Int. J. Med. Sci. 2025, Vol. 22

2782

%;JM [VYSPRING
s

v INTERNATIONAL PUBLISHER

Research Paper

International Journal of Medical Sciences

2025; 22(11): 2782-2791. doi: 10.7150/ijms.111558

Development Of the VAMPCT Score for Predicting
Mortality in CKD Patients with COVID-19

Chaofan Li'#, Yue Niu'#, Xinyan Pan?, Dinghua Chen!, Fei Liu3, Zhe Feng!, Yong Wang!, Xueying Cao?, Jie
Wul, Jiabao Liu!, Xin Guan!, Xuefeng Sun!, Li Zhang!, Guangyan Cai!*, Xiangmei Chen!*, Ping Li!*

1. Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research
Center for Kidney Diseases, Beijing Key Laboratory of Medical Devices and Integrated Traditional Chinese and Western Drug Development for Severe
Kidney Diseases, Beijing Key Laboratory of Digital Intelligent TCM for the Prevention and Treatment of Pan-vascular Diseases, Key Disciplines of National
Administration of Traditional Chinese Medicine (zyyzdxk-2023310), Beijing 100853, China.

2. Department of Endocrine, Hebei General Hospital, Hebei 050051, China.

3. Department of Urology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

# Both authors contribute equally to this work and should be considered co-first authors.

P4 Corresponding author: Guangyan Cai, caiguangyan@sina.com; Xiangmei Chen, xmchen301@126.com; Ping Li, liping@301hospital.com.cn.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https:/ /creativecommons.org/licenses/by/4.0/).

See https:/ /ivyspring.com/terms for full terms and conditions.

Received: 2025.02.05; Accepted: 2025.04.28; Published: 2025.05.31

Abstract

Background: Chronic kidney disease (CKD) patients with coronavirus disease 2019 (COVID-19) are at
significant risk of death. However, clinical identification of high-risk individuals remains suboptimal despite
the recognition of many pathophysiological and comorbidity-related risk factors. We aim to develop a
clinically simple machine learning (ML)-based score to predict acute COVID-19 mortality among CKD
patients.

Methods: CKD inpatients with COVID-19 were prospectively enrolled from December 2022 to January
2023 with a three-month follow-up. Feature selection from clinical and laboratory results was performed
through least absolute shrinkage and selection operator and stepwise selection. Logistic regression,
support vector machine (SVM), random forest, and extreme gradient boosting were applied for ML
model development. A predictive score for mortality was constructed using logistic regression. We
compared predictive ability between the proposed score and other published scores.

Results: 219 CKD patients were included and had a high mortality rate of 25.1%. The SVM model
exhibited the best performance, with the validation area under the receiver operating characteristic
curve (AUC) being 0.946 (95% Cl 0.918, 0.974). The COVID-19 vaccination status, age, monocyte
percentage, prothrombin activity, cardiac troponin T, and total bilirubin (“VAMPCT”) were the most
relevant factors and utilized to develop the scoring system with an AUC of 0.960 (95% CI 0.935, 0.985).

Conclusion: ML models predicting three-month mortality had favorable performance for CKD patients
with COVID-19. The VAMPCT mortality score provided a user-friendly approach.

Keywords: chronic kidney disease, COVID-19, cohort study, machine learning, mortality.

Introduction

According to the report from the World Health
Organization, although coronavirus disease 2019
(COVID-19) no longer constitutes a public health
emergency of international concern, there are still
ongoing reports of new infections and deaths related
to severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) variants around the world, which have
also contributed to the overall COVID-19 burden with

varying magnitudes [1-3]. Official data indicate that
90% of COVID-19-related in-hospital fatalities in
China involved individuals with pre-existing medical
conditions [4]. Chronic kidney disease (CKD) is
acknowledged as a significant comorbidity that
predisposes individuals to a heightened risk of
contracting SARS-CoV-2 and experiencing adverse
outcomes, including increased mortality rates [5, 6].
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The Omicron variants sustained dominance in the
global and Chinese COVID-19 landscapes. The
characteristics of the COVID-19 acute phase and its
impact on the CKD population in China during the
Omicron wave are not well understood. Meanwhile,
studies indicate that the initial three months
post-infection are the peak period for mortality [7].
Considering deaths within a three-month period
post-infection as COVID-19-associated provides a
more precise measure of the disease's impact.
Furthermore, CKD patients are at elevated risk for
viral infections, with factors influencing poor
outcomes from SARS-CoV-2 potentially applicable to
other viral infections in this group [8].

