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Abstract 

Background: Pyrimidine metabolism is a hallmark of tumor metabolic reprogramming, while its 
significance in the prognostic and therapeutic implications of patients with lung adenocarcinoma (LUAD) 
still remains unclear. 
Methods: In this study, an integrated framework of various machine learning and deep learning 
algorithms was used to develop the pyrimidine metabolism-related signature (PMRS). Its efficacy in 
genomic stability, chemotherapy and immunotherapy resistance was evaluated through comprehensive 
multi-omics analysis. The single-cell landscape of patients between PMRS subgroups was also elucidated. 
Subsequently, the biological functions of LYPD3, the most important coefficient factor in the PMRS 
model, were experimentally validated in LUAD cell lines. 
Results: The PMRS model with “random survival forest” algorithm exhibited the best performance and 
was utilized for further analysis. It displayed excellent accuracy and stability in various model evaluation 
assays. Compared to the PMRS-high subgroup, patients with lower PMRS scores had better survival 
outcomes, more stable genomic characteristics and higher sensitivity to immunotherapy. Single-cell 
analysis indicated that as PMRS increased, epithelial cells gradually exhibited malignant phenotypes with 
enhanced pyrimidine metabolism, while PMRS-high patients showed an inhibitory status of tumor 
immune microenvironment. Further experiments indicated that LYPD3 promoted the malignant 
progression in LUAD cell lines. 
Conclusion: Our study constructed the PMRS model, highlighting its potential value in the treatment 
and prognosis of LUAD patients and providing new insights into the individualized precision treatment for 
LUAD patients. 
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Introduction 
Lung cancer, the most frequently diagnosed 

cancer with the highest mortality rate globally, 
seriously threatens human health (1). Despite the 
recent advances in surgical resection, chemotherapy 
and immunotherapy, the 5-year survival rate for lung 
cancer still remains less than 20% (1,2). Lung 
adenocarcinoma (LUAD) is the most common 

histological subtype of lung cancer (1,3). Therefore, 
developing a novel diagnostic and therapeutic model 
based on molecular characteristics for LUAD patients 
is a necessary and feasible approach to promote the 
individualized precision treatment. 

Pyrimidine is the major ingredient of DNA and 
RNA synthesis, and has been paid attention by 
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oncologists since the advent of chemotherapy, due to 
its status in interfering with the transmission of 
genetic information (4). In recent years, as the 
phenomenon of metabolic reprogramming in the 
tumor microenvironment (TME) has drawn the great 
interest of researchers, pyrimidine metabolism has 
gradually returned to our vision (5,6). In clinical, 
folate analogues like pemetrexed and nucleoside 
analogues like gemcitabine, are used to impede tumor 
progression by disturbing the de novo synthesis of 
pyrimidine nucleotides. Unfortunately, only applying 
a single chemotherapeutic agent is hard to achieve the 
desired effectiveness. Hence, it is reasonable to 
hypothesize that pyrimidine metabolism, not merely 
de novo synthesis, but salvage and degradation 
pathways, as well as the deposition of pyrimidine 
metabolites such as thymidine and uridine, may 
result in potential chemoresistance, thus attenuating 
the therapeutic benefits of LUAD patients (7). 
Following this, more efforts are still needed in 
clarifying the significance of pyrimidine metabolism 
in the treatment and prognosis of LUAD patients. 

In this study, we constructed the pyrimidine 
metabolism-related signature (PMRS) for LUAD 
patients by machine learning and deep learning 
approaches, and investigated its efficacy in prognosis, 
genomic stability, chemo- and immuno-therapy 
sensitivity through a comprehensive analysis of 
multi-omics data, including bulk RNA-sequencing 
(RNA-seq), single-cell RNA-seq (scRNA-seq), 
whole-exome sequencing (WES) and metabolomics. 
Subsequent experiments further validated the most 
crucial factor in the PMRS model, LYPD3, promoted 
the malignant progression in LUAD cell lines. 
Overall, our study provided a novel perspective on 
pyrimidine metabolism in LUAD patients, and 
demonstrates that LYPD3 may serve as a potential 
biomarker and/or therapeutic target for LUAD 
patients. 

Methods and Materials 
Data collection and processing 

We retrospectively collected the expression 
profiles and corresponding clinical information from 
4 independent LUAD cohorts, including 1 RNA-seq 
dataset from The Cancer Genome Atlas (TCGA, 
https://portal.gdc.cancer.gov/) and 3 microarray 
datasets (GSE42127, GSE68465 and GSE72094) from 
the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) (8–10). 
Patients lacking vital status and follow-up time were 
excluded. Probe IDs were mapped to gene symbols 
according to annotation files. All microarray data and 
RNA-seq data were subjected to log2 transformation 

for further analysis. Batch effects among different 
datasets were corrected by the “Combat” algorithm of 
R package sva. In total, 1,477 patients were included in 
this study. The detailed clinicopathological 
characteristics were summarized in Table S1. 
Moreover, the somatic mutation profiles and the copy 
number variation (CNV) profiles of TCGA-LUAD 
were accessed from TCGA portal and cBioPortal 
(https://www.cbioportal.org/), respectively, for 
genomic characteristics analysis (11). 

Gene set variation analysis (GSVA) 
To evaluate the metabolic characteristics of 

LUAD cohorts, R package GSVA was utilized to 
quantify the metabolic scores based on the gene sets 
obtained from Kyoto Encyclopedia of Genes and 
Genomes database (KEGG, https://www.kegg.jp/) 
(12,13). The corresponding gene sets were provided in 
Table S2. The Harrell's concordance index (C-index) 
was calculated by R package survival and then 
normalized by min-max normalization (14). The 
metabolism with the highest average C-index was 
regarded as the most prognostic pathways in LUAD 
cohorts. 

