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Abstract 

Objectives: To investigate the diagnostic performance of texture analysis using multi-parameter MRI in 
distinguishing between benign and malignant lesions with ovarian-adnexal magnetic resonance imaging 
report and data system (O-RADS MRI) score 4.  
Methods: A retrospective analysis was conducted of 57 lesions with an O-RADS MRI score of 4, of 
which 26 were benign and 31 were malignant. Based on the T2WI, ADC, and CE_T1WI, the textural 
features of the entire lesion were extracted. The minimum redundancy maximum relevance (mRMR) 
method was used to select features, and the random forest (RF) algorithm was used to construct four 
prediction models: T2WI, ADC, CE_T1WI, and the combined models. Ten-fold cross-validation was 
used to verify the model prediction performance, and receiver operating characteristic (ROC) analysis 
was used to evaluate the model performance, including area under the curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive value (NPV). 
Results: 3474 texture features were extracted from the ADC, T2WI, and CE_T1WI images. ADC, 
T2WI, CE_T1WI, and combined models were constructed. Each model contained ten texture features. 
The AUC of the ADC, T2WI, CE_T1WI, and combined models were 0.749 (95% CI: 0.621-0.876), 0.671 
(95% CI: 0.524-0.818), 0.786 (95% CI: 0.662-0.909), and 0.860 (95% CI: 0.76-0.959), respectively. The 
AUC of the combined model was significantly higher than those of the other three groups. The accuracy, 
sensitivity, specificity, PPV, and NPV of the combined model in distinguishing benign and malignant lesions 
with an O-RADS MRI score of 4 were 75.9%, 77.8%, 74.1%, 72.4%, and 79.3%, respectively. 
Conclusion: Texture analysis of multi-parameter MRI can improve the diagnostic efficiency of 
distinguishing benign and malignant lesions with an O-RADS MRI score of 4 and provide some help in 
clinical decision-making. 

Keywords: Magnetic resonance imaging; Texture analysis; Ovarian lesion; Ovarian-adnexal reporting and data system MRI 
(O-RADS MRI); Benign and malignant lesions 

Introduction 
Ovarian tumors are the most common tumors of 

the female reproductive system and are not easily 
detected, especially in the early stages. Owing to their 
high morbidity and mortality, distinguishing between 

benign and malignant ovarian tumors is of great 
importance[1]. Currently, imaging remains the 
primary method of ovarian tumor detection. 
Ultrasound has the advantages of painlessness, 
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simplicity of operation, and high repeatability in 
diagnosing ovarian tumors and is widely used. 
However, approximately 18%-31% of ovarian tumors 
cannot be accurately diagnosed using ultrasound 
examination[2, 3].  

Compared with ultrasound, magnetic resonance 
imaging (MRI) shows better anatomical resolution 
and soft-tissue contrast imaging[4] and is also a 
multi-parameter imaging technique. In this context, 
the ADNEX-MR score was introduced in 2013 as a 
risk assessment and adnexal lesion scoring system[4], 
and its name was changed to ovarian-adnexal 
reporting and data system MRI (O-RADS MRI) score 
in 2020[5]. The O-RADS allows for the stratification of 
the malignancy risk of adnexal masses based on the 
lesion’s composition, the signal intensity 
characteristics, and the solid tissue’s enhancement 
pattern. The O-RADS MRI risk scoring system has 
promising diagnostic efficacy and reproducibility, but 
10.8% to 12.5% of ovarian adnexal masses 
malignancies cannot be determined. In patient 
management dilemmas, O-RADS MRI 1-3 (normal to 
low-risk) and O-RADS MRI 5 (high-risk) usually do 
not lead to difficulties. Considering the wide range of 
malignant tumors in such lesions, the adnexal lesions 
with O-RADS MRI 4 (moderate risk) have been 
considered as the system's Achilles' heel. The positive 
predictive value (PPV) of malignant lesions with an 
O-RADS MRI risk score of 4 was only 50%[6]. In 
addition, when nondynamic multi-phase 
contrast-enhanced (CE) MRI is used to evaluate 
adnexal lesions, the PPV of O-RADS MRI 4 is still 
unclear and requires further study[4, 5, 7]. A lower 
PPV may lead to a considerable number of patients 
with benign adnexal tumors undergoing potentially 
unnecessary or excessive surgical intervention. 
Consequently, more criteria are required to 
sub-stratify O-RADS MRI 4 for better risk 
stratification. The O-RADS MRI risk-scoring system is 
still in the early stages of use, and further research is 
necessary to optimize and develop it. The O-RADS 
MRI score is principally based on MRI’s 
morphological and functional manifestations and 
assesses tumors through macroscopic observation of 
lesion morphological characteristics and 
semi-quantitative evaluation. It has limited 
subjectivity and lacks objective quantitative data 
analysis.  

