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Abstract

The PIK3R1 gene encodes the class IA PI3K regulatory subunit p85a, which is frequently altered in cancer.
PIK3R1 functions as a tumor suppressor by stabilizing and inhibiting the catalytic activity of p110, and it
directly binds to and enhances the activity of the PTEN lipid phosphatase. Aberrations in the PIK3R1 gene
are associated with poor prognosis in cancer; available data underscore the significant role of PIK3R1
mutations in mediating tumorigenesis by promoting the signaling of the PI3K/AKT/mTOR pathway.
Moreover, copy number variations, driver mutations, and epigenetic alterations in PIK3R] contribute to
tumorigenesis and progression through distinct mechanisms. This article reviews the cancer-promoting
effects of PIK3R1 gene aberrations across major cancer types and elucidates their underlying mechanisms.
It also discusses the targeted therapies for related aberrations, aiming to provide a comprehensive
understanding of the dynamic interplay of PIK3R1 in cancer, thereby advancing precision medicine and the

development of targeted interventions.
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Introduction

The phosphoinositide 3-kinase (PI3K) signaling
pathway plays a crucial role in metabolic control,
immune responses, angiogenesis, and cardiovascular
homeostasis, and it is among the most frequently
dysregulated pathways in cancer [1-3]. All PI3K
catalytic subunits have a PI3K core structure
consisting of a C2 domain, a helical domain, and a
kinase domain [1]. PI3K is categorized into three
distinct classes primarily based on the presence of
additional protein domains and their interaction with
regulatory subunits [4]. Class IA PI3K comprises a
p110 catalytic subunit and a regulatory subunit, either
p85 or p55. The genes PIK3CA, PIK3CB, and PIK3CD
encode the pll0a, pl10pB, and pl108 catalytic
subunits, respectively. Meanwhile, the PIK3RI,
PIK3R2, and PIK3R3 genes encode the p85a, p85p,
and p55y regulatory subunits, respectively [5].

The p85a protein is predominantly recognized as
a regulatory subunit of class IA PI3K. The PIK3R1
gene encodes p85a, which stabilizes and inhibits the

catalytic activity of p110a, while the latter catalyzes
the conversion of phosphatidylinositol
4,5-bisphosphate to phosphatidylinositol
3,4,5-triphosphate (PIP3) [6]. As a second messenger,
PIP3 binds to a variety of target proteins within cells,
thereby regulating cell proliferation, differentiation,
apoptosis, metabolism, and other physiological
processes [7]. Additionally, the p85a regulatory
protein binds directly to and enhances the activity of
the PTEN lipid phosphatase, which counteracts PI3K
signaling by dephosphorylating the PI3K lipid
product [8, 9].

This article examines the copy number variation
(CNV) of PIK3R1, with particular emphasis on its
gene expression levels and the mechanisms through
which  gene  dosage  sensitivity  influences
tumorigenesis. Furthermore, the article explores the
cancer-promoting effects of mutations in various
domains of PIK3R1. We also discuss the role of
epigenetic alterations in PIK3R1 in cancer initiation
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and progression. Finally, treatment and management
guidelines will be provided, addressing three key
aspects: PIK3R1 copy number variation, mutations in
its domains, and epigenetic changes.

Copy Number Variation of PIK3R1 in
Cancer

Within The Cancer Genome Atlas (TCGA)
database, PIK3R1 aberration is one of the most
prevalent alterations [10]. The TCGA database shows
that the loss of PIK3R1 copy number frequently occurs
in various cancer types, which is consistent with the
tumor suppressor role of p85a (Fig. 1). Cancers
exhibiting PIK3R1 copy number loss may promote
tumor development through distinct mechanisms that
activate downstream signaling pathways. Analysis of
data from the TCGA database reveals that PIK3R1 is
lowly expressed in most tumors, compared to their
corresponding normal tissues, including ovarian,
prostate, breast, lung, liver, and kidney cancers
[11-13].

Hemizygous deletion of PIK3R1 is a prevalent
occurrence in breast cancer, correlating with
markedly reduced PIK3R1 expression in breast
tumors [14]. Lower levels of PIK3R1 expression are
linked to poorer survival outcomes in breast cancer
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patients and  contribute  to  tumorigenic
transformations in  breast cancer  models.
Furthermore, reduced p85a levels lead to heightened
classical AKT signaling, which plays a significant role
in these tumorigenic phenotypes [12, 14, 15]. Research
indicates that the knockdown of PIK3R1 in breast cells
triggers malignant transformation [16]. In the context
of prostate cancer, PIK3R1 depletion enhances AKT
phosphorylation and promotes the proliferation of
prostate cancer cells [17, 18]. Similarly, in renal cancer
cells, the depletion of PIK3R1 promotes AKT
phosphorylation, proliferation, migration,
epithelial-to-mesenchymal transition, and the
emergence of stem cell-like properties via the
AKT/GSK3p/CTNNB1 pathway, potentially
contributing to the progression and metastasis of
renal cell carcinoma [19]. Among various cancers,
copy-number deletion of PIK3R1 is most commonly
observed in ovarian cancer, where its deletion
activates AKT and induces pll0-independent
JAK2/STAT3 signaling through phosphorylation
changes in the docking protein Gab2. Additional
mechanisms that lead to AKT activation include
increased p110a kinase activity and decreased PTEN
levels [20].
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Figure 1. Frequency of PIK3RI copy number variations and mutations. The distribution of PIK3RI copy number loss, copy number gain, and mutations across various