Consensus clustering 
Consensus clustering performed by R package 

ConsensusClusterPlus was applied for cluster 
discovery (15). The consensus matrix, the curve of 
consensus cumulative distribution function (CDF) 
and the proportion of ambiguous clustering (PAC) 
statistic were selected to determine the optimal 
number of clustering. T-distributed stochastic 
neighbor embedding (tSNE) assay was used for 
dimension reduction and visualization of the 
unsupervised clustering results. 

Identification of differentially expressed genes 
(DEGs) and enrichment analysis 

DEGs were identified using the filtering criteria 
of an absolute value of log2 (fold change) > 1 and an 
adjusted P value < 0.05 by the limma package (16). 
Gene Ontology (GO) and KEGG enrichment analysis 
of DEGs were performed by the clusterprofiler package 
(17). 

Signature generation and efficacy evaluation 
To generate PMRS with excellent accuracy and 

stability performance, univariate Cox regression was 
applied to identify prognostic DEGs. These prognostic 
DEGs were employed to fit prediction models in the 
TCGA cohort, and then validated across all datasets 
(TCGA, GSE42127, GSE68465 and GSE72094). The 
prediction models were comprised of 12 different 
machine learning and deep learning algorithms, 
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including Ridge/elastic network (Enet)/Lasso 
regression (glmnet package), CoxBoost (CoxBoost 
package), supervised principal components 
(SuperPC, superpc package), stepwise Cox regression 
(stepCox, survival package), partial least squares 
regression for Cox models (plsRcox, plsRcox package), 
generalized boosted models (GBM, gbm package), 
random survival forest (RSF, randomForestSRC 
package), survival support vector machine 
(survival-SVM, survivalsvm package), XGBoost 
(XGBoost package) and deep neural network (DNN, 
h2o package) (14,18–26). For each model, the C-indices 
were calculated across all datasets. The model with 
the best average C-index was regarded as the 
optimum. 

To evaluate the prognostic performance of the 
PMRS model, a series of assessment methods were 
employed, including time-receiver operator 
characteristic (time-ROC) curve, C-index, integrated 
area under curve (iAUC) and integrated brier score 
(iBS). The prognostic efficacy of PMRS in different 
clinical cohorts was further assessed by the C-index 
comparison with various clinical factors and 
previously published LUAD prognostic models. 

Genomic characteristic analysis 
Since somatic mutations played a crucial role in 

genomic characteristics, the mutation spectrum of 
TCGA-LUAD was analyzed. Among diverse 
mutational types, Nonsense_Mutation, Nonstop_ 
Mutation, Missense_Mutation, Translation_Start_Site, 
Frame_Shift_Del, Frame_Shift_Ins, In_Frame_Del, 
In_Frame_Ins and Splice_Site were considered as 
non-synonymous mutations, while the remainder 
were classified as synonymous (27). The landscape 
and interaction of somatic mutations were visualized 
by R package maftools, and the tumor mutational 
burden (TMB) was calculated based on the number of 
mutations per megabase (Mut/Mb) (28,29). 
According to the best cutoff determined by the 
survminer package, patients were divided into 
TMB-high or -low groups. The corresponding 
survival curves were generated by the combination of 
PMRS and TMB stratification. 

Somatic copy number alterations (SCNAs) of 
TCGA-LUAD were evaluated by GISTIC2.0 in the 
GenePattern portal (https://cloud.genepattern.org/) 
(30). Significant amplification (Amp) and deletion 
(Del) regions along linearized chromosomes between 
different PMRS subgroups were highlighted based on 
the CNV frequency, and their locations were 
determined by the hg38 reference genome file. The 
SCNAs proportion in PMRS subgroups was 
calculated based on CNV values generated by 
GISTIC2.0, in which genes with negative CNV values 

(-1/-2) were categorized as “Loss” and genes with 
positive CNV values (+1/+2) were categorized as 
“Gain”, while genes with a CNV value of 0 were 
identified as “Neutral”.  

Mutations in DNA damage repair (DDR) 
pathways had been found to impede the repair of 
deleterious mutations, thereby increasing genomic 
instability and resulting in the platinum resistance of 
LUAD patients (31,32). Thus, any non-silent 
mutations in the DDR pathways, including nucleotide 
excision repair (NER), base excision repair (BER), 
homologous recombination repair (HRR), mismatch 
repair (MMR), Fanconi anemia (FA), non-homologous 
DNA end joining (NHEJ) and trans-lesion synthesis 
(TLS) were collected for somatic mutation analysis. 

Drug sensitivity assessment 
Drug sensitivity data of GDSC, CTRP and 

PRISM were obtained from the Cancer Dependency 
Map Project (DepMap, https://depmap.org/portal/) 
(33). Both CTRP and PRISM contain AUC values as a 
measure of drug sensitivity, while GDSC contains the 
values of half-maximal inhibitory concentration 
(IC50). Corresponding transcriptome profiles of cell 
lines were retrieved from the Cancer Cell Line 
Encyclopedia (CCLE, https://sites.broadinstitute 
.org/ccle/) (34). The IC50 value for each GDSC 
compounds was evaluated by R package oncoPredict 
(35). For CTRP and PRISM, compounds with more 
than 20% missing data were excluded before KNN 
imputation using the impute package, and the AUC 
value for each compound was predicted by the 
“calcPhenotype” function. Correlation coefficient 
between PMRS and estimated IC50 (or AUC) values 
indicated the potential response of LUAD patients to 
specific chemotherapeutic drugs. 