Texture analysis (TA) is a mathematical method 
that systematically and quantitatively analyzes image 
features to evaluate tissue gray-scale patterns, 
locations, and the relationship between pixels and 
voxels. It can quantify tumor heterogeneity and 
microstructure that the human visual system cannot 
detect[8, 9]. Recently, texture analysis has been 

combined with various imaging methods to predict 
the pathological classification, staging, and 
postoperative prognosis of gynecological tumors[10, 
11]. Wang et al.[12] used a multimodal MRI texture 
analysis model to predict the prognosis of ovarian 
cancer and found that a model based on T2WI had the 
best performance. Ye et al.[13] explored the value of 
MRI-based whole-tumor texture analysis in 
distinguishing borderline and malignant epithelial 
ovarian tumors and found that the area under the 
receiver operating characteristic curve (AUC) of the 
combined model of texture features and clinical data 
was 0.962. There have been few reports on using TA 
to improve the O-RADS MRI scores to 4. Therefore, 
this study aimed to explore the value of TA based on 
multimodal MRI images to improve the O-RADS MRI 
score to 4. 

Materials and methods  
Patients and study setting 

This retrospective study was conducted between 
March 2015 and December 2022 at the Radiology 
Department of Minhang Hospital, affiliated with 
Fudan University, China. It included 147 patients 
with 155 adnexal masses confirmed surgically and 
pathologically. The Institutional Review Board of 
Minhang Hospital, affiliated with the Fudan 
University Review Board, approved this retrospective 
study, and informed consent was not required. 

The inclusion criteria were pelvic MRI 
enhancement examination within 4 weeks before 
surgery and a final O-RADS MRI lesion score of 4 
points. The exclusion criteria were poor image 
quality, inability to be used for evaluation and 
analysis, missing or incomplete MRI images, 
incomplete clinical and pathological data, and 
preoperative radiation or chemotherapy. The final 
cohort comprised 52 patients with 57 adnexal masses. 

Magnetic resonance imaging 
All MRI examinations were performed on a 3.0-T 

system (uMR780 3.0 T MRI; United Imaging 
Healthcare, Shanghai, China) and a 1.5-T system 
(EXCITE HD 1.5T MRI; GE Healthcare, Milwaukee, 
WI, USA) using a phased-array coil. Fasting was done 
for 4-6 hours before examination to limit artifacts 
caused by intestinal peristalsis. The scan range of the 
pelvis was from the iliac crest to the pubic symphysis 
and was adjusted to cover the entire size of the 
adnexal lesion. The contrast agent Magnevist was 
given at a dose of 0.2 mL per kilogram of body weight 
using a power injector at a rate of 2 mL/s, followed by 
15 mL of normal saline to flush the tubing. Our 
institutional standard MRI protocol included the 
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following sequences: axial and T1 fast spin-echo (FSE) 
weighted imaging (WI) with and without fat 
saturation; sagittal and axial T2 FSE WI; axial 
diffusion-weighted images (DWI) with b-values of 0, 
800, 1000 s/mm2 to obtain apparent diffusion 
coefficient (ADC) maps; dynamic T1weighted 3D 
gradient-echo with fat saturation in the axial and 
sagittal plane during contrast uptake and delayed 
post-contrast T1-weighted 3D gradient echo with fat 
saturation in the axial plane. The scanning sequences 
are presented in Table 1. 

Image processing 
Two radiologists with 5 and 15 years of 

experience in female pelvic imaging analyzed all 
images independently. Both radiologists were blinded 
to the clinical and histological data, and 
retrospectively classified the adnexal masses 
according to the O-RADS MRI scoring system 
published by Thomassin et al. in January 2020[5]. If 
there is a disagreement between the two readers a 
consensus can be reached through discussion. 