The full automation of ML processes has
streamlined the development of models that are not
only simple and rapid but also easily replicable,
ensuring consistency and reliability. These models
have proven to be more efficient than traditional,

manually crafted models, offering significant
advantages in supporting clinical decision-making
and the strategic deployment of healthcare resources.

Consequently, we aimed to construct and
validate a predictive scoring system utilizing machine
learning techniques designed to pinpoint high-risk
CKD patients who may benefit from timely
interventions of COVID-19, thereby enhancing their
overall prognosis during the Omicron wave.

Methods

Participants and setting

The prospective cohort study consecutively
enrolled CKD inpatients with COVID-19 during the
Omicron period from December 1, 2022 to January 31,
2023 at the Chinese People's Liberation Army General
Hospital (PLAGH) (shown in Figure 1).
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Exclude 48 patients:
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Figure 1. Flow chart of the study. CKD: chronic kidney disease; COVID-19: coronavirus disease 2019; LR: logistic regression; SYM: support vector machine; RF: random

forest; XGBoost: extreme gradient boosting.
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Data collection and variable definition

Data extraction was performed from the
electronic health records within the hospital
information system at the PLAGH [9]. The date of
admission was designated as the index date for all
enrolled patients. Comprehensive reviews of clinical
charts, nursing notes, laboratory results, and
radiological imaging were conducted.

Patients aged over 18 years were required to
meet both diagnostic criteria for CKD (defined by the
guideline of “Kidney Disease: Improving Global
Outcomes” organization”) and COVID-19. Patients
with extensive missing data or inability to complete
follow-up were excluded. CKD is defined as
abnormalities of kidney structure or function, present
for a minimum of three months, with implications for
health [10]. The diagnostic criteria for COVID-19
involve the presence of clinical manifestations
associated with SARS-CoV-2 infection and the
fulfillment of at least one of the following etiological
or serological test results: a positive SARS-CoV-2
nucleic acid test, a positive SARS-CoV-2 antigen test,
successful isolation and culture of SARS-CoV-2, or
SARS-CoV-2-specific IgG antibody levels in the
convalescent phase being fourfold or higher than
those in the acute phase, which adhered to the criteria
outlined in the 10th edition of the Diagnosis and
Treatment Protocol for COVID-19, as issued by the
National Health Commission of China [1]. In
accordance with the guideline, patients acceped
conservative or non-conservative treatment according
to their disease severity. Conservative management
included symptomatic support (e.g., hydration,
oxygen therapy), while non-conservative
interventions encompassed pharmacologic therapies
such as glucocorticoids, Nirmatrelvir/Ritonavir,
Azvudine, Baricitinib, or Tocilizumab.

The individual vaccination status was
categorized into three groups: unvaccinated, partially
vaccinated, and fully vaccinated. Full vaccination was
defined as receiving at least one dose of the
adenovirus vector vaccine, two doses of the
inactivated vaccine, or three doses of the recombinant
protein vaccine. CKD was identified according to the
KDIGO guideline for CKD [10]. Laboratory data
included a complete blood count, coagulation profile,
infection-related indicators, serum biochemical tests
(including renal and liver function, creatine kinase,
lactate dehydrogenase (LDH), and electrolytes), and
cardiac biomarkers (such as troponin, brain
natriuretic peptide, and myoglobin).

This retrospective cohort study analyzed the
prognostic performance of the score across these
subgroups to calculate odds ratios for 3-month

mortality. Interaction terms were included to evaluate
whether treatment modality modified the predictive
utility of the score.

Outcome

The clinical outcome was all-cause mortality
confirmed by vital status at discharge, outpatient
visits, or telephone follow-up during the three months
after the admission. Patients were followed up and
rightly censored on May 1, 2023.

Data processing and variables selection

Variables with more than 15% missing values
have not been considered. Multiple imputation was
used to handle missing values on candidate variables,
considering them missing at random (Table S1).
Numeric variables were standardized based on the
mean and variance. Least absolute shrinkage and
selection operator (LASSO) regression and stepwise
selection regression were performed for screening
features to optimize the performance of machine
learning models.