Immune infiltration analysis and 
immunotherapy response evaluation 

Tumor immune landscape was depicted by 
diverse immune infiltration algorithms, including 
single-sample gene set enrichment analysis (ssGSEA), 
TIMER, ESTIMATE, CIBERSORT, MCPcounter, xCell 
and EPIC (36–44). Infiltration levels of immune cells 
were compared between PMRS subgroups to identify 
those significantly distinct. Besides, tumor 
immune-cycle assessed by the Tracking Tumor 
Immunophenotype (TIP) website (http://biocc 
.hrbmu.edu.cn/TIP/) and the levels of 15 immune 
molecules were measured in PMRS subgroups (45,46). 
Additionally, immune characteristics, such as 
aneuploidy score, BCR richness, TCR richness, 
homologous recombination defects (HRD) score, 
non-silent mutation rate and number of segments 
were obtained from a pan-immune feature matrix 
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(47). 
The potential efficacy of immunotherapy was 

evaluated using the Tumor Immune Dysfunction and 
Exclusion (TIDE) score (http://tide.dfci.harvard 
.edu/) (48). Moreover, two cohorts (GSE91061 and 
GSE100797), consist of patients who received 
nivolumab treatment and those who underwent 
adoptive T cell therapy (ACT), respectively, were 
utilized to investigate the ability of PMRS in 
predicting potential immunotherapeutic responses 
(49,50). 

Single-cell RNA-sequencing analysis 
LUAD scRNA-seq dataset GSE131907 was 

included in this study to elucidate the characteristics 
of PMRS in the TME. The expression matrices of 11 
tumor samples were merged and further processed by 
the Seurat package (51). After removing low-quality 
cells, expression profiles were normalized by the 
“NormalizeData” algorithm and 2,000 highly variable 
genes were identified by the “FindVariableFeatures” 
function. Principal component analysis (PCA) was 
applied for dimension reduction based on these 
genes. Cells were optimally clustered by the 
“FindNeighbors” and “FindClusters” algorithms. 
Clusters presented by tSNE reduction were annotated 
by the SingleR package using the 
“BlueprintEncodeData” reference dataset (52,53). 
Features of PMRS in the TME were visualized by the 
“FeaturePlot” function. 

Subsequently, epithelial cells were isolated to 
identify malignant cells. R package infercnv was used 
to estimate CNVs from the scRNA-seq data (54). 
Macrophages and monocytes were considered 
non-malignant cells and their CNV patterns were 
used as a baseline. The cutoff value was set to 0.1 for 
10X Genomics. Additionally, the Monocle package was 
used to calculate a pseudo-time trajectory analysis for 
malignant epithelial cells to infer the differentiation 
processes (55). The different branches reflected the 
directions of cellular differentiation. 

Additionally, different PMRS patients were 
identified to investigate their immune characteristics 
from the viewpoint of single cell analysis. The cellular 
interactions from various subgroups were evaluated 
by the CellChat package (56). 

Metabolomics analysis 
The untargeted metabolomics profiles and 

expression matrix of LUAD cell lines were obtained 
from DepMap. Based on the transcriptome profile of 
the cell lines, they were divided into high-scoring or 
low-scoring groups for PMRS. Correlations between 
PMRS scores and metabolite concentrations or KEGG 
metabolic scores were described by the Mantel test, as 

implemented in R package ggcor. Metabolic 
distinctions in PMRS subgroups were further 
illustrated with radar charts. 

Cell culture and transfection 
The LUAD cell lines PC-9 and NCI-H1975 were 

procured from the Shanghai Institute of Biochemistry 
and Cell Biology (Shanghai, China), and cultured in 
RPMI-1640 (VivaCell, Shanghai, China) with 10% fetal 
bovine serum (FBS, VivaCell) at 37℃ in 5% CO2. The 
plasmid pcDNA3.1-CMV-LYPD3 and an empty vector 
were purchased from GeneChem (Shanghai, China). 
The small interfering RNAs (siRNAs) targeting 
LYPD3 were synthesized by Hanbio Biotechnology 
(Shanghai, China). Its sequences are listed in Table 
S3. Lipofectamine 3000 (L3000001; Thermo Fisher, 
MA, USA) was applied for the transfection, according 
to the manufacturer’s protocol. 

Western blot and quantitative real-time 
polymerase chain reaction (qPCR) 

Following the standard protocol, protein 
samples were extracted with RIPA lysis buffer (P0013; 
Beyotime Biotechnology) and their concentrations 
were determined by the bicinchoninic acid (BCA) 
protein assay kit (P0010; Beyotime Biotechnology). 
The protein lysates mixed with loading buffer were 
boiled at 95°C for 5 minutes to destroy their spatial 
structures. Subsequently, the denatured proteins were 
separated by 10% sodium dodecyl sulfate 
polyacrylamide (SDS-PAGE) gel electrophoresis, and 
further transferred onto polyvinylidene fluoride 
(PVDF) membranes. PVDF membranes were blocked 
with 5% skim milk at room temperature for 2 hours, 
and then incubated with specific primary antibodies 
overnight at 4℃. After washing with Tris-buffered 
saline and Tween-20 (TBST) for 3 times, the 
membranes were incubated with horseradish 
peroxidase (HRP)-linked antibody for 2 hours at room 
temperature. Following another three washing with 
TBST, the immunocomplexes were visualized with 
the enhanced chemiluminescent kit (BL520A; 
Biosharp, Anhui, China). Details of antibodies and 
their corresponding dilution ratios are provided in 
Table S4. 

Total cellular RNA was extracted using the 
RNAeasy™ kit (R0027; Beyotime Biotechnology), 
following the manufacturer’s protocol. Isolated RNA 
was quantified by NanoDrop2000 (Thermo Fisher) 
and reverse transcribed into cDNA with HiScript III 
RT SuperMix (R323-01; Vazyme, Jiangsu, China). The 
qPCR assay was performed on QuantStudio™ 7 Flex 
(Thermo Fisher) using ChamQ SYBR qPCR Master 
Mix (Q331-02; Vazyme). The expression levels of 
target genes were normalized to beta-actin, and then 
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calculated by the 2-ΔΔCt method. Primer sequences are 
listed in Table S5. 

