated with the prognosis
of glioma patients, and this negative correlation was
also confirmed in the external cohort (TCGA). From a
mechanistic perspective, in the context of glioma,
memory B cells may contribute to tumor growth by
promoting an immunosuppressive microenvironment
through the secretion of cytokines such as IL-10,
which can inhibit anti-tumor T cell responses [49,50].
Additionally, the presence of CD27+ memory B cells
may enhance the recruitment of Tregs and MDSCs,
further dampening the immune response against the
tumor [50-52]. From the perspective of literature
comparison, our findings are both consistent with and
extend previous research on the role of immune cells
in glioma. For instance, the association between
memory B cells (CD27+ CD24+ B cells) and increased
glioma risk aligns with recent studies suggesting that
memory B cells may contribute to tumor progression
by promoting an immunosuppressive
microenvironment [50,53]. Further investigation into
the precise roles and mechanisms of B cells in gliomas
is crucial for developing novel immunotherapeutic
strategies. Such strategies may enhance antitumor
immunity by modulating B-cell functions within the
TME.
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In terms of T cells, we discovered that the
absolute count of CD28+CD45RA+CD8+ T cells and
SSC-A on CD8+ T cells were also associated with an
increased risk of glioma. Although current studies
have demonstrated that tumor infiltration of CD28+
CD8+ T cells is associated with better prognosis in
glioma [54], CD45RA, as a marker of naive T cells,
indicates that CD28+ CD45RA+ CD8+ T cells possess
characteristics of naive T cells. The presence of
CD45RA on CD8+ T cells suggests that these cells may
have a reduced capacity to proliferate and mount an
effective anti-tumor response [55]. Existing research
has shown that pancreatic cancer patients with a
lower proportion of peripheral naive T cells have a
longer survival time [56]. Furthermore, a study by
Javier Carrasco et.al also revealed that CD45RA+ T
cells lack proliferative capacity [57]. The association
between CD28+ CD45RA+ CD8+ T cells and
increased glioma risk may be mediated through the
exhaustion of naive T cells. SSC represents the
inherent cell granularity of lymphocytes, which is
closely related to cell function and state. The
granularity of CD8+ T cells, as indicated by SSC-A,
may reflect their functional state, with higher
granularity associated with reduced proliferative
capacity and impaired anti-tumor activity. Recent
studies also have shown that CD8+ T cells with low
SSC have a significantly higher proliferation rate than
those with high SSC [58]. CD28+CD45RA+CD8+ T
cells and SSC-A on CD8+ T cells may increase the risk
of glioma through lower anti-tumor immunity. These
findings suggest that the immune landscape in glioma
is shaped by a complex interplay of immune cell
subsets, each contributing to tumor progression
through distinct biological pathways. The negative
correlation between CD8dim T cells and glioma risk is
consistent with the well-established role of CD8+ T
cells in anti-tumor immunity, where their reduced
infiltration or functional exhaustion is often
associated with poorer outcomes in various cancers,
including glioma [59,60]. These findings corroborate
the importance of T cell-mediated immunity in
controlling tumor growth and highlight the potential
of targeting T cell exhaustion as a therapeutic strategy
in glioma. However, some of our findings represent
novel insights into the immune landscape of glioma.
For example, the positive association between SSC-A
on CD8+ T cells and glioma risk has not been
previously reported. While previous studies have
linked T cell granularity to proliferative capacity in
other cancers [58], our study is the first to implicate
this trait in glioma pathogenesis. T cells play a critical
role in the immune response against gliomas, and
their functionality varies significantly across different
molecular subtypes of the tumor. In mesenchymal