Models and the score system development

The selected variables were fitted with ML
algorithms including logistic regression (LR), support
vector machine (SVM), random forest (RF), and
extreme gradient boosting (XGBoost). To create the
pragmatic mortality score, six variables that
contributed the most to the outcome were further
filtered out. Continuous variables were converted to
dichotomous variables whose cut-off values were
chosen by component smoothed functions from
generalized additive modeling. The coefficients of
logistic regression were converted into prognostic
indexes for developing a practical score system.

Model evaluation

Discrimination was evaluated using the area
under the curve (AUC) of the receiver operator
characteristic (ROC). We also assessed the
corresponding ~ Youden  indexes,  sensitivity,
specificity, positive predictive values, and negative
predictive values. The calibration was evaluated by
the Hosmer-Lemeshow (H-L) test and calibration plot.
The model’s performance was rated using accuracy,
F1 score, kappa coefficient, and Brier score.
Additionally, decision curve analysis (DCA) was
carried out to determine the clinical utility and
calculate the net benefits at different threshold
probabilities. All results underwent leave-one-out
cross-validation for internal validation. Sensitivity
analyses were performed by using complete case data
and multiple imputation with different random seeds
for missing data. The prognostic performance of the
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predicted score across treatment subgroups was
evaluated to calculate odds ratios for 3-month
mortality.

Comparison with previous scores

In this study, "International Severe Acute
Respiratory and Emerging Infections Consortium
Coronavirus Clinical Characterization Consortium"
(4C) mortality score, "Confusion, Urea, Respiratory
rate, Blood pressure, and age = 65 years" (CURB65)
score, “Hypertension, Neutrophil count, C-reactive
protein, Lymphocyte count, Lactate dehydrogenase”
(HNC-LL) score, "quick Sequential Organ Failure
Assessment" (QSOFA), and "Modified Early Warning
Score" (MEWS) were calculated for each patient
[11-14]. The mortality score generated from this
dataset was compared with the above-mentioned
ones.

General statistical analysis

The mean and standard deviation were used to
represent normally distributed data, and independent
t-tests were wused to compare them. The
Mann-Whitney test was used to compare
non-normally distributed data that were reported as
median (25%-75% interquartile range). Categorical
variables were expressed as counts and percentages
and tested using the chi-square test. A two-sided P
<0.05 was considered statistically significant.

Statistical software

All analyses were conducted with R 4.2.0 via
packages including caret version 6.0-93, mice version
3.15.0, randomForest version 4.7.1.1, €1071 version
1.7-13, xgboost version 1.7.3.1, glmnet version 4.1.6,
pROC version 1.18.0, and ggplot2 version 3.4.1.

Ethical approval

The study was carried out in accordance with the
Helsinki Declaration. It was authorized by the Ethics
Committee of the Chinese PLAGH (S2023-111-01). All
patients provided written informed consent prior to
participation.

Results

Patients’ characteristics

In our study, encompassing 219 participants, the
majority were male (69.4%) with an average age of 59
years, and nearly half (47.5%) were 60 years of age or
older (Table 1).

The average body mass index (BMI) was 23.95
kg/m?2. A significant portion, 63.5%, suffered from
advanced CKD stages (four or five). Prior to the
infection, 32.4% were on maintenance dialysis, while

5.5% had undergone kidney transplantation without
dialysis. Hypertension was the predominant
comorbidity at 77.2%, with cardiovascular disease
(CVD) and diabetes mellitus following at 47.5% and
37.9%, respectively.