Cell counting kit-8 (CCK8) assay 
For CCK8 assay, transfected PC-9 and 

NCI-H1975 cells (1×103/well) were seeded into 
96-well plates. CCK8 solution (C6005; NCM Biotech, 
Jiangsu, China) was added to each well and incubated 
for 1 hour at the appointed time. The absorbance at 
450 nm was detected by Multiskan FC microplate 
photometer (Thermo Fisher).  

Wound healing assay 
For wound healing experiment, transfected cells 

were added to 6-well plates and incubated with 
serum-free RPMI-1640. When the cell confluence was 
greater than 90%, the scratch was created with a 
sterile pipette tip. After washing with PBS, the wound 
gap at the same location was photographed at the 
appointed time using a microscope with a 50× 
magnification (Leica, Hessian, Gremany).  

Transwell assays 
For Transwell invasion and migration assays, 

transfected cells (2×104/well) in serum-free medium 
were seeded in the upper Transwell chambers 
(Corning, MA, USA) coated with or without Matrigel 
(Corning). RPMI-1640 with 10% FBS was added to the 
lower chamber as a chemoattractant. After incubation 
at 37℃ for 36~48 hours, cells migrating to the lower 
layer of the microfiltration membranes were fixed 
with 4% paraformaldehyde (BL539A; Biosharp) for 15 
minutes and stained with crystal violet (C0121; 
Beyotime Biotechnology) for 30 minutes. The number 
of cells was then counted under a 200× microscope 
(Leica). 

Statistical analysis 
All statistical analysis and representations were 

performed using R (version 4.2.3) and GraphPad 
Prism (version 8.0.1) software. Student's t-test was 
applied to analyze intergroup differences for 
variables with normal distribution. Pearson or 
Spearman correlation analysis was used to assess the 
correlation between two variables. All in vitro 
experiments were repeated at least three times. A 
two-tailed P value less than 0.05 was deemed 
statistically significant. 

Results 
Identification of pyrimidine metabolic 
subgroups in LUAD 

According to different metabolic scores, the 

C-indices of 4 independent LUAD cohorts (TCGA, 
GSE42127, GSE68465 and GSE72094) was calculated, 
indicating pyrimidine metabolism had the highest 
prognostic significance among all metabolic pathways 
(Figure 1A, Table S6). Consensus clustering was 
applied for unsupervised clustering and classification 
of the combined LUAD cohort, where all LUAD 
samples were divided into k (k = 2~9) clusters (Figure 
S1A, S1B). The CDF curve, PAC score and consensus 
matrix collectively showed that k = 2 was the optimal 
number (Figure 1B, Figure S1C-S1K). The tSNE result 
further revealed significant distinctions in pyrimidine 
metabolic characteristics between two clusters (C1 
and C2) (Figure 1C). GO/KEGG analysis suggested 
that pyrimidine metabolism-related DEGs were 
enriched in the cell cycle and DNA replication 
pathways (Figure 1D, 1E). Furthermore, 
Kaplan-Meier survival analysis illustrated that 
Cluster1 showed a superior advantage over Cluster2 
across all cohorts (Figure 1F-1I). 

Construction of PMRS 
The DEGs between pyrimidine metabolic 

subgroups were subjected to univariate Cox 
regression analysis, in which 72 prognostic DEGs 
were identified (Figure 2A, 2B). To investigate the 
heterogeneity of pyrimidine metabolic subgroups, an 
unsupervised consensus clustering was performed on 
these 72 DEGs. Similarly, LUAD patients were also 
differentiated into two gene clusters (Figure S2). 
Following this, an integrated framework of different 
machine learning and deep learning algorithms was 
applied to develop a signature associated with 
pyrimidine metabolism (Figure 2C). Intriguingly, the 
RSF model showed the best performance, with the 
highest C-index (0.733). As the number of trees 
increased, the error rate of this model gradually 
decreased. Noteworthy, LYPD3 had the highest 
importance coefficient among all factors, indicating its 
role in pyrimidine metabolism and meriting further 
investigation (Figure 2D, Table S7). 

Subsequently, risk scores were calculated based 
on the importance coefficient of the RSF model. The 
risk score related to pyrimidine metabolism was 
termed as PMRS, and all LUAD patients were divided 
into PMRS-high or -low groups according to the 
median cutoff. Normalized PMRS scores of different 
consensus clusters were shown in Figure 2E. Sankey 
diagram further illustrated the relationship among 
consensus cluster, PMRS stratification and survival 
status (Figure 2F). In terms of prognosis prediction, 
patients with higher PMRS tended to have worse 
prognoses (Figure 2G-2J). 
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Figure 1. Identification of pyrimidine metabolic subgroups in LUAD. (A) The top 20 metabolic pathways with the highest mean C-index across LUAD cohorts. (B) The CDF 
curve for the unsupervised clustering of LUAD patients, k = 2~9. (C) The tSNE plot based on the pyrimidine metabolic characteristics. (D-E) GO/KEGG analysis among the 
pyrimidine metabolism-related genes. (F-I) Kaplan-Meier survival analysis between the consensus clusters. 

