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Abstract 

Background: Chronic kidney disease (CKD) patients with coronavirus disease 2019 (COVID-19) are at 
significant risk of death. However, clinical identification of high-risk individuals remains suboptimal despite 
the recognition of many pathophysiological and comorbidity-related risk factors. We aim to develop a 
clinically simple machine learning (ML)-based score to predict acute COVID-19 mortality among CKD 
patients. 
Methods: CKD inpatients with COVID-19 were prospectively enrolled from December 2022 to January 
2023 with a three-month follow-up. Feature selection from clinical and laboratory results was performed 
through least absolute shrinkage and selection operator and stepwise selection. Logistic regression, 
support vector machine (SVM), random forest, and extreme gradient boosting were applied for ML 
model development. A predictive score for mortality was constructed using logistic regression. We 
compared predictive ability between the proposed score and other published scores. 
Results: 219 CKD patients were included and had a high mortality rate of 25.1%. The SVM model 
exhibited the best performance, with the validation area under the receiver operating characteristic 
curve (AUC) being 0.946 (95% CI 0.918, 0.974). The COVID-19 vaccination status, age, monocyte 
percentage, prothrombin activity, cardiac troponin T, and total bilirubin (“VAMPCT”) were the most 
relevant factors and utilized to develop the scoring system with an AUC of 0.960 (95% CI 0.935, 0.985). 
Conclusion: ML models predicting three-month mortality had favorable performance for CKD patients 
with COVID-19. The VAMPCT mortality score provided a user-friendly approach. 

Keywords: chronic kidney disease, COVID-19, cohort study, machine learning, mortality. 

Introduction 
According to the report from the World Health 

Organization, although coronavirus disease 2019 
(COVID-19) no longer constitutes a public health 
emergency of international concern, there are still 
ongoing reports of new infections and deaths related 
to severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) variants around the world, which have 
also contributed to the overall COVID-19 burden with 

varying magnitudes [1-3]. Official data indicate that 
90% of COVID-19-related in-hospital fatalities in 
China involved individuals with pre-existing medical 
conditions [4]. Chronic kidney disease (CKD) is 
acknowledged as a significant comorbidity that 
predisposes individuals to a heightened risk of 
contracting SARS-CoV-2 and experiencing adverse 
outcomes, including increased mortality rates [5, 6]. 
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The Omicron variants sustained dominance in the 
global and Chinese COVID-19 landscapes. The 
characteristics of the COVID-19 acute phase and its 
impact on the CKD population in China during the 
Omicron wave are not well understood. Meanwhile, 
studies indicate that the initial three months 
post-infection are the peak period for mortality [7]. 
Considering deaths within a three-month period 
post-infection as COVID-19-associated provides a 
more precise measure of the disease's impact. 
Furthermore, CKD patients are at elevated risk for 
viral infections, with factors influencing poor 
outcomes from SARS-CoV-2 potentially applicable to 
other viral infections in this group [8]. 

The full automation of ML processes has 
streamlined the development of models that are not 
only simple and rapid but also easily replicable, 
ensuring consistency and reliability. These models 
have proven to be more efficient than traditional, 

manually crafted models, offering significant 
advantages in supporting clinical decision-making 
and the strategic deployment of healthcare resources.  

Consequently, we aimed to construct and 
validate a predictive scoring system utilizing machine 
learning techniques designed to pinpoint high-risk 
CKD patients who may benefit from timely 
interventions of COVID-19, thereby enhancing their 
overall prognosis during the Omicron wave. 

Methods 
Participants and setting 

The prospective cohort study consecutively 
enrolled CKD inpatients with COVID-19 during the 
Omicron period from December 1, 2022 to January 31, 
2023 at the Chinese People's Liberation Army General 
Hospital (PLAGH) (shown in Figure 1). 

 

 
Figure 1. Flow chart of the study. CKD: chronic kidney disease; COVID-19: coronavirus disease 2019; LR: logistic regression; SVM: support vector machine; RF: random 
forest; XGBoost: extreme gradient boosting. 
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Data collection and variable definition 
Data extraction was performed from the 

electronic health records within the hospital 
information system at the PLAGH [9]. The date of 
admission was designated as the index date for all 
enrolled patients. Comprehensive reviews of clinical 
charts, nursing notes, laboratory results, and 
radiological imaging were conducted.  