Vaccination rates against SARS-CoV-2 were
suboptimal, with only 39.7% vaccinated, of which
36.0% had completed the basic vaccination schedule.
The finger oxygen saturation on air of 23.3% of
patients was below 90%. The median length of
follow-up was 93 days. 74.9% (n = 164) of patients
survived, whereas 25.1% (n = 55) deceased. The death
group was older than the survivor group (76 + 13
years vs. 53 t 18 years, P<0.001). They displayed
lower BMI (22.21 + 3.94 kg/m? vs. 24.53 £ 4.10 kg/m?,
P<0.001), a higher proportion of combined CVD
(76.4% vs. 37.8%, P<0.001), and cerebrovascular
disease (18.2% vs. 6.7%, P = 0.025). The unvaccinated
rate in the deceased was significantly higher at 89.1%
versus 50.3% in survivors (P<0.001). At admission,
systolic blood pressure (SBP) (131 + 25 mmHg vs. 142
t 24 mmHg, P = 0.006) and diastolic blood pressure
(72 £ 13 mmHg vs. 80 + 16 mmHg, P = 0.002) were
lower in the death group than those in the survivor
group. The proportion of finger oxygen saturation on
air <90% (49.1% vs. 14.6%, P<0.001) was significantly
higher in the death group than that in the survivor

group.
Variables selection

Through subsequent cross-validation with ML
algorithms, the variable combination with the best
performance was selected for modeling. Eleven
variables were retained: age, SBP, COVID-19
vaccination status (Vacc), CVD, red blood cell volume
distribution width (RDW), hematocrit (HCT),
percentage of monocytes (mono), prothrombin
activity (PTA), LDH, total bilirubin (IBil), and cardiac
troponin T (cTnT).

Model development and evaluation

Four ML models, including SVM, LR, RF, and
XGBoost, were finally developed and tested with
leave-one-out cross-validation. As the ROC curves
shown in Figure 2A, the SVM model yielded better
discrimination to predict the mortality of patients
than other ML models (Table 2). The AUC (95% CI)
and the Youden index of the SVM model were 0.946
(0.918, 0.974) and 0.781, respectively. Moreover, the
Brier score of the SVM model was the lowest at 0.082
among the four models. For each ML model,
calibration performance was further evaluated. The P
values of H-L tests for both SVM and XGBoost models
were all >0.05. Graphically, the calibration plot of the
SVM model fitted well with the diagonal reference
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line (shown in Figure 2B). Generally, the SVM model
had better calibration performance than the other
models. As shown in Figure 2C, DCA was applied for
assessing the clinical benefits, and the SVM model
performed better than the others. It still revealed net
benefits when approaching the 100% threshold
probability. Based on the above evaluations from
three aspects, the SVM model had the best predictive
performance among the four ML models when
predicting the mortality of CKD patients with
COVID-19.

The three-month mortality score

Given the need to use pragmatic scores at the
bedside, the number of variables was reduced, and we
identified six significant predictors of mortality as
Vacc, age, mono, PTA, cTnT, and TBil (for short as
“VAMPCT”). The continuous variables were
transformed into factors with cut-off values (shown in
Figure S1). Age was stratified into four categories: less
than 50 years old, 50 to 60 years old, 60 to 80 years old,
and 80 years old or older. The percentage of
monocytes was divided into three tiers: not less than

0.08, 0.03 to 0.08, and less than 0.03. The PTA was
bifurcated at the threshold of 70. Similarly, cTnT and
TBil were stratified into two levels using the cut-offs
of 0.1 and 21, respectively. Logistic regression was
used to construct a risk score, and the regression
coefficients were converted into a prognostic index by
using appropriate scaling. As shown in Figure 2D, the
total scores of VAMPCT ranged from 0 to 24. In the
derivation cohort, the VAMPCT score showed a good
discrimination of mortality within three months
(AUC 0.960, 95% CI 0.935, 0.985), which was better
than the existing scores (4C mortality score, CURB65
score, HNC-LL, qSOFA, and MEWS) (shown in
Figure 2E-F and Table S2). DCA analysis showed that
the VAMPCT score had better clinical utility across a
wide range of thresholds. In general, the VAMPCT
score outperformed the existing risk scores in
predicting three-month mortality. According to the
ROC analysis, two risk groups were defined with the
optimal cut-off value determined (Table S3): low risk
(0-10 score, mortality rate 3.87%) group and high risk
(= 11 score, mortality rate 76.56%) group.
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Figure 2. The evaluation of predictive machine learning models and scores for three-month mortality in CKD patients with COVID-19. (A) ROC analysis of
four machine learning models. (B) The calibration plot of four machine learning models. (C) DCA of four machine learning models. (D) The predictive VAMPCT score. (E) ROC
analysis of six predictive scores. (F) DCA analysis of six predictive scores. ROC: receiver operating characteristic; DCA: decision curve analysis; SVM: support vector machine;
LR: logistic regression; XGBoost: extreme gradient boosting; RF: random forest; COVID-19: coronavirus disease 2019; 4C: Coronavirus Clinical Characterisation Consortium;
HNC-LL: hypertension: neutrophil count: C-reactive protein: lymphocyte count: and lactate dehydrogenase; CURB65: confusion: urea: respiratory rate: blood pressure: and age
2 65 years; gSOFA: quick sequential organ failure assessment; MEWS: modified early warning score. The values in parentheses were the area under the curve.
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Table 1. Clinical characteristics of CKD patients with COVID-19 according to the outcomes