tumor types in the TCGA dataset is illustrated.
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Haploinsufficiency of PIK3R1 activates the PI3K
pathway; conversely, homozygous deletion inhibits
this pathway [21]. Partial deletion of p85a enhances
the pl10a-p85a heterodimer’s binding affinity to
active receptors, thus amplifying PI3K signaling and
oncogenic transformation [14, 22]. On the other hand,
homozygous deletion of p85a significantly reduces
the amount of pll0a-p85a dimers, leading to a
marked decrease in PI3K activity and a reduction in
PI3K-mediated  biological processes such as
anti-apoptosis [21].

Studies conducted in genetically engineered
mouse models demonstrate that single-copy deletion
of PIK3R1 activates AKT and promotes tumorigenesis
[14, 22, 23]. Similar findings were reported in a mouse
model of hepatocellular carcinoma characterized by
liver-specific PIK3R1 deficiency, which resulted in
enhanced tumor development [13]. In animal models
of cancer, liver-specific knockout of PIK3R1 has also
been shown to increase PI3K pathway activation,
thereby facilitating tumorigenesis [13]. Additionally,
experiments mimicking human tumors revealed that
knockdown of p85a resulted in p110a conjugation to
p85B, increased MAP4 interactions, enhanced
integration with endosomal membranes, and
augmented interactions with activated receptors,
culminating in  intensified  agonist-stimulated
PI3K/AKT signaling [24]. Furthermore, low PIK3R1
expression correlates with poor prognosis across
multiple cancer types [11]. The reduction of PIK3R1 is
particularly associated with dismal prognoses in
breast and lung cancers, potentially due to its critical
role in stabilizing PTEN [3, 12, 25]. Thus, PIK3R1
deletion activates downstream AKT signaling and
facilitates tumorigenesis through various mechanisms
across different cancer types, which is associated with
unfavorable prognoses for patients.

Notably, PIK3R1 copy-number gain remains
under-discussed in the literature. Amplification of
PIK3R1 is present in 0.04% of cases recorded in the
AACR GENIE database [26]. Additionally, in the
TCGA database, breast invasive ductal carcinoma,
lung adenocarcinoma, clear cell renal cell carcinoma,
adenocarcinoma of unknown primary origin, and
adrenal cortex carcinoma have the greatest prevalence
of PIK3R1 copy number ampilfication (Fig. 1).

Mutation Landscape of PIK3R1 in Cancer

PIK3R1 is located on human chromosome 5 and
comprises five protein domains: the Src homology 3
(SH3) domain, the breakpoint cluster region
homology (BH) domain, the N-terminal SH2 (nSH2)
domain, the middle SH2 (iSH2) domain, and the
C-terminal SH2  (cSH2) domain.  Notably,
cancer-associated mutations have been identified in

all five domains [27]. Hotspot mutations in PIK3R1
are predominantly found within the iSH2 and SH2
domains (Fig. 2), supporting a significant role for
pl10a in stabilizing and inhibiting p85a-p110a
heterodimers through these domains [28].

1. SH3 and BH domains

The SH3 and BH domains at the N-terminus of
p85 can form homodimers and bind to PTEN [8, 29,
30]. When p85a is devoid of pll0a, it can
homodimerize via two intermolecular interactions
(SH3: proline-rich region; BH: BH) to selectively bind
unphosphorylated activated PTEN [31]. PTEN, a
tumor suppressor protein, is often lost or mutated in
up to 30% of human cancers [32-34]. Acting as a
phosphatase, PTEN dephosphorylates the D3 position
of PIP3, counteracting the activation of the oncogenic
PI3K/AKT/mTOR (PAM) signaling network [35].
The p85a-PTEN interaction is associated with
enhanced PTEN stability by inhibiting ubiquitination
[30]. Furthermore, homodimers may offer a
combinatorial binding site for PTEN and potentially
promote the recruitment of other molecules to
stabilize PTEN [30]. Mutations in the SH3-BH domain
diminish homodimerization and PTEN binding,
leading to increased PTEN ubiquitination and
reduced total PTEN protein levels. The p85a
homodimer has been shown to compete with the E3
ubiquitin-protein ligase WWP2 for binding to the
PTEN phosphatase domain, thus protecting PTEN
from WWP2-mediated degradation. Disruption of
p85a homodimerization increases WWP2-mediated
PTEN degradation and enhances its ubiquitination
[31]. Notably, cellular expression of p85a lacking the
SH3-BH domain significantly elevates the amplitude
and duration of AKT phosphorylation in response to
growth factor stimulation.