Patients aged over 18 years were required to 
meet both diagnostic criteria for CKD (defined by the 
guideline of “Kidney Disease: Improving Global 
Outcomes” organization”) and COVID-19. Patients 
with extensive missing data or inability to complete 
follow-up were excluded. CKD is defined as 
abnormalities of kidney structure or function, present 
for a minimum of three months, with implications for 
health [10]. The diagnostic criteria for COVID-19 
involve the presence of clinical manifestations 
associated with SARS-CoV-2 infection and the 
fulfillment of at least one of the following etiological 
or serological test results: a positive SARS-CoV-2 
nucleic acid test, a positive SARS-CoV-2 antigen test, 
successful isolation and culture of SARS-CoV-2, or 
SARS-CoV-2-specific IgG antibody levels in the 
convalescent phase being fourfold or higher than 
those in the acute phase, which adhered to the criteria 
outlined in the 10th edition of the Diagnosis and 
Treatment Protocol for COVID-19, as issued by the 
National Health Commission of China [1]. In 
accordance with the guideline, patients acceped 
conservative or non-conservative treatment according 
to their disease severity. Conservative management 
included symptomatic support (e.g., hydration, 
oxygen therapy), while non-conservative 
interventions encompassed pharmacologic therapies 
such as glucocorticoids, Nirmatrelvir/Ritonavir, 
Azvudine, Baricitinib, or Tocilizumab. 

The individual vaccination status was 
categorized into three groups: unvaccinated, partially 
vaccinated, and fully vaccinated. Full vaccination was 
defined as receiving at least one dose of the 
adenovirus vector vaccine, two doses of the 
inactivated vaccine, or three doses of the recombinant 
protein vaccine. CKD was identified according to the 
KDIGO guideline for CKD [10]. Laboratory data 
included a complete blood count, coagulation profile, 
infection-related indicators, serum biochemical tests 
(including renal and liver function, creatine kinase, 
lactate dehydrogenase (LDH), and electrolytes), and 
cardiac biomarkers (such as troponin, brain 
natriuretic peptide, and myoglobin).  

This retrospective cohort study analyzed the 
prognostic performance of the score across these 
subgroups to calculate odds ratios for 3-month 

mortality. Interaction terms were included to evaluate 
whether treatment modality modified the predictive 
utility of the score. 

Outcome 
The clinical outcome was all-cause mortality 

confirmed by vital status at discharge, outpatient 
visits, or telephone follow-up during the three months 
after the admission. Patients were followed up and 
rightly censored on May 1, 2023. 

Data processing and variables selection 
Variables with more than 15% missing values 

have not been considered. Multiple imputation was 
used to handle missing values on candidate variables, 
considering them missing at random (Table S1). 
Numeric variables were standardized based on the 
mean and variance. Least absolute shrinkage and 
selection operator (LASSO) regression and stepwise 
selection regression were performed for screening 
features to optimize the performance of machine 
learning models.  

Models and the score system development 
The selected variables were fitted with ML 

algorithms including logistic regression (LR), support 
vector machine (SVM), random forest (RF), and 
extreme gradient boosting (XGBoost). To create the 
pragmatic mortality score, six variables that 
contributed the most to the outcome were further 
filtered out. Continuous variables were converted to 
dichotomous variables whose cut-off values were 
chosen by component smoothed functions from 
generalized additive modeling. The coefficients of 
logistic regression were converted into prognostic 
indexes for developing a practical score system.  

Model evaluation 
Discrimination was evaluated using the area 

under the curve (AUC) of the receiver operator 
characteristic (ROC). We also assessed the 
corresponding Youden indexes, sensitivity, 
specificity, positive predictive values, and negative 
predictive values. The calibration was evaluated by 
the Hosmer-Lemeshow (H-L) test and calibration plot. 
The model’s performance was rated using accuracy, 
F1 score, kappa coefficient, and Brier score. 
Additionally, decision curve analysis (DCA) was 
carried out to determine the clinical utility and 
calculate the net benefits at different threshold 
probabilities. All results underwent leave-one-out 
cross-validation for internal validation. Sensitivity 
analyses were performed by using complete case data 
and multiple imputation with different random seeds 
for missing data. The prognostic performance of the 
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predicted score across treatment subgroups was 
evaluated to calculate odds ratios for 3-month 
mortality. 