Characteristic Total (N=219) Survivor (N=164) Death (N=55) P value
Age (year) 59+19 53 +18 76 +13 <0.001
Sex 0.571
Male 152 (69.4) 116 (70.7) 36 (65.5)

Female 67 (30.6) 48 (29.3) 19 (34.5)

Body mass index (kg/m?) 23.95+4.18 2453 £4.10 22.21+3.94 <0.001
CKD stages 0.005
CKD1 20 (9.1) 20 (12.2) 0(0.0)

CKD 2 23 (10.5) 22 (13.4) 1(1.8)

CKD 3 37 (16.9) 26 (15.9) 11 (20.0)

CKD 4 34 (15.5) 23 (14.0) 11 (20.0)

CKD 5 105 (47.9) 73 (44.5) 32 (58.2)

Diagnosis of CKD <0.001
IgA nephropathy 23 (10.5) 23 (14.0) 0(0.0)

Diabetic nephropathy 18 (8.2) 15(9.1) 3(5.5)

Membranous nephropathy 13 (5.9) 13 (7.9) 0 (0.0

Other CGN2 82 (37.4) 52 (31.7) 30 (54.5)

Renal replacement® 83 (37.9) 61 (37.2) 22 (40.0)

Comorbidities

Hypertension 169 (77.2) 125 (76.2) 44 (80.0) 0.695
Cardiovascular disease 104 (47.5) 62 (37.8) 42 (76.4) <0.001
Diabetes mellitus 83 (37.9) 57 (34.8) 26 (47.3) 0.135
Cerebrovascular disease 21 (9.6) 11 (6.7) 10 (18.2) 0.025
Cancer 21 (9.6) 13 (7.9) 8 (14.5) 0.239
Vaccination for COVID-19¢ <0.001
Unvaccinated 129 (60.3) 80 (50.3) 49 (89.1)

Partially vaccinated 8(3.7) 6(3.8) 2(3.6)

Fully vaccinated 77 (36.0) 73 (45.9) 4(7.3)

Admission vitals

Body temperature (°C) 36.5 (36.3-36.8) 36.5 (36.3-36.7) 36.5 (36.4-36.8) 0.187
Heart rate (beats/min) 86+15 85+14 86+ 18 0.669
Systolic blood pressure (mmHg) 139+£24 142 £24 131+£25 0.006
Diastolic blood pressure (mmHg) 78 £16 80+16 72+13 0.002
Finger oxygen saturation on air < 90% 51 (23.3) 24 (14.6) 27 (49.1) <0.001
Laboratory test