Additionally, the BH domain of the p85a protein
exhibits sequence homology with the GAP domain of
other proteins and displays GAP activity against
several Rab GTPases, particularly Rab5 and Rab4.
These GTPases play a crucial role in receptor traffick-
ing and degradation, thus deactivating upstream
receptor signaling and the PI3K/ AKT pathway [3, 36].
A study revealed that a RabGAP-deficient p85a
mutant with a single-point mutation (R274A) has
carcinogenic properties [37]. Mutations in the p85a
BH domain may contribute to tumorigenesis in
human cancers, either by modulating Rab-mediated
receptor degradation or by diminishing the positive
regulation of PTEN activity [8]. Consequently,
mutations in the SH3-BH domain compromise PTEN
stability by impairing homodimerization and PTEN
binding, resulting in reduced negative feedback to the
PI3K/AKT pathway and leading to persistent
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activation of downstream signals.

2. nSH2 domain

Driver mutations in the p85a nSH2 domain exert
a precancerous effect by regulating the PI3Ka
pathway through upstream signaling proteins. The
p85a nSH2 domain establishes inhibitory contacts
with pl10a, competing for binding to the
phosphorylated tyrosine-containing (pY) consensus
sequences (pYXXM) motif in receptor tyrosine kinases
(RTKSs) [28, 38]. The nSH2 domain interacts reversibly
with the C2, helix, and kinase domains of p110a, with
these contacts being disrupted upon binding to the
pYXXM motif [39-41]. Alkaline residues surrounding

the phosphopeptide binding site in the nSH2 domain
form inhibitory contacts with the acidic patch in the
p110a helix domain. Binding of phosphoproteins to
the nSH2 domain may disrupt these inhibitory
contacts and activate the p85a/p110a dimer [39]. The
release of p85a's inhibitory effect on the pl10a
catalytic subunit occurs when the nSH2 domain binds
to phosphorylated RTKs or adaptor proteins
following upstream stimulation [42]. Phosphopeptide
binding to nSH2 directly influences the activity of
p110a, establishing the nSH2 domain as a direct
regulator of p110a [28].
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Figure 2. Schematic representation of the PIK3R1 protein and its mutation frequency. The PIK3R] gene encodes the p85 regulatory subunit, which comprises 724
amino acids and five structural domains: the SH3 domain, the BH domain, the nSH2 domain, the iSH2 domain, and the ¢SH2 domain. (Upper) The mutation frequency of PIK3R1
across different tissues is shown, based on data from combined studies in the cBioPortal database. The graphical representation depicts the protein domain structure and specific
mutation sites. The length of the lines connecting mutations to the protein reflects the number of samples exhibiting those mutations, and the color of the spheres indicates the
type of mutation. (Lower) The bar chart shows the mutation frequencies across the SH3, BH, nSH2, iSH2, and cSH2 domains of the PIK3RI gene, as derived from combined
studies of various tissues in the cBioPortal database.
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Research has identified six nSH2 variants that
attenuate these inhibitory contacts by directly
affecting p110 binding (G376R, K379E, and L380del),
or by disrupting the folding of the nSH2 domain
(W333R, G353R, LR372del) [43]. Furthermore, these
driver mutations in the nSH2 domain of p85a activate
various RTK signaling proteins, such as EGFR, HER?2,
HER3, c-Met, and IGF-1R, in a pl10-independent
manner, thereby diminishing the inhibitory effect of
p85a on pll0a and facilitating its catalytic activity
[43]. Mutations that disrupt the nSH2-helix interface
were also found to weaken the interaction between
the C2-iSH2 domains and the remainder of the
adaptor and catalytic subunits, suggesting that the
nSH2 domain not only inhibits enzyme activity via
the C-leaf interaction with the kinase domain but also
plays a crucial scaffold role in stabilizing the enzyme
and preventing the inter-domain movements
necessary for membrane binding [40, 44]. Moreover,
p85a mutants lacking the p110a binding region (e.g.,
R162*, L380fs, R348* and the dominant negative
mutant p85A) failed to interact with pl10a [45].
Notably, PIK3R1R38" and PIK3R1370f localize to the
nucleus, serving as scaffolds for multiple JNK
pathway components, and promote malignant
phenotypes through ERK and JNK signaling
pathways both in vitro and in vivo [46]. Collectively,
mutations in the nSH2 domain of p85a not only
reduce the inhibitory interaction between p85a and
p110a but also enhance p110a activity by inducing the
activation of multiple RTKs.