Comparison with previous scores 
In this study, "International Severe Acute 

Respiratory and Emerging Infections Consortium 
Coronavirus Clinical Characterization Consortium" 
(4C) mortality score, "Confusion, Urea, Respiratory 
rate, Blood pressure, and age ≥ 65 years" (CURB65) 
score, “Hypertension, Neutrophil count, C-reactive 
protein, Lymphocyte count, Lactate dehydrogenase” 
(HNC-LL) score, "quick Sequential Organ Failure 
Assessment" (qSOFA), and "Modified Early Warning 
Score" (MEWS) were calculated for each patient 
[11-14]. The mortality score generated from this 
dataset was compared with the above-mentioned 
ones.  

General statistical analysis 
The mean and standard deviation were used to 

represent normally distributed data, and independent 
t-tests were used to compare them. The 
Mann-Whitney test was used to compare 
non-normally distributed data that were reported as 
median (25%-75% interquartile range). Categorical 
variables were expressed as counts and percentages 
and tested using the chi-square test. A two-sided P 
<0.05 was considered statistically significant. 

Statistical software 
All analyses were conducted with R 4.2.0 via 

packages including caret version 6.0-93, mice version 
3.15.0, randomForest version 4.7.1.1, e1071 version 
1.7-13, xgboost version 1.7.3.1, glmnet version 4.1.6, 
pROC version 1.18.0, and ggplot2 version 3.4.1. 

Ethical approval 
The study was carried out in accordance with the 

Helsinki Declaration. It was authorized by the Ethics 
Committee of the Chinese PLAGH (S2023-111-01). All 
patients provided written informed consent prior to 
participation. 

Results 
Patients’ characteristics  

In our study, encompassing 219 participants, the 
majority were male (69.4%) with an average age of 59 
years, and nearly half (47.5%) were 60 years of age or 
older (Table 1). 

The average body mass index (BMI) was 23.95 
kg/m². A significant portion, 63.5%, suffered from 
advanced CKD stages (four or five). Prior to the 
infection, 32.4% were on maintenance dialysis, while 

5.5% had undergone kidney transplantation without 
dialysis. Hypertension was the predominant 
comorbidity at 77.2%, with cardiovascular disease 
(CVD) and diabetes mellitus following at 47.5% and 
37.9%, respectively. 

Vaccination rates against SARS-CoV-2 were 
suboptimal, with only 39.7% vaccinated, of which 
36.0% had completed the basic vaccination schedule. 
The finger oxygen saturation on air of 23.3% of 
patients was below 90%. The median length of 
follow-up was 93 days. 74.9% (n = 164) of patients 
survived, whereas 25.1% (n = 55) deceased. The death 
group was older than the survivor group (76 ± 13 
years vs. 53 ± 18 years, P<0.001). They displayed 
lower BMI (22.21 ± 3.94 kg/m2 vs. 24.53 ± 4.10 kg/m2, 
P<0.001), a higher proportion of combined CVD 
(76.4% vs. 37.8%, P<0.001), and cerebrovascular 
disease (18.2% vs. 6.7%, P = 0.025). The unvaccinated 
rate in the deceased was significantly higher at 89.1% 
versus 50.3% in survivors (P<0.001). At admission, 
systolic blood pressure (SBP) (131 ± 25 mmHg vs. 142 
± 24 mmHg, P = 0.006) and diastolic blood pressure 
(72 ± 13 mmHg vs. 80 ± 16 mmHg, P = 0.002) were 
lower in the death group than those in the survivor 
group. The proportion of finger oxygen saturation on 
air <90% (49.1% vs. 14.6%, P<0.001) was significantly 
higher in the death group than that in the survivor 
group.  

Variables selection  
Through subsequent cross-validation with ML 

algorithms, the variable combination with the best 
performance was selected for modeling. Eleven 
variables were retained: age, SBP, COVID-19 
vaccination status (Vacc), CVD, red blood cell volume 
distribution width (RDW), hematocrit (HCT), 
percentage of monocytes (mono), prothrombin 
activity (PTA), LDH, total bilirubin (TBil), and cardiac 
troponin T (cTnT).  