Red blood cell (1012/L) 3.41+0.94 342+0.92 3.39+0.99 0.807
Hemoglobin (g/dL) 1042 +2.81 1043 +£2.83 1040 +£2.77 0.945
RDW (%) 13.99 £1.98 13.62 £1.65 1513 £2.43 <0.001
White blood cell (109/L) 6.50 (4.81-9.39) 6.08 (4.58-8.32) 7.54 (6.08-11.80) <0.001
Neutrophil (percentage) 0.74 £ 0.14 0.70+0.13 0.84+0.12 <0.001
Lymphocyte (percentage) 0.16 £0.11 0.19+0.11 0.09 +£0.07 <0.001
Monocyte (percentage) 0.08 +0.04 0.09 +0.03 0.06 +0.04 <0.001
Platelet (10°/L) 190.32 £85.19 201.49 + 87.68 157.04 £ 67.68 0.001
Serum albumin (g/L) 31.42+6.64 31.93+7.17 2991 +4.44 0.051
Blood urea (mmol/L) 17.45 (10.50-27.51) 15.73 (8.72-24.41) 25.15 (16.45-39.74) <0.001
Serum creatinine (pmol/L) 403.00 (158.00-761.13) 365.10 (130.2-796.5) 457.2 (219.6,723.0) 0.234
eGFR (mL/min/1.73 m2) 11.25 (5.60-42.20) 13.68 (5.69-48.34) 9.19 (5.36-21.33) 0.016
C-reactive protein (mg/dL) 1.53 (0.16-6.04) 0.39 (0.10-2.67) 8.35 (2.81-11.77) <0.001
Interleukin-6 (pg/mL) 13.93 (3.02-63.35) 6.04 (2.29-30.25) 103.95 (27.99-192.62) <0.001
Lactate dehydrogenase (U/L) 232.80 (189.70-336.50) 217.90 (172.48-272.10) 339.50 (251.30-438.25) <0.001
Prothrombin activity (%) 9245 +22.30 98.66 +18.95 73.83 £21.32 <0.001
APTT (s) 37.50 (34.18-43.60) 36.80 (33.80-41.85) 40.55 (36.95-46.90) <0.001
Plasma fibrinogen (g/L) 4.87+1.70 472+157 5.34 £2.00 0.019
D-dimer (pg/mL) 1.34 (0.58-2.54) 1.02 (0.44-2.02) 2.65 (1.59-5.49) <0.001
BNP (pg/mL) 5196.00 (573.15-21150.50) 3773.50 (359.40-16038.50) 10630.00 (2031.00-28398.50) 0.002
Myoglobin (ng/mL) 171.65 (70.28-338.00) 120.10 (58.90-221.00) 259.60 (168.45-639.45) <0.001
Cardiac troponin T (ng/mL) 0.06 (0.02-0.12) 0.04 (0.01-0.09) 0.11 (0.07-0.15) <0.001
Time from onset to admission (day) 14 (7-32) 18 (10-38) 7 (2-14) <0.001
Length of hospital stay (day) 15 (8-32) 16 (8-31) 13 (6-35) 0.331
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Data are expressed as number (%), mean + standard deviation, or median (interquartile range).

CKD: chronic kidney disease; COVID-19: coronavirus disease 2019; CGN: chronic glomerulonephritis; RDW: red blood cell volume distribution width; eGFR: estimated
glomerular filtration rate; APTT: activated partial thromboplastin time; BNP: brain natriuretic peptide.

a: Other CGN: minimal change disease (9, 4.1%), anti-neutrophil cytoplasmic antibodies-associated glomerulonephritis (4, 1.8%), focal segmental glomerulosclerosis (3,
1.4%), lupus nephritis (2, 0.9%), C3 glomerulopathies (1, 0.5%), Henoch-Schénlein purpura nephritis (1, 0.5%), hypertensive nephropathy (1, 0.5%), multiple
myeloma-associated nephropathy (1, 0.5%), idiopathic glomerular nodular sclerosis (1, 0.5%), polycystic kidney (1, 0.5%), and type of uncertain etiology (58, 26.5%).

b: Renal replacement: hemodialysis (53, 24.2%), peritoneal dialysis (18, 8.2%), and kidney transplantation (12, 5.5%).

c: The number of valid cases was 214, of which 159 patients survived and 55 patients died during the follow-up.

Table 2. The assessment of machine learning models for CKD patients with COVID-19

Model AUC (95% CI) Youden  Accuracy Sensitivity Specificity PPV NPV F1 Kappa  Brier H-L test*
LR 0.937 (0.905, 0.968) 0.775 0.886 0.891 0.884 0.721 0.960  0.797 0.719 0.090  <0.001
SVM 0.946 (0.918, 0.974) 0.781 0.881 0.909 0.872 0.704 0.966  0.794 0.712 0.082  0.968

RF 0.938 (0.908, 0.968) 0.757 0.854 0.927 0.829 0.646 0971  0.761 0.661 0.100  0.048
XGBoost 0.925 (0.892, 0.959) 0.702 0.840 0.873 0.829 0.632 0951 0.733 0.623 0.100  0.430

ML: machine learning; CKD: chronic kidney disease; COVID-19: coronavirus disease 2019; AUC: area under the curve; CI: confidence interval; PPV: positive predictive
value; NPV: negative predictive value; H-L: Hosmer-Lemeshow; LR: least absolute shrinkage and selection operator regression; SVM: support vector machine; RF: random

forest; XGBoost: extreme gradient boosting.
*: P value for the Hosmer-Lemeshow test.