3.iSH2 domain

Somatic mutations in PIK3R1 have been
identified in glioblastoma and endometrial cancer,
predominantly manifesting as substitutions or indels
within the iSH2 domain of p85a, which interacts with
pl10a [28, 30]. These mutations lead to the
uncoupling of p85a from pl110, allowing p85a to
retain its p110-stabilizing activity while abolishing its
inhibitory effect on p110a. This alteration promotes
cell survival, activates AKT, supports
anchorage-independent cell growth, and facilitates
tumorigenesis in a pll0a-dependent manner [45].
Furthermore, the iSH2 domain of p85a also engages
catalytic subunits through the ABD domain. The ABD
domain of class IA PI3K irreversibly binds to the
coiled-coil domain of iSH2 across all class IA
regulatory subunits [39, 47, 48]. Because the ABD
domain remains tightly associated with the iSH2
domain, its detachment may coincide with the
disruption of the C2-iSH2 interface, with complete
disruption of both interfaces only occurring upon
removal of the nSH2 domain [48]. These activating
mutations within the iSH2 domain induce the

constitutive activation of class IA PI3K kinases and
contribute to tumorigenesis by disrupting the
boundary between the C2 and iSH2 domains,
diminishing the p110a-p85a interaction, and relieving
the inhibition of PI3K activity in wvivo [47, 49].
Additionally, the oncogenic mutation from Glu545 to
Lys545 (E545K) disrupts the charge-charge interaction
with the nSH2 domain of p85 [39]. Consequently,
driver mutations in the iSH2 domain diminish the
inhibitory effect of p85a on p110 kinase activity by
disrupting the inhibitory interactions between the
iSH2 and pl10 C2 domains and targeting the
inhibitory interactions between the nSH2 domain and
the p110 helix domain.

4. cSH2 domains

In addition to binding to p110, both the nSH2
and c¢SH2 domains interact with phosphorylated
RTKs or pYXXM in adaptor proteins [28]. The cSH2
domain of p85a serves as a negative regulatory
element in PI3K signaling, with its deletion resulting
in increased signaling activity [50]. Notably,
mutations in the c¢SH2 domain, including the
oncogenic truncation mutation (E601*) and the
mutation affecting the phosphorylated peptide
binding site (R649W) in SHORT syndrome, both lead
to diminished sensitivity to PDGFR pY, underscoring
the essential role of cSH2 in mediating effective PI3K
signaling downstream of activated membrane
receptors [51, 52]. Furthermore, the impact of
truncated mutants lacking the cSH2 domain on PI3K
signaling may mimic a decrease in p85a levels,
potentially facilitating engineered cellular responses
by increasing available binding sites on activated
RTKs, which may promote the formation of
signaling-competent p110-p85a heterodimers [14]. An
oncogenic variant termed p65-PI3K, which lacks the
cSH2 domain and possesses the capacity for
constitutive activation and cell transformation, has
been isolated from irradiation-induced mouse thymic
lymphoma. Additionally, a C-terminal truncated
version of p85a, known as p76a, has been identified in
human lymphoma cell lines, lacking substantial
portions of the cSH2 domain due to frameshift
mutations [53-55]. While the cSH2 domain of p85a
does not establish an inhibitory interface with the
catalytic subunit, its presence may be essential for the
complete inhibition of catalytic subunit activity [51,
56]. Deletion of the cSH2 domain can augment the
signaling activity of the nSH2 mutant of p85a, and
mutations in the cSH2 domain can abolish its negative
regulatory influence on PI3K activity through the
nSH2 domain of p85a [50, 55]. In summary, mutations
in the cSH2 domain can diminish the negative
regulatory function of p85a on PI3K activity, thereby
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modulating the catalytic activity of PI3K.

5. PI3K mutations in HPV-associated tumors

Human  papillomavirus  (HPV) is a
well-established oncogenic virus. Studies have
demonstrated that infection with high-risk HPV types
is a major risk factor for the development of cervical,
vaginal, and vulvar cancers [57]. Real-world data
indicate that 48% of HPV-associated gynecological
tumors harbor actionable mutations, with PI3K
mutations being among the most prevalent oncogenic
events [57]. Additionally, approximately 25% of
oropharyngeal squamous cell carcinoma (OPSCC)
cases worldwide are also attributed to HPV infection
[58]. Compared to HPV-negative OPSCC patients,

those with HPV-positive OPSCC demonstrate
significantly = improved overall survival and
heightened sensitivity to chemotherapy, radio-