According to previously published studies, the 
following MRI characteristics were analyzed for each 
adnexal mass[14-17]: distribution location (unilateral, 
bilateral), shape (regular, irregular), boundary (clear, 
unclear), lesion diameter (maximum cross-sectional 
diameter of the lesion), lesion composition (cystic, 
cystic solid, solid), T1WI image signal strength, T2WI 
lipid-pressure image signal intensity, DWI signal 
strength, enhancement mode, ascites (with or 
without), lymph nodes (with or without). The signal 
intensity of the endometrium was used as the 
reference standard for the signal intensity of lesion 
DWI, and the degree of enhancement of the 
myometrium was used as the reference standard for 
the degree of enhancement of the lesion. Patients with 
a score of 4 on the O-RADS non-dynamic enhanced 
MRI were enrolled. 

Adnexal lesion segmentation was performed 
using ITK-SNAP software (http://www.itk-snap. 
org). Regions of interest (ROI) were manually 
segmented independently by two radiologists with 5 
and 15 years of experience in MRI image evaluation, 
respectively, layer by layer for the entire lesion. Both 

radiologists reached a consensus in cases with 
obscured tumor margins by performing additional 
image analyses. 

Feature extraction and selection 
An Artificial Intelligence Kit (A. K., GE 

Healthcare) was used to analyze the volume of 
interest (VOI) and extract lesion texture features. A 
total of 3474 features were obtained, including shape 
features, first-order statistics, gray-level co-occurrence 
matrix (GLRLM, gray-level run length matrix 
(GLSZM, gray-level size zone matrix (GLDM, 
gray-level dependence matrix (GLDM), and Laplace 
of Gaussian transformed features (LoG). PyRadiomics 
(http://www.radiomics.io/pyradiomics.html) was 
used to extract 704 wavelet transform features. 
Detailed information on the textural features is 
presented in Table 2. 

Feature selection and model construction 
The intraclass correlation coefficient (ICC) of the 

textural features of 30 cases was randomly selected to 
evaluate the intra- and inter-observer repeatability of 
lesion segmentation. Radiologist 1 manually plotted 
the VOI twice within two weeks for intra-observer 
ICC assessment. Radiologist 2 also outlined the VOI, 
and the extracted texture features were used to 
evaluate the ICC between observers. ICC > 0.75 
showed good consistency. 

The Mann–Whitney U test was used for 
univariate analysis. The texture features were retained 
when the intra-and inter-observer ICCs were greater 
than 0.75 and p < 0.1. Subsequently, the mRMR 
method was used to select the feature subset, and 
features with minimum redundancy and maximum 
correlation were retained. Subsequently, four 
prediction models of T2WI, ADC, T1WI, and three 
combined models were constructed using the random 
forest (RF) algorithm. Ten-fold cross-validation was 
used to verify the model’s predictive performance, 
and ROC curve analysis was used to evaluate the 
model’s performance. The areas under the curve 
AUC, accuracy, sensitivity, specificity, PPV, and NPV 
were also recorded. 

 

Table 1. MR scanning parameters in detail. 

  T1WI T2WI T2WI DWI 3D LAVA/ Dyn 3D T1 fs 3D LAVA/ Dyn 3D T1 fs 
Scanning Planes Axial Sagittal Axial Axial Axial Sagittal 
Slice thickness(mm) 4 5 5 5 6 6 
Intersection gap(mm) 0.8 1-1.5 1-1.5 1 - - 
FOV (mm) 240×220 240×240 240×240 240×240 380×280 380×280 
acquisition matrix 320×256 256×256 256×256 128×128 368×312.8 368×312.8 
B values (s/mm2) 

   
0-800-1000 

  

acquisition time 0.06875 0.093055556 0.088194444 0.175694444 0.057638889 0.081944444 
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Table 2. Summary of 1158 Texture Features 

feature classification name number 
Original Shape 14 

Firstorder 18 
Glcm 24 
Glrlm 16 
Glszm 16 
Gldm 14 

LOG Firstorder 72 
Glcm 96 
Glrlm 64 
Glszm 64 
Gldm 56 

wavelet LLH 88 
LHL 88 
LHH 88 
HLL 88 
HLH 88 
HHL 88 
HHH 88 
LLL 88 

Abbreviation: Glcm, gray level co-occurrence matrix; Glrlm, gray level run length 
matrix; Glszm, gray scale region matrix; Gldm, gray level dependence matrix; Log, 
Laplace of Gaussian transformed features. 