Model development and evaluation 
Four ML models, including SVM, LR, RF, and 

XGBoost, were finally developed and tested with 
leave-one-out cross-validation. As the ROC curves 
shown in Figure 2A, the SVM model yielded better 
discrimination to predict the mortality of patients 
than other ML models (Table 2). The AUC (95% CI) 
and the Youden index of the SVM model were 0.946 
(0.918, 0.974) and 0.781, respectively. Moreover, the 
Brier score of the SVM model was the lowest at 0.082 
among the four models. For each ML model, 
calibration performance was further evaluated. The P 
values of H-L tests for both SVM and XGBoost models 
were all >0.05. Graphically, the calibration plot of the 
SVM model fitted well with the diagonal reference 
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line (shown in Figure 2B). Generally, the SVM model 
had better calibration performance than the other 
models. As shown in Figure 2C, DCA was applied for 
assessing the clinical benefits, and the SVM model 
performed better than the others. It still revealed net 
benefits when approaching the 100% threshold 
probability. Based on the above evaluations from 
three aspects, the SVM model had the best predictive 
performance among the four ML models when 
predicting the mortality of CKD patients with 
COVID-19. 

The three-month mortality score 
Given the need to use pragmatic scores at the 

bedside, the number of variables was reduced, and we 
identified six significant predictors of mortality as 
Vacc, age, mono, PTA, cTnT, and TBil (for short as 
“VAMPCT”). The continuous variables were 
transformed into factors with cut-off values (shown in 
Figure S1). Age was stratified into four categories: less 
than 50 years old, 50 to 60 years old, 60 to 80 years old, 
and 80 years old or older. The percentage of 
monocytes was divided into three tiers: not less than 

0.08, 0.03 to 0.08, and less than 0.03. The PTA was 
bifurcated at the threshold of 70. Similarly, cTnT and 
TBil were stratified into two levels using the cut-offs 
of 0.1 and 21, respectively. Logistic regression was 
used to construct a risk score, and the regression 
coefficients were converted into a prognostic index by 
using appropriate scaling. As shown in Figure 2D, the 
total scores of VAMPCT ranged from 0 to 24. In the 
derivation cohort, the VAMPCT score showed a good 
discrimination of mortality within three months 
(AUC 0.960, 95% CI 0.935, 0.985), which was better 
than the existing scores (4C mortality score, CURB65 
score, HNC-LL, qSOFA, and MEWS) (shown in 
Figure 2E-F and Table S2). DCA analysis showed that 
the VAMPCT score had better clinical utility across a 
wide range of thresholds. In general, the VAMPCT 
score outperformed the existing risk scores in 
predicting three-month mortality. According to the 
ROC analysis, two risk groups were defined with the 
optimal cut-off value determined (Table S3): low risk 
(0-10 score, mortality rate 3.87%) group and high risk 
(≥ 11 score, mortality rate 76.56%) group.  

 

 
Figure 2. The evaluation of predictive machine learning models and scores for three-month mortality in CKD patients with COVID-19. (A) ROC analysis of 
four machine learning models. (B) The calibration plot of four machine learning models. (C) DCA of four machine learning models. (D) The predictive VAMPCT score. (E) ROC 
analysis of six predictive scores. (F) DCA analysis of six predictive scores. ROC: receiver operating characteristic; DCA: decision curve analysis; SVM: support vector machine; 
LR: logistic regression; XGBoost: extreme gradient boosting; RF: random forest; COVID-19: coronavirus disease 2019; 4C: Coronavirus Clinical Characterisation Consortium; 
HNC-LL: hypertension: neutrophil count: C-reactive protein: lymphocyte count: and lactate dehydrogenase; CURB65: confusion: urea: respiratory rate: blood pressure: and age 
≥ 65 years; qSOFA: quick sequential organ failure assessment; MEWS: modified early warning score. The values in parentheses were the area under the curve. 
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Table 1. Clinical characteristics of CKD patients with COVID-19 according to the outcomes 

Characteristic Total (N=219) Survivor (N=164) Death (N=55) P value 
Age (year) 59 ± 19 53 ± 18 76 ± 13 < 0.001 
Sex    0.571 
Male 152 (69.4) 116 (70.7) 36 (65.5)  
Female 67 (30.6) 48 (29.3) 19 (34.5)  
Body mass index (kg/m2) 23.95 ± 4.18 24.53 ± 4.10 22.21 ± 3.94 < 0.001 
CKD stages 