therapy, and combined chemoradiotherapy [59-61].
Furthermore, HPV-positive OPSCC exhibits a distinct
mutational landscape compared to its HPV-negative
counterpart [62]. Among HPV-positive OPSCC cases,
the class 1 subgroup of the PI3K family is most
frequently associated with mutational dysregulation.
Notably, the PI3K/PTEN/AKT/mTOR pathway has
been identified as a critical oncogenic driver in
HPV-positive cohorts [58]. Epidemiological studies
indicate that 13% to 25% of HPV-positive OPSCC
patients experience local or distant recurrence (LDR),
which is associated with significantly reduced
survival rates [59]. HPV-positive OPSCC patients who
develop LDR exhibit a higher mutation burden
compared to those without LDR, with mutation
frequencies comparable to those observed in
HPV-negative OPSCC patients with LDR [59].
Interestingly, HPV-negative OPSCC patients without
LDR exhibit the highest overall mutation burden,
suggesting that recurrence may be driven more by
specific oncogenic mutations rather than total
mutation load [59]. In HPV-positive OPSCC, PIK3R1
mutations occur at a higher frequency in LDR patients
than in non-LDR patients [59]. Evidence suggests that
aberrant PI3K signaling may contribute to cancer
progression and poor prognosis by altering PIK3R1
and destabilizing the PIK3CA/PIK3R1 complex [63].

Epigenetic Alterations Occurring in the
PIK3R1 Gene

Accumulating evidence indicates that aberrant
epigenetic regulation of gene function is closely
linked to the development of cancer [64]. Cell
transformation, tumor progression, and metastasis are
orchestrated by a complex network of interactions
involving genomic and epigenomic mutations,
particularly those affecting oncogenes and tumor

suppressor genes, along with environmental factors
that contribute to malignancy and tumorigenesis [65,
66].

1. DNA methylation

Higher levels of promoter methylation of PIK3R1
have been observed across various cancer types, and
this methylation is positively correlated with gene
expression levels in multiple probes within the
promoter region [11]. Notably, hypomethylation of
the CpG locus in the PIK3R1 promoter is associated
with reduced gene expression and correlates with
decreased overall survival and relapse-free survival in
pancreatic cancer patients [67]. Furthermore, the
potential of PIK3R1 methylation as a biomarker has
been reported in esophageal cancer [68]. In breast
cancer, the downregulation and hypermethylation of
PIK3R1 correlate with poor patient outcomes,
suggesting its utility as a diagnostic and prognostic
biomarker for breast cancer [69]. Consequently, the
methylation level of PIK3R1 is positively correlated
with expression levels and is closely related to clinical
data from cancer patients, establishing it as a
promising cancer biomarker.

2. Histone modifications

The isonicotinylation of lysine residues on
histones diminishes the binding capacity between
histones and genomic DNA, resulting in a more open
chromatin structure that facilitates the transcription of
numerous genes [70, 71]. In isoniazid-treated HepG2
cells, RNA sequencing analysis has revealed an
upregulation of the PIK3R1 gene, mediated by
isoniazid through histone modifications, leading to
elevated levels of p85a and the activation of the
hepatocellular carcinoma-associated PAM pathway
[70]. There exists a CapG-binding region within the
PIK3R1 gene, situated near the transcription start site
of PIK3R1 variant 3 (P50) [72]. The transcriptional
coactivator CREB-binding protein/p300 is recruited
to the PIK3R1 promoter via interactions with CapG,
enhancing the transcription of PIK3R1/P50 through
histone H3 lysine 27 acetylation (H3K27Ac) [72]. This
process triggers the activation of the PI3K/AKT
signaling pathway, contributing to paclitaxel
resistance in breast cancer cells. Chemoresistance in
hepatocellular carcinoma is partially attributed to
chemotherapy-induced N-acetyltransferase 10, which
significantly upregulates H3K27Ac on the PIK3R1
promoter, thereby activating transcription and
driving chemoresistance [73]. Additionally, a
super-enhancer characterized by a high level of
H3K27Ac and mediator bindings has been identified
at the PIK3R1 locus in multiple adult T-cell
leukemia/lymphoma samples, but not in normal T
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cells [74]. This finding suggests an involvement of the
PIBK/AKT pathway in the pathogenesis of adult
T-cell leukemia/lymphoma [74]. Overall, histone
modifications of PIK3RI may enhance p85a
expression, thus activating the PI3K/AKT pathway