 

Judgment of pathological results  
After surgical resection, all specimens were 

formalin-fixed, dehydrated, paraffin-embedded, 
sectioned, and stained with hematoxylin-eosin 
staining (HE staining). Two senior pathologists 
observed the sections independently. If HE staining 
cannot be used for diagnosis, immunohistochemistry 
can be used to further determine the pathological 
type.  

Statistical analysis  
All statistical analyses were conducted using 

SPSS statistical software (version 26.0; IBM Corp., 
Armonk, NY, USA) and R software (version 4.2.0; 
http://www.r-project.org). The Kolmogorov–
Smirnov test determined whether the measurement 
data conformed to a normal distribution. The 
measurement data obeying the normal distribution 
was tested by independent sample T-test, expressed 
as mean ± standard deviation (x ± SD). Measurement 
data that did not follow a normal distribution were 
tested using the rank sum test and expressed as 
median and quartile spacing [M (P25, P75)]. The 
chi-square or Fisher's exact test was used to compare 
intergroup differences in categorical variables. The 
intragroup correlation coefficient was used for the 
observer consistency test. ICC assessed the 
consistency between observers using the following 
criteria: excellent 0.75-1.00; good 0.50-0.75; acceptable 
0.25-0.50; very poor 0-0.25. p < 0.05 was considered 
significant. 

Results  
Clinical baseline data  

The patients’ baseline clinical and pathological 
data are shown in Tables 3 and 4. This study enrolled 
52 patients with 57 lesions (five cases of bilateral 
lesions) aged 17-86 years, with an average age of 51.5 
years. Pathological results: 26 cases (45.6%) were 
benign lesions (8 cases of serous cystadenoma, 7 cases 
of mucinous cystadenoma, 3 cases of goiter, 3 cases of 
ovarian fibroma, 1 case of Brenner tumor, 2 cases of 
theca cell tumor, 2 cases of ovarian salpingitis mass), 
31 cases (54.4 %) were malignant (3 cases of borderline 
serous tumor, 5 cases of borderline mucinous tumor, 4 
cases of serous adenocarcinoma, 1 case of mucinous 
adenocarcinoma, 3 cases of clear cell carcinoma, 5 
cases of endometrioid carcinoma, 2 cases of granular 
cell tumor, 1 case of malignant teratoma, and 7 cases 
of metastatic carcinoma). Among the 57 patients, 26 
were postmenopausal, 31 were premenopausal, 15 
were postmenopausal in patients with benign tumors, 
and 11 were postmenopausal in patients with 
malignant tumors. Among the 57 patients, 34 had 
elevated serum carbohydrate antigen 125(CA125) 
levels, one had elevated alpha-fetoprotein (AFP) 
levels, and five had elevated serum carcinoembryonic 
antigen (CEA) levels. There were no significant 
differences in age, serum (CA125) level, 
alpha-fetoprotein (AFP) level, carcinoembryonic 
antigen (CEA) level, and menopause between patients 
with benign and malignant tumors (p > 0.05). 

 

Table 3. Clinical baseline data 

feature benign malignant p value 
 (n=26) (n=31) 

Age, average ± SD, year 54.85 ± 17.55 49.35 ± 12.22 0.171  
CA125 

  
0.054  

Up-regulated 26 (55.2) 10 (45.5) 
 

Normal 32 (44.8) 12 (54.5) 
 

CEA 
  

0.094  
Up-regulated 0 (0.0) 5 (16.1) 

 

Normal 26 (100.0) 25 (83.9) 
 

AFP 
  

1.000  
Up-regulated 0 (0.0) 1 (3.2) 

 

Normal 26 (100.0) 30 (96.8) 
 

menopause 
  

0.097  
postmenopausal 15 (57.7) 11 (35.5) 

 

premenopausal 11 (42.3) 20 (64.5)   

The data were expressed as a percentage of the number of patients in parentheses; 
SD, standard deviation 

 

Texture feature selection and model 
construction  

A total of 3474 texture features were extracted 
from ADC, T2WI, and CE_T1WI images. Significant 
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texture features were selected by single-factor 
analysis, and the ADC, T2WI, T1WI enhanced, and 
combined models were established using the mRMR 
and RF algorithms. Each model contained ten texture 
features. The ten texture features in the ADC model 
include two first-order features, two LoG features, 
and six wavelet features. The ten texture features in 
the T2WI model included three LoG features and 
seven wavelet features. Ten texture features in the 
T1WI enhancement model included five first-order 
features, one LoG feature, and four wavelet features. 
Ten texture features in the combined model included 
three first-order features, one LoG feature, and six 
wavelet features. The ICC of the texture features of 
the model was greater than 0.75, and the results of the 
single-factor analysis of the selected features of the 
four models are shown in Table 5. 