 

Evaluation of the PMRS model 
The prognostic predictive capacity of PMRS was 

initially measured by time-ROC analysis and C-index. 
Time-ROC curves demonstrated the AUC values of 
0.975-0.994 in TCGA-LUAD, 0.673-0.896 in GSE42127, 
0.621-0.687 in GSE68465, 0.659-0.709 in GSE72094 and 
0.748-0.805 in meta-cohort (Figure 3A-3E). The 
C-index and 95% confidence interval was 0.962 

[0.955-0.968], 0.701 [0.620-0.782], 0.632 [0.594-0.670], 
0.640 [0.583-0.696] and 0.735 [0.580-0.891], respectively 
(Figure 3F). Furthermore, the time-independent 
indicators, iAUC and iBS, were also employed to 
evaluate these datasets, demonstrating the excellent 
predictive accuracy of PMRS (Figure 3G-3H). In 
addition, we estimated the C-index of common 
clinical factors, including age, gender, stage and 
mutation status (Figures 3I-3L). Notably, PMRS 
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exhibited better predictive efficacy than most clinical 
factors, indicating PMRS was an independent risk 
factor in all cohorts (Figure S3). To further validate 
the prognostic efficacy of PMRS, a total of 45 
previously published LUAD prognostic models were 
collected. These models were constructed based on a 
variety of biological features, including metabolism, 

immunity, methylation, ubiquitination, autophagy 
and novel programmed cell deaths (Table S8). As 
expected, PMRS performed better than the majority of 
the published models across all LUAD cohorts 
(Figure 3M-3Q). Taken together, PMRS was a 
valuable prognostic model for LUAD patients. 

 

 
Figure 2. Construction of PMRS. (A) The overlapping prognostic DEGs among all cohorts. (B) Expression of top 20 prognostic DEGs between consensus clusters. (C) An 
integrated framework of 12 different machine learning and deep learning algorithms was utilized, and then the C-index of each model was calculated across all cohorts. (D) The 
association between error rate and number of trees in the RSF model, and the top 10 most important genes. (E) Normalized PMRS scores of consensus clusters. (F) The 
relationship among consensus cluster, PMRS stratification and survival status. (G-J) Kaplan-Meier survival analysis between the PMRS subgroups. ***P < 0.001. 
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Figure 3. Evaluation of the PMRS model. (A-E) Time-dependent ROC curves of PMRS presented with the 1-5-year AUC in TCGA, GSE42127, GSE68465, GSE72094 and 
Meta-Cohort. (F-H) The iAUC, iBS and C-index of PMRS in TCGA, GSE42127, GSE68465, GSE72094 and Meta-Cohort. (I-L) The C-index of PMRS and common clinical factors 
in the TCGA, GSE42127, GSE68465 and GSE72094 cohorts. (M-Q) The C-index analysis between PMRS and 45 previously published LUAD prognostic models in TCGA, 
GSE42127, GSE68465, GSE72094 and Meta-Cohort. Data are presented as mean ± 95% confidence interval [CI]. *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 4. The genomic characteristics analysis between PMRS subgroups. (A) The expression profiles of pyrimidine metabolic enzymes involved in de novo synthesis, salvage and 
degradation pathways between PMRS subgroups. (B) The correlation between PMRS and non-synonymous and synonymous mutations. (C-F) The PMRS-high subgroup showed 
a higher mutation and co-mutation frequency, according to the maftools analysis. (G-H) TMB analysis was conducted for PMRS subgroups, and Kaplan-Meier survival analysis was 
performed based on the combination of PMRS and TMB stratification. (I-J) The CNV profiles of PMRS subgroups were analyzed using GISTIC2.0. (K) PMRS-high patients 
exhibited a higher burden of CNVs in terms of “Gain” or “Loss”. (L) Mutation rates of seven DDR pathways (NER, HRR, BER, MMR, FA, NHEJ and TLS) were summarized across 
different PMRS subgroups. (M) Patients with higher PMRS scores had more mutations in the DDR pathways. (N) An oncoplot was utilized to display the 10 most frequently DDR 
mutations in different PMRS subgroups. *P < 0.05; **P < 0.01; ***P < 0.001. 
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PMRS elevates the genomic instability 
The expression of pyrimidine metabolic enzymes 

involved in de novo synthesis, salvage and 
degradation pathways were compared between 
different PMRS subgroups. The results showed that 
the majority of key enzymes in de novo synthesis and 
salvage pathways were significantly upregulated in 
the PMRS-high subgroup, whereas the key enzymes 
related to pyrimidine degradation exhibited the 
decreased expression (Figure 4A). These findings 
suggested that patients with higher PMRS scores 
exhibited more active pyrimidine synthesis in tumors, 
both in de novo synthesis and salvage pathways. Given 
that pyrimidine was an essential ingredient for DNA 
synthesis, any abnormalities in the metabolism may 
affect the DNA replication process adversely, 
potentially leading to the genomic alterations like 
somatic mutation and SCNAs (57). Thus, the genomic 
characterization variants were investigated between 
PMRS subgroups. The correlation between PMRS 
scores and non-synonymous (r = 0.198, P < 0.001) and 
synonymous mutations (r = 0.150, P < 0.001) were 
revealed in Figure 4B. The results of maftools analysis 
indicated that there was a higher frequency of 
mutation and co-mutation in patients with higher 
PMRS scores (Figure 4C-4F). Coincidentally, TMB 
analysis also performed the similar result (Figure 4G). 
Survival analysis further illustrated that those 
patients with higher PMRS scores and lower TMB 
levels exhibited worse outcomes (Figure 4H). The 
CNV profiles of PMRS subgroups were analyzed 
using GISTIC2.0, which revealed that PMRS-high 
patients had a higher burden of CNVs (Figure 4I-4K). 
Furthermore, the landscape of DDR pathways 
between PMRS subgroups was depicted in Figure 4L. 
Patients with higher PMRS scores exhibited more 
mutations in the DDR pathways (Figure 4L, 4M). An 
oncoplot was utilized to display the 10 most 
frequently DDR mutations between different PMRS 
subgroups (Figure 4N). Among them, TP53, 
SMARCA4, ARID1A, POLE, ARID2A are involved in 
the NER pathway, HUWE1, PLOQ in BER, PRKDC in 
NHEJ, SETD2 in MMR, and FANCM in FA. 