and potentially contributing to tumor
chemoresistance.
3. Non-coding RNA

MicroRNAs  (miRNAs) are endogenous

non-coding RNAs approximately 21 nucleotides in
length, which are expressed in most somatic tissues
[75]. They regulate gene expression
post-transcriptionally and are integral components of
the epigenome. In many cancers, miRNA expression
is dysregulated, with PIK3R1 being targeted by
multiple miRNAs that exert tumor-suppressive effects
[76, 77]. For instance, PIK3R1 has been identified as a
direct target of miR-155 in breast cancer and B
lymphocytes, where it promotes tumor growth by
activating glucose metabolism [78-80]. In ovarian
cancer, circPLPP4 targets miR-136, acting as a
competitive endogenous RNA to regulate PIK3R1
expression and enhance cisplatin resistance [81].
Additionally, p85a, a crucial target of miR-29 in the
P53 pathway, upregulates p53, inducing apoptosis in
a p53-dependent manner through a
PI3K/AKT/MDM2-mediated = mechanism  [82].
Furthermore, p85a is a direct target of miR-503; its
ectopic expression inhibits tumor cell proliferation
and metastasis-related traits both in vitro and in vivo
[83, 84]. The modulation of miR-503 through
overexpression and knockdown partially influences
apoptotic activity and alters cisplatin resistance in
ovarian cancer cells, suggesting that miR-503 may
serve as a sensitizer for cisplatin therapy in ovarian
cancer [85]. In colorectal cancer, miR-455-5p acts as a
tumor suppressor by inhibiting the proliferation and
migration of colorectal cancer cells while promoting
their apoptosis; it may also target and downregulate
PIK3R1, increasing sensitivity to 5-fluorouracil [86,
87]. Moreover, miR-21's targeting of PIK3R1 inhibits
tumor cell migration and invasion by reducing
PI3BK/AKT  signaling, reversing epithelial-to-
mesenchymal transition, and predicting clinical
outcomes in breast cancer [15]. miR-495 similarly
promotes endometrial cell apoptosis and inhibits
proliferation by also targeting PIK3R1 [88]. Overall,
PIK3R1 emerges as a target of multiple miRNAs and
plays a significant role in the initiation and
progression of various cancers.

Circular RNAs (circRNAs) are single-stranded,
covalently closed RNA molecules formed by the
reverse splicing of mRNA exons [89]. Many circRNAs

exhibit aberrant expression across various cancers,
with their dysregulation being closely associated with
tumor progression [90]. In hepatocellular carcinoma
cells, circRHBDD1 acts as a scaffold, enhancing the
interaction between YTHDF1 and PIK3R1 mRNA and
promoting PIK3R1 mRNA translation in an
mo6A-dependent manner [80]. CircSEMA4B, a
protein-coding circRNA significantly downregulated
in ovarian cancer, encodes a novel protein,
SEMA4B-211aa, which inhibits PIP3 production by
binding to p85,  thereby inhibiting AKT
phosphorylation and breast cancer progression [91].
CircRNAs can exert either anti-immunotherapeutic or
anti-tumor effects by regulating the expression of
PIK3R1 or binding to p85a.

Clinical Drugs Targeting the PAM
Pathway and Targeted Therapies for
Cancers Harboring PIK3R1 Aberrations

1. FDA-Approved Clinical Drugs Targeting the
PAM Pathway

Due to the alteration of the PI3K pathway being
found in multiple cancers, it is considered one of the
most commonly targeted signaling cascades, and as a
result, several PI3K/AKT inhibitors have been
developed [57, 92]. Several classes of drugs target the
PIBK pathway, including pan-PI3K inhibitors,
isoform-selective PI3K inhibitors (IS PI3Ki), AKT
inhibitors, mTOR inhibitors, and dual PI3K/mTOR
inhibitors [93]. Pan-PI3K inhibitors effectively target
high-level PIP3 tumors by inhibiting the catalytic
activity of all four class I PI3K isoforms: PI3Ka, PI3K]3,
PI3Ky, and PI3Kd [94]. While numerous pan-PI3K
inhibitors are currently in clinical development,
copanlisib is the only one to have demonstrated
significant efficacy in clinical trials [95]. IS PI3Ki
specifically inhibit selected PI3K isoforms (a/p/y or
0), and of the IS PI3Ki, only six have received Food
and Drug Administration (FDA) approval: alpelisib,
umbralisib, duvelisib, inavolisib, leniolisib, and
idelalisib [94, 96-102]. Alpelisib, a potent drug with
targeted efficacy against the PI3Ka isoform, has been
approved for use in patients with advanced or
metastatic breast cancer with hormone receptor
(HR)+/HER2-PIK3CA mutations in combination with
fulvestrant [94].

AKT inhibitors are classified into three broad
categories: ATP-competitive, allosteric, and covalent
allosteric inhibitors, with capivasertib being the first
drug to receive FDA approval in combination with
the estrogen receptor degrader fulvestrant for breast
cancer treatment [103].