   
0.005 

CKD 1 20 (9.1) 20 (12.2) 0 (0.0) 
 

CKD 2 23 (10.5) 22 (13.4) 1 (1.8) 
 

CKD 3 37 (16.9) 26 (15.9) 11 (20.0)  
CKD 4 34 (15.5) 23 (14.0) 11 (20.0) 

 

CKD 5 105 (47.9) 73 (44.5) 32 (58.2) 
 

Diagnosis of CKD    <0.001 
IgA nephropathy 23 (10.5) 23 (14.0) 0 (0.0)  
Diabetic nephropathy 18 (8.2) 15 (9.1) 3 (5.5)  
Membranous nephropathy 13 (5.9) 13 (7.9) 0 (0.0)  
Other CGNa 82 (37.4) 52 (31.7) 30 (54.5)  
Renal replacementb 83 (37.9) 61 (37.2) 22 (40.0)  
Comorbidities     
Hypertension 169 (77.2) 125 (76.2) 44 (80.0) 0.695 
Cardiovascular disease 104 (47.5) 62 (37.8) 42 (76.4) < 0.001 
Diabetes mellitus 83 (37.9) 57 (34.8) 26 (47.3) 0.135 
Cerebrovascular disease 21 (9.6) 11 (6.7) 10 (18.2) 0.025 
Cancer 21 (9.6) 13 (7.9) 8 (14.5) 0.239 
Vaccination for COVID-19c 

   
< 0.001 

Unvaccinated 129 (60.3) 80 (50.3) 49 (89.1) 
 

Partially vaccinated 8 (3.7) 6 (3.8) 2 (3.6) 
 