The AUC comparison of the 10 independent 
predictive factors selected by the four models is 
shown in Figure 1, and the important components of 
the 10 independent predictive factors in the four 
models are shown in Figure 2, among which the 
wavelet_LHH_glcm_MCC.ADC features account for 
the largest proportion of the selected ten features in 
the combined model. The correlation between the 
expression of the 10 independent predictive factors in 
the heat map of the four models and malignancy is 
shown in Figure 3. 

Prediction performance of the model  
The ROC curves for the four models are shown 

in Figure 4. The AUC of the ADC, T2WI, and 
CE_T1WI models were 0.749 (95 % CI: 0.621-0.876), 
0.671 (95 % CI: 0.524-0.818), and 0.786 (95 % CI: 
0.662-0.909), respectively. The Delong test showed 
that there was no difference in AUC among the three 
model groups (T2WI vs CE_T1WI model, p = 0.101; 
T2WI vs. ADC model, p = 0.347; CE_T1WI vs ADC 
model, p = 0.597). The AUC of the combined model 
was 0.860 (95% CI: 0.76-0.959). Delong tests showed 
that the AUC between the T2WI, ADC, and combined 
models was statistically significant (T2WI and 
combined model, p = 0.004; ADC vs. combined model, 
p = 0.038; CE_T1WI model vs combined model p = 
0.070). The AUC of the combined model was 
significantly higher than those of the other three 
groups. A ten-fold cross-validation of the combined 
model is shown in Figure 5. The combined model 
exhibited the best diagnostic performance, with an 
accuracy of 0.759. After ten-fold cross-validation, it 
performed well, with an accuracy of 0.713. Table 6 
presents the diagnostic performance of the four 
models. The combined model had the best 
performance, with accuracy, sensitivity, specificity, 
PPV, and NPV of 75.9%, 77.8%, 74.1%, 72.4%, and 
79.3%, respectively.  

 
 

 
Figure 1. Independent predictive factors AUC of four models. (A) Comparison of AUC of 10 independent predictive factors of ADC model. (B) Comparison of AUC 
of 10 independent predictive factors of T2 WI model. (C) Comparison of AUC of 10 independent predictive factors of the combined model. (D) Comparison of AUC of 10 
independent predictive factors of CE_T1WI model. 
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Table 4. Statistical table of pathological data 

Malignant degree Pathological type  Counts (%) 
Benign serous cystadenoma 8 (14) 

mucinous cystadenoma 7 (12.3) 
goiter 3 (5.3) 
ovarian fibroma 3 (5.3) 
Brenner tumor 1 (1.7) 
theca cell tumor 2 (3.5) 
ovarian salpingitis mass 2 (3.5) 
total 26 (45.6) 

Malignant borderline serous tumor 3 (5.3) 
borderline mucinous tumor 5 (8.7) 
serous adenocarcinoma 4 (7.0) 
mucinous adenocarcinoma 1 (1.7) 
clear cell carcinoma 3 (5.3) 
endometrioid carcinoma 5 (8.7) 
granular cell tumor 2 (3.5) 
malignant teratoma 1 (1.7) 
metastatic carcinoma 7 (12.3) 
total 31 (54.4) 

The data are expressed as a percentage in parentheses. 
 

Discussion 
This study evaluated the diagnostic performance 

of TA in improving the diagnostic performance of 
O-RADS 4. Our results showed that the texture 
features from the T2WI, ADC, and CE_T1WI images 
significantly differed between benign and malignant 
O-RADS MRI 4. The combined model based on 
textural features showed promising efficiency in 
distinguishing between benign and malignant 
O-RADS 4 lesions (AUC = 0.86). 