Sensitivity analysis

In the development of ML models, analyses with
complete-data instances and alternative imputed
cases produced findings comparable to those from the
primary imputed dataset (Table S4). In the
development of predictive scores, the analysis of
forest plots with complete-data cases, distinct
imputed instances, and in-hospital outcomes revealed
significant P values and coefficients that were similar
to the primary analysis (Figure S2).

Subgroup analysis

As shown in Figure S3, subgroup analysis based
on treatment modality demonstrated that the
VAMPCT score effectively predicted three-month
mortality in CKD patients with COVID-19 across both
subgroups. In the conservative treatment-only group,
the OR was 3.04 (95% CI: 1.68-8.71, P = 0.006), while
in the group receiving at least one non-conservative
treatment, the OR was 2.73 (95% CI: 1.97-4.21, P <
0.001). However, no statistically significant interaction
was observed between treatment modality and the
predictive performance of the VAMPCT score (P =
0.804), suggesting that its prognostic utility remained
consistent regardless of treatment strategy.

Discussion

The relentless global spread and mutational
evolution of SARS-CoV-2 have posed profound
threats to both human health and the social economy.
In China, the validated genome sequences of
SARS-CoV-2 have all been Omicron variants since
December 2022 [15]. Notably, infections with the
Omicron variant have been associated with reduced
hospitalization and mortality rates compared to
earlier variants of concern [16]. According to the latest
epidemiological survey, there were 82 million adults

with CKD in China [17]. A recent meta-analysis of 12
studies revealed that the mortality rate among CKD
patients with COVID-19 was alarmingly 5.81 times
higher than among those without infection [18].
Highlighting the urgency of early identification of
CKD patients at risk of severe outcomes is essential.
This study, through an analysis of acute phase
infection characteristics and subsequent follow-up of
CKD patients, aimed to pinpoint risk factors and
formulate a predictive model for mortality of
COVID-19 during the Omicron wave.

In our study, all-cause mortality among patients
with CKD at three months after COVID-19 was 25.1%,
which varies from different studies. According to a
multicenter cohort study, the 12-week mortality rate
of COVID-19 patients with CKD was 41.5% [19]. In
Turkish, the mortality of CKD patients at three
months after the diagnosis of COVID-19 was 5.2%
[20]. Several explanations may elucidate these
variances. Principally, our study's patient population
was largely affected by the Omicron variant, which is
characterized by a reduced severity and mortality
profile relative to its predecessors [21]. Additionally,
racial disparities could play a pivotal role in
post-COVID-19 mortality, attributed to a spectrum of
factors including distinct comorbidities and divergent
biochemical progressions [22, 23].

In our analysis, eleven predictors were
meticulously selected and applied through machine
learning algorithms, capturing a comprehensive
profile of COVID-19's impact. These predictors
encompassed indicators of cardiac injury (cTnT and
LDH), coagulation dysfunction (PTA), erythrocyte
abnormalities (RDW), and the involvement of the
immune system, including COVID-19 vaccination
status and monocyte percentage. These parameters
are not only routinely measured but also corroborate
established risk factors for COVID-19 mortality as
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identified in previous studies [24-26]. Within our
cohort, age emerged as the most significant predictor
of mortality. A wealth of evidence supports the
association between advanced age and adverse
outcomes in COVID-19 patients with CKD [27, 28].
The interplay of a milder inflammatory response with
aging, slower viral clearance, and the diminished
compensatory capacity of the remaining glomeruli
likely underpins this association [29-31]. Frailty, a
prevalent geriatric syndrome, is strongly associated
with aging and portends elevated mortality in CKD
patients, particularly when compounded by
COVID-19. Mechanistically, age-related senescence
involves subcellular/cellular perturbations —
inflammaging, mitochondrial dysfunction, cellular
senescence, and dysregulated nutrient-sensing
pathways —culminating in multisystem physiological
decline and clinical frailty [32]. In CKD patients,
frailty and COVID-19 synergistically amplify
proinflammatory cascades, further impairing antiviral
immunity while exacerbating hyperinflammation-
driven organ injury, thereby increasing severe disease
and mortality risks [33]. Frailty also compromises
tolerance to SARS-CoV-2-targeted antivirals (e.g.,
nirmatrelvir/ritonavir), necessitating dose
modifications or alternative regimens that may
undermine therapeutic efficacy [34].