Fully vaccinated 77 (36.0) 73 (45.9) 4 (7.3)  
Admission vitals     
Body temperature (℃) 36.5 (36.3-36.8) 36.5 (36.3-36.7) 36.5 (36.4-36.8) 0.187 
Heart rate (beats/min) 86 ± 15 85 ± 14 86 ± 18 0.669 
Systolic blood pressure (mmHg) 139 ± 24 142 ± 24 131 ± 25 0.006 
Diastolic blood pressure (mmHg) 78 ± 16 80 ± 16 72 ± 13 0.002 
Finger oxygen saturation on air < 90% 51 (23.3) 24 (14.6) 27 (49.1) < 0.001 
Laboratory test     
Red blood cell (1012/L) 3.41 ± 0.94 3.42 ± 0.92 3.39 ± 0.99 0.807 
Hemoglobin (g/dL) 10.42 ± 2.81 10.43 ± 2.83 10.40 ± 2.77 0.945 
RDW (%) 13.99 ± 1.98 13.62 ± 1.65 15.13 ± 2.43 < 0.001 
White blood cell (109/L) 6.50 (4.81-9.39) 6.08 (4.58-8.32) 7.54 (6.08-11.80) < 0.001 
Neutrophil (percentage) 0.74 ± 0.14 0.70 ± 0.13 0.84 ± 0.12 < 0.001 
Lymphocyte (percentage) 0.16 ± 0.11 0.19 ± 0.11 0.09 ± 0.07 < 0.001 
Monocyte (percentage) 0.08 ± 0.04 0.09 ± 0.03 0.06 ± 0.04 < 0.001 
Platelet (109/L) 190.32 ± 85.19 201.49 ± 87.68 157.04 ± 67.68 0.001 
Serum albumin (g/L) 31.42 ± 6.64 31.93 ± 7.17 29.91 ± 4.44 0.051 
Blood urea (mmol/L) 17.45 (10.50-27.51) 15.73 (8.72-24.41) 25.15 (16.45-39.74) < 0.001 
Serum creatinine (μmol/L) 403.00 (158.00-761.13) 365.10 (130.2-796.5) 457.2 (219.6,723.0) 0.234 
eGFR (mL/min/1.73 m2) 11.25 (5.60-42.20) 13.68 (5.69-48.34) 9.19 (5.36-21.33) 0.016 
C-reactive protein (mg/dL) 1.53 (0.16-6.04) 0.39 (0.10-2.67) 8.35 (2.81-11.77) < 0.001 
Interleukin-6 (pg/mL) 13.93 (3.02-63.35) 6.04 (2.29-30.25) 103.95 (27.99-192.62) < 0.001 
Lactate dehydrogenase (U/L) 232.80 (189.70-336.50) 217.90 (172.48-272.10) 339.50 (251.30-438.25) < 0.001 
Prothrombin activity (%) 92.45 ± 22.30 98.66 ± 18.95 73.83 ± 21.32 < 0.001 
APTT (s) 37.50 (34.18-43.60) 36.80 (33.80-41.85) 40.55 (36.95-46.90) < 0.001 
Plasma fibrinogen (g/L) 4.87 ± 1.70 4.72 ± 1.57 5.34 ± 2.00 0.019 
D-dimer (μg/mL) 1.34 (0.58-2.54) 1.02 (0.44-2.02) 2.65 (1.59-5.49) < 0.001 
BNP (pg/mL) 5196.00 (573.15-21150.50) 3773.50 (359.40-16038.50) 10630.00 (2031.00-28398.50) 0.002 
Myoglobin (ng/mL) 171.65 (70.28-338.00) 120.10 (58.90-221.00) 259.60 (168.45-639.45) < 0.001 
Cardiac troponin T (ng/mL) 0.06 (0.02-0.12) 0.04 (0.01-0.09) 0.11 (0.07-0.15) < 0.001 
Time from onset to admission (day) 14 (7-32) 18 (10-38) 7 (2-14) < 0.001 
Length of hospital stay (day) 15 (8-32) 16 (8-31) 13 (6-35) 0.331 
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Data are expressed as number (%), mean ± standard deviation, or median (interquartile range). 
CKD: chronic kidney disease; COVID-19: coronavirus disease 2019; CGN: chronic glomerulonephritis; RDW: red blood cell volume distribution width; eGFR: estimated 
glomerular filtration rate; APTT: activated partial thromboplastin time; BNP: brain natriuretic peptide. 
a: Other CGN: minimal change disease (9, 4.1%), anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis (4, 1.8%), focal segmental glomerulosclerosis (3, 
1.4%), lupus nephritis (2, 0.9%), C3 glomerulopathies (1, 0.5%), Henoch-Schönlein purpura nephritis (1, 0.5%), hypertensive nephropathy (1, 0.5%), multiple 
myeloma-associated nephropathy (1, 0.5%), idiopathic glomerular nodular sclerosis (1, 0.5%), polycystic kidney (1, 0.5%), and type of uncertain etiology (58, 26.5%). 
b: Renal replacement: hemodialysis (53, 24.2%), peritoneal dialysis (18, 8.2%), and kidney transplantation (12, 5.5%). 
c: The number of valid cases was 214, of which 159 patients survived and 55 patients died during the follow-up. 

 

Table 2. The assessment of machine learning models for CKD patients with COVID-19 

Model AUC (95% CI) Youden Accuracy Sensitivity Specificity PPV NPV F1 Kappa Brier  H-L test* 
LR 0.937 (0.905, 0.968) 0.775 0.886 0.891 0.884 0.721 0.960 0.797 0.719 0.090 <0.001 
SVM 0.946 (0.918, 0.974) 0.781 0.881 0.909 0.872 0.704 0.966 0.794 0.712 0.082 0.968 
RF 0.938 (0.908, 0.968) 0.757 0.854 0.927 0.829 0.646 0.971 0.761 0.661 0.100 0.048 
XGBoost 0.925 (0.892, 0.959) 0.702 0.840 0.873 0.829 0.632 0.951 0.733 0.623 0.100 0.430 

ML: machine learning; CKD: chronic kidney disease; COVID-19: coronavirus disease 2019; AUC: area under the curve; CI: confidence interval; PPV: positive predictive 
value; NPV: negative predictive value; H-L: Hosmer-Lemeshow; LR: least absolute shrinkage and selection operator regression; SVM: support vector machine; RF: random 
forest; XGBoost: extreme gradient boosting. 
*: P value for the Hosmer-Lemeshow test. 