Drug sensitivity assessment for LUAD patients 
with high PMRS scores 

Potential druggable targets and related agents 
might possess therapeutic values for LUAD patients 
with high PMRS scores. To identify the sensitive 
drugs for PMRS-high patients, 1,035 compounds from 
3 drug response databases (GDSC, CTRP and PRISM) 
were screened (Figure 5A). Firstly, IC50 values of 198 
compounds from GDSC were estimated in all LUAD 
patients, and correlation analysis was performed on 

PMRS and IC50 values. The results showed that 
AZD6738, docetaxel, erlotinib, gefitinib, lapatinib, 
MK-1775, paclitaxel, UMI-77 and WIKI4 displayed a 
very strong negative correlation with PMRS scores 
(Figure 5B). Their signaling pathways and therapeutic 
targets were presented in Figure 5C. For both CTRP 
and PRISM, 5 drugs with the most negative 
correlation coefficients and expressions were 
displayed in lollipop plots and boxplots (CTRP: 
selumetinib, BRD-K35604418, KX2-391, nakiterpiosin, 
abitrexate; PRISM: anisomycin, midostaurin, 
asymmetrical-dimethylarginine (ADMA), selinexor, 
HMN-214) (Figure 5D-5G). Additionally, the 
relationship between PMRS scores and the 
chemosensitivity of above mentioned GDSC drugs 
was analyzed in LUAD cell lines (Figure 5H, 5I). 
Intriguingly, AZD6738 and MK-1775 exhibited 
divergent sensitivity in LUAD cell lines as well. Their 
correlations with PMRS scores were in accordance 
with those observed in the clinical cohorts. 

PMRS indicates immunosuppression and 
immunotherapy resistance 

We depicted the immune landscape of LUAD 
patients to evaluate the potential role of PMRS in 
guiding immunotherapy. In most algorithms, 
significant differences were observed in the 
infiltration abundance of various immune cells 
(Figure 6A-6B, Figure S4). Moreover, PMRS-high 
patients suppressed multiple steps in the 
tumor-immune cycle, including tumor antigen 
presentation (Step 2), priming and activation (Step 3), 
trafficking of immune cells to tumors (Step 4) and 
immune cell infiltration (Step 5), to maintain 
immunosuppression (Figure 6C). Meanwhile, 
immune checkpoints such as PD-L1 and LAG3, as 
well as immune inhibitory molecules like IL-1A and 
VEGFA, were overexpressed in patients with higher 
PMRS scores (Figure 6D). Additionally, several 
immune characteristics, including aneuploidy score, 
HRD score, BCR richness, TCR richness, non-silent 
mutation rate and segment number were compared 
between the subtypes, revealing the tumor 
immunosuppressive microenvironment (TIME) of 
PMRS-high patients (Figure 6E-6J). 

Subsequently, the potential of PMRS in 
predicting immunotherapy responses was assessed 
by TIDE scores. The results suggested that PMRS-high 
patients owned higher TIDE scores, indicating they 
were less sensitivity to immunotherapy and had 
worse prognoses (Figure 6K-6N). In immunotherapy 
cohorts (GSE91061 and GSE100797) received diverse 
interventions, responders had lower PMRS scores 
than non-responders, and the AUC values for PMRS 
in predicting immunotherapy responses were 0.66 
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and 0.74, respectively, indicating a potential 
correlation between elevated PMRS scores and an 
adverse response to immunotherapy (Figure 6O-6R). 

PMRS promotes malignant progression of 
epithelial cells with enhanced pyrimidine 
metabolism and leads to TIME, from a 
single-cell perspective 

LUAD scRNA-seq dataset (GSE131907) was 
included in the analysis to elucidate the role of PMRS 
in the TME. 9 distinct cell subtypes were identified, 
including T cells, B cells, macrophages, monocytes, 
natural killer (NK) cells, epithelial cells, endothelial 
cells, fibroblasts and hematopoietic stem cells (HSC) 
(Figure 7A, Figure S5A-S5B). Their PMRS scores 

were subsequently calculated across these subtypes. 
The findings indicated that immune cells such as T 
and B cells typically had higher PMRS scores, while 
the PMRS scores of epithelial cells exhibited an 
obvious gradient distribution (Figure 7B, Figure 
S5C). Accordingly, the malignant epithelial cells were 
separated for subsequent pseudo-time trajectory 
analysis (Figure S5D). The results revealed that the 
malignant epithelial cells with higher PMRS scores 
appeared later than those with lower scores, 
suggesting that enhanced pyrimidine metabolism 
might be an acquired hallmark during the malignant 
differentiation of LUAD cells (Figure 7C, 7D). 

 