The O-RADS MRI risk scoring system is based 
on the MRI scoring system for adnexal lesions 
(ADNEX MR scoring system) developed by 
Thomassin et al. in 2013[4]. It was developed and 
published by a multidisciplinary, international expert 
committee under the guidance of the American 
College of Radiology in 2020 as the most 
comprehensive standard for MRI evaluation of 
ovarian and adnexal lesions. A meta-analysis by Qing 
Zhang et al.[18] found that O-RADS US and O-RADS 
MRI have high sensitivity for ovarian or adnexal 
malignancies. However, O-RADS MRI provides 
higher specificity (90%). A meta-analysis involving 
4,012 ovarian adnexal lesions by Stefania Rizzo et 
al.[19] found that the total malignant probability of 
O-RADS MRI 4 lesions was 60% (95% CI, 52%-67%). 
This study quantified the texture features of whole 
lesions of ovarian tumors based on multi-parameter 
MRI TA from magnetic resonance ADC maps, T2WI, 
and CE_T1WI. Our results indicate that the combined 
model based on the ADC map, T2WI, and T1WI 
enhanced sequences can improve the diagnostic 
efficacy between benign and malignant lesions with 
an O-RADS MRI score of 4. Quantified texture 
features compensate for empirical diagnoses based on 
conventional MRI morphology deficiencies. The 
MRI-based texture feature model provides a new 
method for noninvasively improving the diagnostic 
efficacy of O-RADS 4 before surgery, which helps 
evaluate preoperative treatment strategies. 

 

Table 5. Single factor analysis results of selected variables for ADC, T2WI, CE-T1WI, and combined model 

model variable p value AUC (95% confidence interval) 
    

ADC model original_glszm_SmallAreaEmphasis.ADC 0.014*  0.697 (0.553-0.840) 
    

wavelet_HLL_glszm_ZoneEntropy.ADC 0.015*  0.695 (0.548-0.842) 
    

wavelet_HHL_glcm_MCC.ADC 0.017*  0.691 (0.536-0.845) 
    

wavelet_LHH_glcm_MCC.ADC 0.020*  0.687 (0.530-0.843) 
    

wavelet_LLH_firstorder_Mean.ADC 0.028*  0.677 (0.520-0.833) 
    

original_gldm_LowGrayLevelEmphasis.ADC  0.036* 0.669 (0.514-0.824) 
    

log_sigma_4_0_mm_3D_glcm_Correlation.ADC 0.050* 0.655 (0.499-0.811) 
    

log_sigma_5_0_mm_3D_glszm_GrayLevelVariance.ADC  0.065 0.648 (0.495-0.800) 
    

wavelet_LHL_gldm_DependenceNonUniformityNormalized.ADC 0.071 0.645 (0.486-0.803) 
    

wavelet_HLH_glszm_ZonePercentage.ADC  0.081 0.640 (0.489-0.791) 
    

T2WI model wavelet_HHL_firstorder_Mean.T2 0.005*  0.721 (0.579-0.863) 
    

wavelet_HHL_glcm_Imc2.T2  0.002*  0.747 (0.601-0.884) 
    

wavelet_HHL_gldm_DependenceVariance.T2  0.015*  0.693 (0.542-0.846) 
    

log_sigma_2_0_mm_3D_glcm_Imc2.T2  0.017*  0.692 (0.545-0.839) 
    

wavelet_LLH_gldm_DependenceVariance.T2  0.021*  0.685 (0.541-0.829) 
    

log_sigma_3_0_mm_3D_glszm_LargeAreaLowGrayLevelEmphasis.T2 0.026*  0.678 (0.530-0.826) 
    

log_sigma_2_0_mm_3D_glszm_LowGrayLevelZoneEmphasis.T2 0.020*  0.675 (0.527-0.824) 
    

wavelet_LLL_gldm_SmallDependenceLowGrayLevelEmphasis.T2 0.047*  0.659 (0.509-0.809) 
    

wavelet_LHH_glcm_DifferenceVariance.T2 0.068 0.646 (0.496-0.796) 
    

wavelet_HHH_glcm_Imc1.T2 0.073 0.643 (0.487-0.800) 
    