(MES)-like GBM, there is a higher infiltration of CD3+
and CD8+ T cells, which correlates with a more
aggressive tumor phenotype and poorer prognosis.
Conversely, the proneural subtype tends to exhibit a
lower density of tumor-infiltrating lymphocytes,
which may contribute to its relatively better clinical
outcomes [61]. Understanding these subtype-specific
T cell dynamics is essential for developing tailored
immunotherapeutic strategies that can enhance T cell
responses and improve patient outcomes in glioma.
In this study, we collected 151 glioma samples
with varying clinical characteristics for RNA-Seq
analysis to explore the relationship between immune
cell abundance and clinical features. The higher levels
of immune infiltration observed in IDH wild-type and
1p19q non-codel gliomas suggest that these tumors
may possess features that render them more
immunogenic. This aligns with the hypothesis that
certain genetic alterations can influence the immune
landscape of tumors, potentially affecting treatment
responses [62]. Our findings indicated that gliomas of
different grades exhibited varying levels of immune
cell infiltration. Specifically, in both internal and
external cohorts, high-grade gliomas tend to exhibit a
higher degree of anti-tumor immune cell infiltration,
such as activated CD8 T cells, compared to low-grade
gliomas, but they also show a higher level of
immunosuppressive cell infiltration, including Tregs
and MDSCs. Consistent with this, the abundance of
most immune cells is negatively correlated with the
prognosis of gliomas, suggesting that the function of
anti-tumor immune cells may be exhausted or
suppressed in high-grade gliomas. Our results
regarding the association between immune cell
infiltration and glioma grade are consistent with
previous studies showing that high-grade gliomas
exhibit increased immune cell infiltration, particularly
of immunosuppressive cell types such as Tregs and
MDSCs [63-65]. However, it also suggests another
therapeutic opportunity. Although glioma patients
(such as MES-like GBM) with higher levels of immune
infiltration have poorer prognosis, they could also
respond more positively to dendritic cell vaccination

or checkpoint inhibitors (such as anti-CTLA4
ipilimumab, anti-PD1 nivolumab, and
pembrolizumab) [65]. This may be because

pre-existing anti-tumor immunity is released as
immunosuppression is lifted [38,65,66]. However, it is
worth noting that the hypothesis that MES-like GBM
is more susceptible to immune checkpoint inhibition
has not yet been supported by clinical data, and
clinical trials related to this are ongoing [65], and
continued research is needed to better understand the
clinical significance of these findings. While grade IV
gliomas  demonstrated  heightened  immune
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infiltration compared to lower-grade tumors, the
association of grade I gliomas with higher immune
abundance was unexpected and warrants further
investigation. The small sample size of grade I
gliomas in our cohort may not provide a
comprehensive view and should be expanded in
future studies to better understand this relationship.
Furthermore, the correlation between the abundance
of immune cells and prognosis in glioma patients
suggests the feasibility of predicting glioma prognosis
based on the TME. This feasibility has been confirmed
in numerous studies [23,67], indicating the potential
of immune cells as biomarkers to facilitate
individualized treatment decisions for glioma.

Using RNA-Seq data, we have also conducted an
initial exploration of the association between immune
cells and drug sensitivity. In both cohorts, we
identified widespread associations between immune
cell abundance and sensitivity to various drugs,
particularly notable for the majority of immune cells
being associated with cell cycle or DNA
damage-related therapeutics. It is established that the
inhibition of DNA damage repair can elevate
cytoplasmic DNA, trigger cGAS to produce cGAMP,
promote the generation of neoantigens in tumors, and
ultimately induce immune cell proliferation and
antitumor immunity [68-70]. However, patients
already exhibiting high levels of immune cell
abundance may derive lesser benefit from the
antitumor immunity induced by DNA damage. In
summary, the extensive associations observed
between immune cell traits and drug sensitivity in
glioma patients open new avenues for personalized
medicine. The correlation of specific immune
populations with IC50 values for various drugs
suggests that the immune landscape could serve as a
predictive biomarker for treatment response.

Given the heterogeneity of gliomas and the
complexity of the immune response, incorporating
immune profiling into clinical practice could lead to
more effective treatment strategies. Our findings
suggest that specific immune cell traits, such as the
abundance of memory B cells and CD8+ T cells, could
serve as biomarkers to guide personalized treatment
decisions. For instance, patients with high levels of
CD8+ T cell infiltration may benefit from immune
checkpoint inhibitors, such as anti-PD-1 or
anti-CTLA-4 therapies, which have shown efficacy in
other cancers with a similar immune profile [71,72].