 

Sensitivity analysis 
In the development of ML models, analyses with 

complete-data instances and alternative imputed 
cases produced findings comparable to those from the 
primary imputed dataset (Table S4). In the 
development of predictive scores, the analysis of 
forest plots with complete-data cases, distinct 
imputed instances, and in-hospital outcomes revealed 
significant P values and coefficients that were similar 
to the primary analysis (Figure S2). 

Subgroup analysis 
As shown in Figure S3, subgroup analysis based 

on treatment modality demonstrated that the 
VAMPCT score effectively predicted three-month 
mortality in CKD patients with COVID-19 across both 
subgroups. In the conservative treatment-only group, 
the OR was 3.04 (95% CI: 1.68–8.71, P = 0.006), while 
in the group receiving at least one non-conservative 
treatment, the OR was 2.73 (95% CI: 1.97–4.21, P < 
0.001). However, no statistically significant interaction 
was observed between treatment modality and the 
predictive performance of the VAMPCT score (P = 
0.804), suggesting that its prognostic utility remained 
consistent regardless of treatment strategy. 

Discussion 
The relentless global spread and mutational 

evolution of SARS-CoV-2 have posed profound 
threats to both human health and the social economy. 
In China, the validated genome sequences of 
SARS-CoV-2 have all been Omicron variants since 
December 2022 [15]. Notably, infections with the 
Omicron variant have been associated with reduced 
hospitalization and mortality rates compared to 
earlier variants of concern [16]. According to the latest 
epidemiological survey, there were 82 million adults 

with CKD in China [17]. A recent meta-analysis of 12 
studies revealed that the mortality rate among CKD 
patients with COVID-19 was alarmingly 5.81 times 
higher than among those without infection [18]. 
Highlighting the urgency of early identification of 
CKD patients at risk of severe outcomes is essential. 
This study, through an analysis of acute phase 
infection characteristics and subsequent follow-up of 
CKD patients, aimed to pinpoint risk factors and 
formulate a predictive model for mortality of 
COVID-19 during the Omicron wave. 

In our study, all-cause mortality among patients 
with CKD at three months after COVID-19 was 25.1%, 
which varies from different studies. According to a 
multicenter cohort study, the 12-week mortality rate 
of COVID-19 patients with CKD was 41.5% [19]. In 
Turkish, the mortality of CKD patients at three 
months after the diagnosis of COVID-19 was 5.2% 
[20]. Several explanations may elucidate these 
variances. Principally, our study's patient population 
was largely affected by the Omicron variant, which is 
characterized by a reduced severity and mortality 
profile relative to its predecessors [21]. Additionally, 
racial disparities could play a pivotal role in 
post-COVID-19 mortality, attributed to a spectrum of 
factors including distinct comorbidities and divergent 
biochemical progressions [22, 23]. 

In our analysis, eleven predictors were 
meticulously selected and applied through machine 
learning algorithms, capturing a comprehensive 
profile of COVID-19's impact. These predictors 
encompassed indicators of cardiac injury (cTnT and 
LDH), coagulation dysfunction (PTA), erythrocyte 
abnormalities (RDW), and the involvement of the 
immune system, including COVID-19 vaccination 
status and monocyte percentage. These parameters 
are not only routinely measured but also corroborate 
established risk factors for COVID-19 mortality as 
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identified in previous studies [24-26]. Within our 
cohort, age emerged as the most significant predictor 
of mortality. A wealth of evidence supports the 
association between advanced age and adverse 
outcomes in COVID-19 patients with CKD [27, 28]. 
The interplay of a milder inflammatory response with 
aging, slower viral clearance, and the diminished 
compensatory capacity of the remaining glomeruli 
likely underpins this association [29-31]. Frailty, a 
prevalent geriatric syndrome, is strongly associated 
with aging and portends elevated mortality in CKD 
patients, particularly when compounded by 
COVID-19. Mechanistically, age-related senescence 
involves subcellular/cellular perturbations— 
inflammaging, mitochondrial dysfunction, cellular 
senescence, and dysregulated nutrient-sensing 
pathways—culminating in multisystem physiological 
decline and clinical frailty [32]. In CKD patients, 
frailty and COVID-19 synergistically amplify 
proinflammatory cascades, further impairing antiviral 
immunity while exacerbating hyperinflammation- 
driven organ injury, thereby increasing severe disease 
and mortality risks [33]. Frailty also compromises 
tolerance to SARS-CoV-2-targeted antivirals (e.g., 
nirmatrelvir/ritonavir), necessitating dose 
modifications or alternative regimens that may 
undermine therapeutic efficacy [34]. 