https://www.medsci.org



Int. J. Med. Sci. 2025, Vol. 22

2939

Table 1. FDA-approved inhibitors of the PAM pathway

Drug name Target Indication Launch year
Umbralisib PI3K§; CKle Adults with relapsed or refractory marginal zone and follicular lymphoma. 2021
Alpelisib PI3Ka Alpelisib in combination with fulvestrant for postmenopausal women, and men, with hormone receptor (HR)-positive, 2019
human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer.
Duvelisib PI3K®6; PI3Ky Chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. 2018
Copanlisib Pan-class Adults with relapsed follicular lymphoma who have received at least two prior systemic therapies. 2017
PI3K
Idelalisib PI3KS Relapsed/refractory chronic lymphocytic leukemia, follicular lymphoma, and small lymphocytic lymphoma. 2014
Inavolisib PI3Ka Inavolisib with palbociclib and fulvestrant for endocrine-resistant, PIK3CA-mutated, HR-positive, HER2-negative, advanced 2024
breast cancer.
Leniolisib PI3KS Adults and children 12 years of age or older with Activated Phosphoinositide-3-kinase-delta Syndrome (APDS). 2023
Capivasertib Pan-AKT Capivasertib with fulvestrant for adult patients with hormone receptor (HR)-positive, human epidermal growth factor 2023
receptor 2 (HER2)-negative locally advanced or metastatic breast cancer with one or more PIK3CA/AKT1/PTEN-alterations.
Everolimus mTOR Postmenopausal women with advanced hormone receptor-positive, HER2-negative breast cancer in combination with 2009
exemestane, after the failure of treatment with letrozole or anastrozole.
Adult patients with progressive neuroendocrine tumors of pancreatic origin (PNET) with unresectable, locally advanced or
metastatic disease.
Adult patients with advanced RCC after failure of treatment with sunitinib or sorafenib.
Adult patients with renal angiomyolipoma and tuberous sclerosis complex (TSC), not requiring immediate surgery.
Adult and pediatric patients, 3 years of age or older, with SEGA associated with TSC who require therapeutic intervention
but are not candidates for curative surgical resection.
Sirolimus mTOR The prophylaxis of organ rejection in patients aged >13 years receiving renal transplants. 1999
Temsirolimus ~ mTOR Advanced renal cell carcinoma. 2007
mTOR inhibitors were the first PAM-targeted  necessitates further investigation to establish

drugs to advance to clinical use [104, 105]. These
inhibitors are generally classified into three
generations based on their common binding sites on
mTOR. Current clinical options—rapamycin,
temsirolimus, everolimus, and rapamycin bound to
albumin—belong to the first generation [106]. The
FDA-approved mTOR inhibitors are everolimus,
sirolimus, and temsirolimus. Dual PI3K/mTOR
inhibitors target both PI3K and mTOR signaling;
however, none are currently FDA-approved for
cancer  treatment [96]. PI3K/mTOR  dual
ATP-competitive inhibitors directly act on PI3K and
mTOR, more effectively inhibiting the PAM signaling
pathway, and reducing resistance and side effects
compared to single inhibitors [107-109]. Reports of
dual PI3K/mTOR inhibitors (Gedatolisib, Omipalisib,
Apitolisib, and others) currently in Phase I or II
clinical stages indicate that none have received FDA
approval for cancer therapy [96, 110-113].

Normal cells depend on PI3K signaling for
survival; consequently, serious adverse effects may
present before complete inhibition of target tumor
cells [114]. Over 40 PI3K pathway inhibitors are
undergoing various clinical development stages [114],
yet few have received FDA approval (Table 1). Most
PI3K inhibitors provide only modest benefits, thus
limiting their application in clinical settings.

Understanding the aberrant expression of cancer
pathway genes that play crucial roles in cancer
initiation and progression can positively impact
clinical outcomes for patients with genetic anomalies.
The degree to which these aberrations drive tumor
behavior and serve as critical therapeutic targets

predictive biomarkers of response to PI3K inhibition
[115].

2. Targeted therapy for PIK3RI gene
aberrations in pre-clinical studies

Specific molecular aberrations in
cancer-associated genes may have functional
consequences that influence treatment sensitivity [46,
116, 117]. Selective pharmacological inhibition of
Pan-PI3K and p110a effectively block transformations
driven by partial p85a deletion in both in vitro and in
vivo models, indicating that p85a functions as a tumor
suppressor in transformation processes. This suggests
that pl10a may represent a potential therapeutic
target for treating breast cancer patients with PIK3R1
deletions [14]. The blockade of AKT or STAT3 may
benefit ovarian cancer patients experiencing copy
number losses or reduced expression of PIK3R1. The
combination of AKT and STAT3 inhibitors
demonstrates synergistic antitumor effects in vitro in
3D spheroid models and shows enhanced efficacy in
vivo compared to either inhibitor alone [20].

PIK3R1 mutations across different domains
exhibit varying impacts on cancer, necessitating
diverse therapeutic strategies for effectiveness [3]. A
growing body of evidence suggests that the efficacy of
these drugs may partly depend on specific mutations
in target proteins and the genetic context surrounding
those mutations. A comprehensive understanding of
how PIK3R1 mutations affect their interactions and
regulatory functions will aid in identifying
cancer-associated mutations that dysregulate the PI3K
pathway and pinpoint the most effective therapeutic
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targets for inhibitor therapy [3]. While a small
percentage of patients have observed clinical benefits
from treatments based on newly identified hotspot
mutations, further exploration into the ramifications
of various combinations of mutations and genetic
alterations on cancer biology and therapeutic
sensitivity complicates the landscape [118].