Incorporating cardiac biomarkers into the
scoring system is critical, given the high prevalence of
cardiovascular comorbidities (e.g.,, hypertension,
diabetes, coronary artery disease) and compounded
cardiorenal risks in CKD patients [35]. Meanwhile,
COVID-19 exacerbates these risks through direct
myocardial injury (ACE2-mediated viral entry) and
systemic  hyperinflammation, increasing acute
complications like myocarditis and thrombosis.
Previous clinical studies have implied that COVID-19
leads to diverse cardiovascular complications [36].
Biomarkers such as troponin refine prognostic
accuracy by quantifying these interactions, enabling
early intervention to mitigate mortality. Thus,
cardiovascular-integrated scoring addresses the
unique pathophysiology of CKD-COVID-19 overlap,
improving both risk prediction and personalized
management.

Vaccination has been heralded as a pivotal
preventive measure in mitigating the severity and
reducing fatalities from COVID-19 [37]. Our findings
underscore vaccination status as the most potent
protective factor, a consensus echoed by prior
research. A multicenter study highlighted that the
relative risk of death for vaccinated individuals 90
days post-COVID-19 was a fifth of that for their
unvaccinated counterparts [38]. Similarly, in the
hemodialysis population, vaccination has been linked

to attenuated disease severity and lower mortality
rates attributable to COVID-19 [39].

Advanced machine learning (ML) techniques
have unlocked the potential to uncover subtle
patterns within the intricate and high-dimensional
landscape of clinical data. In terms of the AUC, our
ML models demonstrated exceptional performance, a
testament to the effectiveness of feature selection as
well as the meticulous training and tuning processes
employed. When considering calibration and clinical
applicability, support vector machine (SVM) models
emerged with a more advantageous overall
performance, a finding that aligns with reports on
COVID-19 patient outcomes [40, 41]. A recent
meta-analysis has pointed out that the algorithm
used, the population studied, the study design, and
the dataset source all exert influence on the pooled
estimate of model performance [42]. With clinical
practicality in mind, we distilled six impactful
indicators from those identified by ML to develop the
"VAMPCT" scoring system. This scoring system offers
predictive discrimination comparable to the SVM
model, coupled with enhanced specificity, thereby
facilitating its utility in clinical decision-making.

Despite the robust findings of our study, several
limitations warrant acknowledgment. Firstly, the data
were sourced from a single hospital, and the modest
sample size may constrain the robustness of the
machine learning model scoring and the
generalizability of our results to other geographic
regions or ethnic groups, where variations in
healthcare practices, genetic predispositions, and
COVID-19  strain prevalence could influence
prognostic accuracy. Prospective validation in
multiethnic, multinational cohorts is required to
confirm its broader applicability. Secondly, our
analysis relied on multiple imputation under the
assumption of data missing at random, which may
not accurately reflect the true distribution patterns;
this assumption could introduce bias. Thirdly, our
findings may be influenced by residual confounding
from unmeasured factors (e.g., socioeconomic status,
lifestyles, and behaviors) and imperfectly modeled
nonlinear/interaction effects. While sensitivity
analyses supported robustness, future prospective
studies with granular phenotyping are needed to fully
address these limitations. These limitations should be
considered when interpreting the study outcomes and
when planning subsequent research to address these

gaps.
Conclusion

In this study, we developed predictive models
for three-month mortality in CKD patients with
COVID-19, identifying the SVM model as the most
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effective. We also introduced the VAMPCT score to
facilitate early prognostic evaluation during the acute
phase of the disease. Against the backdrop of the
Omicron variant's sustained dominance in the global
and Chinese COVID-19 landscapes, our research
offers initial observations regarding the mortality
associated with Omicron infection in CKD patients. It
contributes to paving the way for the advancement of
more refined and prognostically relevant clinical
tools.
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