Incorporating cardiac biomarkers into the 
scoring system is critical, given the high prevalence of 
cardiovascular comorbidities (e.g., hypertension, 
diabetes, coronary artery disease) and compounded 
cardiorenal risks in CKD patients [35]. Meanwhile, 
COVID-19 exacerbates these risks through direct 
myocardial injury (ACE2-mediated viral entry) and 
systemic hyperinflammation, increasing acute 
complications like myocarditis and thrombosis. 
Previous clinical studies have implied that COVID-19 
leads to diverse cardiovascular complications [36]. 
Biomarkers such as troponin refine prognostic 
accuracy by quantifying these interactions, enabling 
early intervention to mitigate mortality. Thus, 
cardiovascular-integrated scoring addresses the 
unique pathophysiology of CKD-COVID-19 overlap, 
improving both risk prediction and personalized 
management. 

Vaccination has been heralded as a pivotal 
preventive measure in mitigating the severity and 
reducing fatalities from COVID-19 [37]. Our findings 
underscore vaccination status as the most potent 
protective factor, a consensus echoed by prior 
research. A multicenter study highlighted that the 
relative risk of death for vaccinated individuals 90 
days post-COVID-19 was a fifth of that for their 
unvaccinated counterparts [38]. Similarly, in the 
hemodialysis population, vaccination has been linked 

to attenuated disease severity and lower mortality 
rates attributable to COVID-19 [39].  

Advanced machine learning (ML) techniques 
have unlocked the potential to uncover subtle 
patterns within the intricate and high-dimensional 
landscape of clinical data. In terms of the AUC, our 
ML models demonstrated exceptional performance, a 
testament to the effectiveness of feature selection as 
well as the meticulous training and tuning processes 
employed. When considering calibration and clinical 
applicability, support vector machine (SVM) models 
emerged with a more advantageous overall 
performance, a finding that aligns with reports on 
COVID-19 patient outcomes [40, 41]. A recent 
meta-analysis has pointed out that the algorithm 
used, the population studied, the study design, and 
the dataset source all exert influence on the pooled 
estimate of model performance [42]. With clinical 
practicality in mind, we distilled six impactful 
indicators from those identified by ML to develop the 
"VAMPCT" scoring system. This scoring system offers 
predictive discrimination comparable to the SVM 
model, coupled with enhanced specificity, thereby 
facilitating its utility in clinical decision-making.  

Despite the robust findings of our study, several 
limitations warrant acknowledgment. Firstly, the data 
were sourced from a single hospital, and the modest 
sample size may constrain the robustness of the 
machine learning model scoring and the 
generalizability of our results to other geographic 
regions or ethnic groups, where variations in 
healthcare practices, genetic predispositions, and 
COVID-19 strain prevalence could influence 
prognostic accuracy. Prospective validation in 
multiethnic, multinational cohorts is required to 
confirm its broader applicability. Secondly, our 
analysis relied on multiple imputation under the 
assumption of data missing at random, which may 
not accurately reflect the true distribution patterns; 
this assumption could introduce bias. Thirdly, our 
findings may be influenced by residual confounding 
from unmeasured factors (e.g., socioeconomic status, 
lifestyles, and behaviors) and imperfectly modeled 
nonlinear/interaction effects. While sensitivity 
analyses supported robustness, future prospective 
studies with granular phenotyping are needed to fully 
address these limitations. These limitations should be 
considered when interpreting the study outcomes and 
when planning subsequent research to address these 
gaps. 

Conclusion 
In this study, we developed predictive models 

for three-month mortality in CKD patients with 
COVID-19, identifying the SVM model as the most 
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effective. We also introduced the VAMPCT score to 
facilitate early prognostic evaluation during the acute 
phase of the disease. Against the backdrop of the 
Omicron variant's sustained dominance in the global 
and Chinese COVID-19 landscapes, our research 
offers initial observations regarding the mortality 
associated with Omicron infection in CKD patients. It 
contributes to paving the way for the advancement of 
more refined and prognostically relevant clinical 
tools. 
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