Mutation characteristics in cancer cells provide
insights into tumorigenesis and reveal candidates for
targeted therapies. Different mutations can result in
varying susceptibilities to specific PI3K pathway
inhibitors [30]. Inhibitors targeting the AKT or HER
families can diminish the carcinogenic potential of
driver mutations, with combined wuse yielding
significant synergistic effects [43]. Cells harboring
nSH2 domain-driven mutations exhibit similar traits
to those expressing HER3 [43]. Notably,
HER3-expressing cells activate the PI3K pathway
without engaging the MAPK pathway [119, 120]. In 19
endometrial cancer cell lines, HER3 overexpression
correlated with responsiveness to the dual epidermal
growth factor receptor-1/2 inhibitor lapatinib [121].
Furthermore, patients with PIK3RIR348", PIK3R1L370fs,
or adjacent PIK3R1 mutations may benefit from
concurrent treatment with RAS and PI3K pathway
inhibitors, conferring unexpected sensitivity to MEK
and JNK inhibitors in both in vitro and in vivo settings
[46]. Targeting p85a homodimerization or p85a:PTEN
interactions may present new therapeutic avenues for
mutations in the p85a BH and SH3 domains [31].
Mutations in the iSH2 domain may facilitate the
development of pharmacological compounds that
inhibit PI3-kinase by stabilizing the regulated
C2-iSH2 interface between p85 and p110 [47]. Tumors
exhibiting iSH2 mutations are likely to respond
favorably to inhibitor therapies targeting PI3K or its
downstream effectors, such as AKT [45].

Given the significance of epigenetic alterations in
cancer and their potential for reprogramming,
molecular regulators of these modifications have
emerged as promising targets in cancer therapy [64,
122]. Currently, the most extensively studied
epigenetic molecular inhibitors include histone
deacetylase inhibitors, histone lysine demethylase
inhibitors, and DNA methyltransferase inhibitors,
alongside dietary interventions involving
epigenetically modified proteins and metabolic
molecules as promising treatment strategies [123].
However, responses to monotherapy often fall short
of expectations, with resistance to such therapies
appearing inevitable [124]. The introduction of new
therapies, including the application of miRNAs,
multidrug combinations, and immunotherapies, may
enhance cancer treatment outcomes while mitigating
drug resistance in comparison to monotherapy [64,

125-127]. Various combination strategies have been
proposed and tested, necessitating further research to
bolster the potential of these epigenetic drugs as
innovative treatments.

Conclusion

We summarize evidence indicating that PIK3R1
manifests characteristics consistent with a tumor
suppressor gene. In several cancer types, PIK3RI
experiences copy number loss, leading to the
activation of downstream signaling molecules that
promote cancer development, suggesting that the
occurrence of PIK3R1 copy number deletion may be a
key indicator linked to poor cancer prognosis.
Cancer-associated mutations have been identified
across all five protein domains of the PIK3R1 gene.
Driver mutations in the BH and SH3 domains can
diminish the negative feedback of the PI3K/AKT
pathway by reducing homodimerization or binding to
PTEN, thereby activating downstream signals. Driver
mutations within the iSH2 domain can trigger the
downstream AKT signaling pathway by weakening
the interaction between p110a and p85a. Meanwhile,
driver mutations found in the nSH2 domain may
exert catalytic effects by activating a series of
upstream RTK signaling proteins to diminish the
inhibitory effect of p85a on p110a. However, there is a
scarcity of comprehensive literature regarding
mutations in the cSH2 domain, necessitating further
investigations to elucidate the oncogenic mechanisms
underlying driver mutations in this domain.
Additionally, epigenetic changes associated with the
PIK3R1 gene remain a focal point of research, and
PIK3R1 methylation could potentially serve as a
cancer biomarker indicative of malignancy prognosis,
as well as a target for multiple miRNAs that perform
tumor-suppressive functions, thus providing a robust
foundation for future development of specific
epigenetic drugs.

In conclusion, PIK3R1 plays a crucial role in
cancer as a regulatory subunit of PI3K, and the
phenotypic variations observed in human cancers
stem from a complex interplay of genetic factors,
transcriptomic profiles, epigenetics, and proteomics.
Copy number variations, mutations, and epigenetic
alterations in PIK3R1 contribute to a proliferative
phenotype characterized by recurrent mutations
across diverse cancers. Developing therapeutic
strategies that target the PI3K signaling network holds
significant promise for enhancing cancer treatment
outcomes. The accumulating body of evidence related
to genetic aberrations in PIK3R1 and corresponding
cancer markers reinforces the notion that targeting the
aberrant PIK3R1 pathway could be advantageous for
anticancer therapy.
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