CE-T1WI model original_firstorder_Kurtosis.ZQ  0.001* 0.751 (0.613-0.889) 
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model variable p value AUC (95% confidence interval) 
    

log_sigma_2_0_mm_3D_gldm_DependenceNonUniformityNormalized.ZQ 0.004* 0.727 (0.584-0.869) 
    

wavelet_LHL_firstorder_Mean.ZQ 0.005*  0.725 (0.583-0.868) 
    

original_glszm_SmallAreaLowGrayLevelEmphasis.ZQ  0.011*  0.704 (0.549-0.858) 
    

original_glrlm_LongRunHighGrayLevelEmphasis.ZQ  0.014*  0.702 (0.556-0.849) 
    

original_glszm_SmallAreaEmphasis.ZQ 0.015* 0.694 (0.547-0.840) 
    

original_shape_Elongation.ZQ 0.038* 0.667 (0.519-0.814) 
    

wavelet_HLH_glszm_SmallAreaEmphasis.ZQ 0.063 0.649 (0.498-0.800) 
    

wavelet_HLH_glcm_ClusterShade.ZQ 0.079 0.641 (0.487-0.795) 
    

wavelet_LLH_firstorder_Skewness.ZQ 0.086 0.638 (0.476-0.799) 
    

combined model original_firstorder_Kurtosis.ZQ 0.001*  0.751 (0.613-0.899) 
    

wavelet_HHL_glcm_Imc2.T2  0.002*  0.747 (0.601-0.884) 
    

log_sigma_2_0_mm_3D_gldm_DependenceNonUniformityNormalized.ZQ 0.004*  0.727 (0.584-0.869) 
    

wavelet_LHL_firstorder_Mean.ZQ 0.005*  0.725 (0.583-0.868) 
    

wavelet_HHL_firstorder_Mean.T2  0.005*  0.721 (0.579-0.863) 
    

original_glrlm_LongRunHighGrayLevelEmphasis.ZQ  0.014* 0.702 (0.556-0.849) 
    

wavelet_HLL_glszm_ZoneEntropy.ADC 0.015* 0.695 (0.548-0.842) 
    

wavelet_HHL_glcm_MCC.ADC 0.017* 0.691 (0.536-0.845) 
    

wavelet_LHH_glcm_MCC.ADC 0.020* 0.687 (0.530-0.843) 
    

original_shape_Elongation.ZQ 0.038* 0.667 (0.519-0.814) 
    

*p＜0.05 

 
 

 
Figure 2. Comparison of the importance of four model parameters in the model. (A) ADC model; (B) T2WI model; (C) CE_T1WI model; (D) combined model. 
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Table 6. Diagnostic performance of four different models 

model Accuracy (95% confidence interval) Sensitivity Specificity PPV NPV 
T2WI model 0.637 (0.501 - 0.760) 0.625 0.653 0.689 0.586 
ADC model 0.741 (0.609 - 0.847) 0.733 0.75 0.759 0.724 
CE_T1WI model 0.741 (0.609 - 0.847) 0.769 0.718 0.689 0.793 
combined model 0.759(0.628 - 0.861) 0.778 0.741 0.724 0.793 

Abbreviations: PPV positive predictive value, NPV negative predictive value 
 

 

 
Figure 3. Correlation between the expression of 10 independent predictive factors in four models' heat maps and tumor malignancy. (A) ADC model; (B) 
T2WI model; (C) CE_T1WI model; d. combined model. 
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TA is a new imaging technology that can extract 
large amounts of data from biomedical images and be 
studied using TA tools. TA of the MRI images was 
performed by analyzing the gray tone changes 
between the image voxels. This method captures 
spatial and intensity information to identify 
pathological changes and microstructural 
heterogeneity within tumors. Because of the 
heterogeneity of ovarian tumors, texture features 
based on the entire tumor contain more spatial 
information and higher sensitivity and specificity 
than traditional methods based on pre-selected 
regions of interest. This study used 3D whole-lesion 
ROI delineation to avoid the limitations of selecting 
individual layers corresponding to partial lesion areas 
and maximizing their diversity[20]. 3D TA is a 
method that utilizes all data dimensions and contains 
rich information about the internal structure of related 
objects. Increasing the number of points required for 
feature calculation to provide a more complete 
description of the lesion can improve the accuracy of 
lesion heterogeneity characterization and reduce 
sampling errors[21, 22]. 