Conversely, patients with high levels of
immunosuppressive cells, such as Tregs or MDSCs,
may require therapies that target these cell

populations, such as CSFIR inhibitors or IDO
inhibitors, = to  enhance the  efficacy  of
immunotherapies [73,74]. In addition to guiding

treatment selection, immune profiling could also be
used to predict treatment response. For example, our
observation that high immune infiltration is
associated with poorer prognosis but better response
to checkpoint inhibitors suggests that immune
profiling could help identify patients who are most
likely to benefit from these therapies. This is
particularly relevant for high-grade gliomas, where
the immune landscape is often more complex and
heterogeneous [75]. However, the TME in gliomas is
characterized by complex interactions among various
immune cell populations, including T cells, B cells,
macrophages, and MDSCs. These interactions can
significantly influence the immunogenicity of the
tumor and the effectiveness of immunotherapy. For
instance, while anti-PD-1 or anti-CTLA-4 therapy may
be effective in patients with high levels of CD8+ T cell
infiltration, the function of CD8+ T cells can also be
impaired by the presence of immunosuppressive cells
such as Tregs and MDSCs. These cells inhibit the
activation and proliferation of T cells, thereby
affecting the efficacy of immune checkpoint blockers
[76]. To optimize immunotherapy strategies, it is
essential to adopt a holistic approach that considers
the dynamic interactions among these immune cell
types. This includes targeting not only the tumor cells
but also the supportive immune cells within the TME.
Strategies such as depleting MDSCs, reprogramming
TAMs to a pro-inflammatory state, and enhancing the
activation of CD8+ T cells can create a more favorable
immune landscape that promotes effective anti-tumor
responses [77,78]. By comprehensively analyzing
these immune interactions, it is possible to develop
more effective and personalized immunotherapy
approaches for glioma patients. For instance, the
concurrent use of PD-1 inhibitors and CSF1R
inhibitors targeting macrophages, combined with
chemotherapy drugs, may hold promise. In addition,
by incorporating immune profiling into routine
clinical practice, clinicians could stratify patients
based on their immune profiles and tailor treatment
regimens accordingly, potentially improving survival
outcomes. Furthermore, immune profiling could
inform the development of novel immunotherapeutic
strategies. For instance, the identification of specific
immune cell subsets, such as CD16+ monocytes or
SSC-A-high CD8+ T cells, as risk factors for glioma
progression provides new targets for therapeutic
intervention. Monoclonal antibodies or small
molecule inhibitors targeting these cell populations
could be developed to disrupt their pro-tumorigenic
functions and enhance anti-tumor immunity.
Furthermore, the association between infiltrating
immune cells and circulating immune cells represents
a critical aspect of tumor immunology. Studies have
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demonstrated dynamic interactions between these
two populations. For instance, elevated levels of
peripheral regulatory T cells correlate with increased
tumor-infiltrating ~ lymphocyte  density  [79],
suggesting that systemic immune profiles may mirror
the local tumor immune microenvironment.
Consequently, investigating approaches to infer
intratumoral immune status through peripheral blood
could offer a promising non-invasive detection
strategy.

Utilizing MR analysis and transcriptome data,
this study explored the causal and clinical
associations between immune cells and gliomas.
Although our research offers valuable insights, there
are admittedly some limitations. Despite our efforts to
eliminate confounding factors, relying on GWAS
summary data to investigate immune characteristics
may still introduce potential biases related to
population stratification and confounding variables,
such as the inability to conduct stratified analysis
based on gender and age. Furthermore, as the data in
this study primarily originated from individuals of
European descent, the ability to extrapolate the results
to populations of other lineages is limited.
Additionally, while the RNA-Seq analysis conducted
on glioma samples is reliable, the cohort size needs to
be further expanded, and the obtained results require
confirmation in subsequent experiments. Future
research should aim to validate these associations in
larger and more diverse cohorts, and explore the
underlying mechanisms that drive the relationship
between immune cells and glioma progression.

Conclusion

In summary, our study elucidates the causal
relationship between immune cell traits and glioma
risk, alongside their associations with clinical
characteristics and drug sensitivity. These findings
advance the development of immune-based
biomarkers and therapeutic strategies for glioma,
with potential implications for improving patient
outcomes. Continued research in this area holds the
promise of transforming glioma treatment through
innovative, personalized approaches that leverage the
body’s immune response.
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