 
Figure 5. Drug sensitivity assessment for LUAD patients with high PMRS scores. (A) A total of 1,035 compounds from 3 drug response databases (GDSC, CTRP and PRISM) 
were screened to identify potential druggable targets. (B) Correlation between PMRS and estimated IC50 values of GDSC drugs. (C) The signaling pathways and therapeutic 
targets of the candidate compounds from GDSC. (D&F) Correlation between PMRS and estimated AUC values of 5 drugs with the most negative correlation coefficients from 
CTRP and PRISM, respectively. (E&G) Estimated AUC values of 5 compounds with the most negative correlation coefficients from CTRP and PRISM, respectively. (H-I) 
Correlation between PMRS and estimated IC50 values for AZD6738 and MK-1775 in the LUAD cell lines. **P < 0.01; ***P < 0.001.  
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Figure 6. PMRS indicates immunosuppression and immunotherapy resistance. (A-B) The relationship between PMRS and immune infiltrations across all cohorts, according to 
the ssGSEA algorithm. (C) Differences in the tumor-immune cycle between PMRS subgroups. (D) The expression profiles of immune-related molecules in different PMRS 
subgroups. (E-J) The immune characteristics, including aneuploidy score, HRD score, BCR richness, TCR richness, non-silent mutation rate and segment number were 
compared between PMRS subgroups. (K-L) Correlation between PMRS scores and TIDE scores across all cohorts. (O-R) The distribution of PMRS scores between 
immunotherapy responders and non-responders in GSE91061 and GSE100797 cohorts. *P < 0.05; **P < 0.01; ***P < 0.001.  
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Figure 7. Single-cell analysis of PMRS. (A) The tSNE plot displaying the distribution of 9 cell subtypes. (B) Visualization of PMRS scores. (C-D) Pseudotime trajectory analysis 
colored by pseudotime and PMRS scores. (E) A correlation heatmap illustrated the relationship between PMRS and metabolite concentration or KEGG metabolic scores. (F) 
The radar chart about metabolite concentrations or KEGG metabolic scores between PMRS subgroups. (G) Differences in the hallmark gene sets between PMRS subgroups 
based on GSVA. (H) Enrichment of glycolysis in the PMRS-high subgroup. (I-J) The cellular interactions of T cells and macrophages with other cells in different PMRS subgroups. 
(K-L) The cellular interactions mediated by MHC-II and FN1 ligand receptors.  
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Hence, we performed metabolomics analysis 
between PMRS subgroups in LUAD cell lines. The 
results indicated an intimate correlation between 
PMRS and pyrimidine metabolic scores, as well as 
thymidine and uridine concentrations (Figure 7E). 
The lower the PMRS scores patients had, the more 
uridine and thymidine accumulated in the tumor 
(Figure 7F). These findings indicated that LUAD 
patients with high PMRS scores might facilitate the 
uptake and utilization of thymidine and uridine by 
activating the salvage synthesis and inhibiting 
pyrimidine degradation. In addition, the hallmarks of 
PMRS subgroups were investigated, indicating that 
multiple carcinogenic pathways were also enriched in 
the PMRS-high subgroup, such as glycolysis (Figure 
7G, 7H).  

Furthermore, the immunosuppressive status of 
PMRS patients was refined from the perspective of 
single-cell analysis. Cellular interactions of T cells and 
macrophages with other cells exhibited an attenuation 
of T cell communication and an enhancement of 
macrophage communication, as pyrimidine 
metabolism increased (Figure 7I, 7J). Ligand-receptor 
comparison analysis revealed the phenomenon of 
impaired antigen presentation mediated by major 
histocompatibility complex (MHC) II molecules, as 
well as increased secretion of inhibitory immune 
molecules like FN1 in patients with higher PMRS 
(Figure 7K, 7L). 

Experimental validation of LYPD3 in LUAD 
cell lines 

The biological function of LYPD3 was 
experimentally validated in LUAD cell lines, due to its 
highest important coefficient in the PMRS model. Two 
LUAD cell lines PC-9 and NCI-H1975, belonging to 
PMRS-high and -low subgroups, respectively, were 
selected for further experiments. RT-qPCR and 
Western blot demonstrated that siRNA and plasmid 
successfully regulated LYPD3 expression in PC-9 and 
NCI-H1975, both at mRNA and protein levels (Figure 
8A-8D). si-LYPD3 #2 and #3 were chosen for 
subsequent functional experiments due to their 
remarkable knockdown efficiency. The CCK8 assay 
demonstrated that LYPD3 overexpression promoted 
the proliferation of LUAD cell lines, while LYPD3 
knockdown impeded tumor growth (Figure 8E, 8F). 
Moreover, the wound healing and Transwell assays 
elucidated that the overexpression of LYPD3 
promoted the migration and invasion of LUAD cell 
lines, whereas LYPD3 knockdown exerted the 
opposite effect (Figure 8G-8L). These findings 
confirmed the pivotal role of LYPD3 in 
carcinogenesis, as predicted by bioinformatics 
analysis. 

Discussion 
Recently, the phenomenon of tumor metabolic 

reprogramming has emerged as a prominent area of 
research. Through altering their metabolic patterns, 
tumor cells can not only obtain additional energy to 
sustain survival, but participate in the epigenetic 
modification or confer immunosuppressive properties 
to the TME via metabolic by-products (58–60). In this 
study, we constructed the PMRS model based on 
pyrimidine metabolism-related genes and evaluated 
its prognostic value. Our PMRS model worked 
independently of the existing clinical indicators, and 
exhibits superior performance in predicting prognosis 
as assessed by the C-index. Univariate Cox regression 
also reveals that, apart from PMRS, no other 
signatures maintain prognostic significance across all 
cohorts. In addition, we performed corresponding 
multi-omics analysis, which not only deepened our 
comprehension of genomic and metabolic landscapes 
of LUAD patients, but also promoted the 
development of precision medicine strategies. 

Dysregulated pyrimidine metabolism has been 
reported to result in the potential for DNA damage 
and mutational bias (57). The PMRS score indicated 
that there was a notable enhancement in both de novo 
pyrimidine synthesis and salvage pathways, while the 
activity of pyrimidine degradation was relatively 
diminished. Moreover, patients with higher PMRS 
scores exhibited a higher frequency of somatic 
mutations, SCNAs, as well as a higher levels of TMB. 
In KRAS/LKB1 co-mutant lung cancer cells, CPS1 
depletion led to the DNA damage with an imbalanced 
purine/pyrimidine ratio (61). Meanwhile, CAD was 
involved in the clonal evolution in hepatocellular 
carcinoma, along with the accumulation of SCNAs 
(62). Subsequently, the mutation landscape of DDR 
pathways were analyzed (31,63). It indicated that 
PMRS-high patients had more DDR mutations. 
Although recent studies suggest that DDR mutations 
may enhance the immunotherapy efficacy by 
increasing the neoantigen load, the rapid 
accumulation of somatic mutations enabled by the 
aberrant DDR signaling is also non-negligible. This 
process significantly promotes tumor heterogeneity 
and clonal diversification (64,65). This might partially 
explain why PMRS-high patients have higher TMB 
but have worse survival compared to those 
PMRS-low patients. 