There were subtle grey differences between the 
tumor and its surrounding tissues, but the difference 
was not obvious; areas with more low-frequency and 
high-frequency information appeared randomly. The 
wavelet transform relies mainly on multi-resolution 
analysis to decompose an image into components of 
different frequencies, followed by data correction. The 
multi-resolution analysis characteristics of the 

wavelet transform make it widely applicable to the 
texture features of non-stationary signals, such as 
medical images[23]. In this study, among the ten 
features selected by the combined model, there were 
six high-order wavelet transform features. TA was 
performed in the spatial and frequency domains to 
provide changes in spatial resolution and represent 
texture on the most appropriate scale. Wavelet 
transform features enhance the details of an image, 
which is of great significance in this study. Among the 
10 features the combined model selected, three come 
from GLCM, where the feature wavelet_LHH_ 
glcm_MCC.ADC_DWI_b = 800 accounts for the 
largest proportion among the selected ten features. 
The relationship between two pixels can influence the 
GLCM and calculate the number of occurrences of all 
possible combined gray values in a specific direction 
and the distance between them. The GLCM is 
calculated for multiple directions and distances, 
retains only the required solutions, and presents the 
best features. It is one of the most important and 
in-depth TA methods and many applications. It 
remains the benchmark method for most TA 
research[24-26]. Fathi Kazerooni et al.[27] showed that 
GLCM texture parameters based on magnetic 
resonance ADC maps have value in the differential 
diagnosis between benign and malignant solid 
ovarian tumors. Combined with our findings, we 
assume that GLCM features may provide unique 
information regarding ovarian tumors. 

 

 
Figure 4. ROC curves of four different models.   



Int. J. Med. Sci. 2025, Vol. 22 
 

 
https://www.medsci.org 

1434 

Since the introduction of radiomics in 2012, TA 
has been widely used to study ovarian tumors. RA et 
al.[28] established a prediction model based on the 
radiomic TA of MRI images of liquid components in 
ovarian cysts. The prediction model’s sensitivity, 
specificity, and AUC for identifying malignant lesions 
were 84.62%, 80%, and 0.841, respectively. Zhang et 
al.[29] established a radiomics model based on the 
texture features of multiple sequences of MR images 
(T1WI, T2WI, T2WI_fs, DWI, and T1WI multi-phase 
enhancement), which had higher diagnostic accuracy 
than radiologists in differentiating benign and 
malignant ovarian tumors (90.6% and 83.5%, 
respectively). The model could distinguish type I and 
type II epithelial ovarian cancers with an accuracy of 
83% and an AUC of 0.85, and its diagnostic 
performance was better than when the features were 
applied separately. 

A few researchers have attempted to combine 
MRI radiomics to improve the effectiveness of 
O-RADS MRI. Hottat et al.[30] applied DWI 
quantitative analysis, including ROI-ADC and whole 
lesion-ADC histogram measurements combined with 
O-RADS MRI 4, and the overall performance of 

O-RADS was improved. However, no studies have 
focused on applying MRI-based textural features to 
improve the performance of O-RADS MRI. 
Multi-parameter TA based on MRI has been widely 
used to improve the magnetic resonance stratification 
management score of breast, prostate, and other 
tumors[31-33]. This study focused on the 
multi-parameter MRI texture features of magnetic 
resonance ADC maps, T2WI, and CE_T1WI to 
improve the effectiveness of O-RADS MRI, which 
showed good clinical practicability. 

Although the TA model based on 
multi-parameter MRI had good accuracy, this study 
had some limitations. First, this was a retrospective 
study, and selection bias may exist. Second, the 
sample size was small, therefore, a multi-center study 
with an expanded sample size is necessary to verify 
the applicability of the results. In addition, although 
this study explored the preliminary results of MRI 
image texture analysis to improve the diagnostic 
efficacy of O-RADS MRI with a score of 4 for benign 
and malignant tumors, further studies are necessary 
to confirm the pathological basis. 

 

 
Figure 5. ten-fold cross-validation diagram.    
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In summary, the model based on the whole 
lesion of the ovarian tumor texture of multi-parameter 
MRI helps improve the diagnostic efficiency of the 
O-RADS MRI score of 4 for benign and malignant 
tumors. This approach offers a promising solution to 
the existing challenges in differentiating O-RADS MRI 
4 lesions, while also addressing the variability in 
clinical expertise among imaging diagnostic 
physicians—particularly junior practitioners who 
predominantly rely on conventional MP-MRI 
morphological features for evaluation. Moving 
forward, we aim to undertake large-scale, multicenter 
prospective cohort studies to further assess the 
practical utility of O-RADS MRI scores in real-world 
clinical settings. These efforts aim to provide an 
objective and accurate diagnosis and treatment basis 
for clinical practice, assists in developing personalized 
diagnosis and treatment plans, and improves patient 
prognosis and survival rates. 
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