Drug sensitivity analysis of LUAD patients 
based on PMRS stratification revealed that patients 
with higher PMRS were more likely to benefit from 
AZD6738, docetaxel, erlotinib, gefitinib, lapatinib, 
MK-1775, paclitaxel, UMI-77 and WIKI4. AZD6738 is 
an ATR kinase inhibitor with a pyrimidine ring 
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structure that targets DDR pathways. Several clinical 
trials have reported its potential as a monotherapy or 
in combination with chemotherapy, PARP inhibitors 
or immunotherapy (66,67). MK-1775, a novel WEE1 

kinase inhibitor, were reported to enhance current 
chemotherapy for its functions during cell cycle and 
in DNA damage repair (68,69). 

 

 
Figure 8. Experimental validation of LYPD3 in LUAD cell lines. (A-D) RT-qPCR and Western blot were applied to assess the expression of LYPD3 in PC-9 and NCI-H1975. 
(E-F) CCK8 assay was used to determine the proliferation of PC-9 and NCI-H1975 transfected with si-LYPD3 or pcDNA3.1-CMV-LYPD3. (G-H) Wound-healing assay was 
utilized to analyze the migratory activity of PC-9 and NCI-H1975 with the overexpression or knockdown of LYPD3. (I-J) Transwell migration assay was used to evaluate the 
migration of transfected A549 and PC9 cells. (K-L) Transwell invasion assay was used to detect invasion after transfection with si-LYPD3 or pcDNA3.1- CMV-LYPD3. Data are 
presented as mean ± 95% confidence interval [CI]. **P < 0.01; ***P < 0.001. 
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Unlike purine metabolism, directly inhibiting 
peripheral immune cells through its metabolite 
adenosine, underlying mechanisms of pyrimidine 
metabolism in the TIME remains poorly understood 
(70). Our immune infiltration analysis suggested that 
the enrichment of pyrimidine metabolism increased 
macrophage infiltration and inhibited the infiltration 
of T cells, as well as the antigen presentation process. 
These findings are supported by similar results 
observed in recent studies. For example, CDA 
upregulation promoted the accumulation of 
extracellular uridine diphosphate (UDP), leading to 
the immunosuppression via P2Y6 receptors on 
tumor-associated macrophages (TAMs) (71). While 
inhibiting DHODH in in de novo synthesis, the antigen 
presentation process was potentiated in a pyrimidine 
depletion-dependent manner (72). Similarly, the 
enrichment of pyrimidine metabolism in immune 
cells also confers therapeutic resistance to cancer cells. 
Pancreatic ductal adenocarcinoma programmed 
TAMs not only facilitated their own uptake of 
gemcitabine by upregulating CDA expression, but 
also competitively inhibited the uptake of 
gemcitabine by tumor cells through deoxycytidine 
secretion (73,74). Hence, it is reasonable to conclude 
that increased pyrimidine metabolism leads to 
immune suppression and thus reduces 
immunotherapeutic efficacy, as predicted by TIDE 
and immunotherapy cohorts.  

Single-cell sequencing and pseudo-time 
trajectory analysis revealed that PMRS was 
significantly enriched in the advanced stage of LUAD 
differentiation, indicating enhanced pyrimidine 
metabolism might be an acquired hallmark during the 
malignant differentiation process. Metabolomic 
analysis of LUAD cell lines indicated an inverse 
correlation between PMRS and pyrimidine metabolite 
abundance, implying the salvage pathway was 
enriched during LUAD progression. Moreover, our 
findings also revealed the metabolic crosstalk 
between pyrimidine metabolism and glucose, as well 
as its clue to immunosuppression.  

Lastly, LYPD3 exhibited its significant 
correlation with malignant phenotypes in both 
PMRS-high and -low LUAD cell lines. Previous 
studies have reported that LYPD3 is associated with a 
poor prognosis in LUAD patients (75). In addition, 
blocking the downstream pathways activated by 
LYPD3 and its ligand AGR2 facilitated the progress of 
endocrine therapy-resistant breast cancer and 
pancreatic carcinoma (76,77). Other research also 
mentioned that LYPD3 was involved in the processes 
of glycolysis and TIME formation in melanoma (78). 
Our study here revealed the potential link between 
LYPD3 and pyrimidine metabolism for the first time, 

suggesting LYPD3 might be a promising biomarker 
and/or therapeutic target for individualized precision 
medicine of LUAD patients. 

Despite the excellent accuracy and robustness of 
the PMRS model, this study still has several 
limitations. First, our study is based on the 
retrospective clinical cohorts from public databases, 
lacking the validation from prospective clinical trials. 
In addition, in vitro experiments are limited in the 
preliminary function of LYPD3. Nevertheless, we are 
in the process of further validation and investigation. 
These limitations will be addressed in future research. 

Conclusion 
In summary, our study constructed a prognostic 

signature of pyrimidine metabolic characteristics for 
LUAD patients, and systematically revealed the role 
of PMRS in prognosis, genomic stability, as well as 
chemotherapy and immunotherapy resistance 
through multi-omics and single-cell analysis. More 
clinical and experimental studies are expected to 
validate these findings in the future. 
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