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Abstract 

Fucosyltransferase 1 encodes a Golgi membrane protein involved in H-antigen precursor production and 
plays a critical role in tumor-associated glycosylation and angiogenesis. While FUT1 is known to enhance 
tumor stemness, adhesion, migration, and drug resistance in specific cancers, its role across diverse 
cancer types and its association with clinical prognosis and molecular features remain unclear. In this 
study, FUT1 expression was systematically analyzed across 33 cancer types using data from multiple 
public databases, including CCLE, TCGA, and GTEx. FUT1 expression was found to vary across cancers, 
correlating with poor prognosis in ACC, BLCA, and COAD and demonstrating high diagnostic accuracy 
in READ and COAD. Genomic analyses revealed frequent FUT1 amplifications and associations with 
genomic instability, while functional analyses linked FUT1 to proliferation, metastasis, and EMT pathways. 
FUT1 expression was also associated with immune microenvironment features, such as immune cell 
infiltration and stromal scores, and correlated with TMB and MSI. Drug sensitivity analysis indicated that 
FUT1 expression was linked to lower sensitivity to most drugs but increased sensitivity to tyrosine kinase 
inhibitors. Experimental validation confirmed that FUT1 knockdown inhibited proliferation, invasion, and 
migration in bladder, breast, and colorectal cancer cell lines, suggesting a potential role in cancer 
progression, though further evidence is required to fully establish its oncogenic involvement. These 
findings highlight FUT1 as a potential prognostic biomarker and provide insights into its biological 
functions and relevance for developing targeted therapeutic strategies across cancers. 
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Introduction 
Cancer remains a leading cause of death 

worldwide, posing significant challenges to public 
health and quality of life[1]. Recent advances in 
immunotherapy, particularly immune checkpoint 
blockade, have transformed cancer treatment, offering 
improved survival outcomes for many patients[2]. 
Meanwhile, the development of multi-omics 
databases, such as The Cancer Genome Atlas, enables 
comprehensive pan-cancer analyses, facilitating the 
discovery of novel therapeutic targets and biomarkers 
that link molecular mechanisms to cancer progression 

and patient prognosis. 
Fucosyltransferases are key enzymes in 

glycosylation, a critical post-translational 
modification involved in cell adhesion, migration, and 
immune regulatio[3–5]. Among the 11 FUT genes 
identified in humans, Fucosyltransferase 3 and 
Fucosyltransferase 6 promote cancer cell adhesion 
and migration via sialyl Lewis antigens and 
TGF-β-mediated epithelial-mesenchymal transition 
[6], while Fucosyltransferase 4 (FUT4) is implicated in 
immune regulation and poor prognosis in lung 
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adenocarcinoma patients through its influence on 
PD-1 expression[7]. Fucosyltransferase 1 (FUT1), a 
crucial member of the fucosyltransferase family, is 
encoded by the H gene in hematopoietic tissues[8,9]. 
The protein encoded by FUT1 primarily functions in 
the Golgi apparatus. As a type II transmembrane 
protein, it facilitates glycosylation reactions both 
inside and outside the cell, transferring 
monosaccharides to proteins and lipids[10]. Beyond 
its role in glycosylation, FUT1 is essential for T cell 
development and regulating inflammatory 
responses[11]. During tumorigenesis, FUT1 promotes 
tumor stemness, adhesion, migration, and drug 
resistance through the AKT/mTOR/4EBP1 signaling 
pathway[12]. Moreover, FUT1 is involved in the 
proliferation of breast cancer cells and the 
development of paclitaxel resistance in ovarian cancer 
cells[13,14]. These findings underscore the critical role 
of FUT1 in tumor progression and its potential as a 
therapeutic target. However, its widespread function 
and differential roles across various cancers have yet 
to be fully explored. 

Despite these insights, most studies on FUT1 
have focused on single cancer types, leaving its 
broader role across the pan-cancer spectrum and its 
potential connection to immune-related features 
underexplored. To address this gap, this study 
provides a comprehensive analysis of FUT1 
expression across 33 cancer types using data from 
TCGA, GTEx, CCLE, and other multi-omics 
databases. We examined the associations between 
FUT1 expression and DNA methylation, immune cell 
infiltration, tumor mutational burden (TMB), 
microsatellite instability (MSI), and patient prognosis. 
Enrichment analyses were conducted to further 
explore its biological functions, and experimental 
validation was performed in three cancer cell lines. 

Our findings demonstrate that FUT1 serves as a 
predictive biomarker in multiple malignancies, 
strongly correlating with tumor progression and 
patient prognosis. While FUT1 also exhibits 
associations with immune-related features such as 
TMB, MSI, and tumor-infiltrating immune cells, these 
results suggest its role in immune modulation may be 
secondary to its primary functions in tumor 
progression. This study highlights FUT1 as a 
promising pan-cancer therapeutic target and 
prognostic biomarker, offering valuable insights into 
cancer treatment strategies. 

Methods and Materials 
Pan-cancer data collection and processing 

The expression of FUT1 across different cancer 
cell lines was analyzed using the Cancer Cell Line 

Encyclopedia (CCLE, https://sites.broadinstitute 
.org/ccle)[15]. Pan-cancer mRNA expression profiles, 
clinical information, survival data, somatic mutation 
data, CNV data, and DNA methylation data 
(HumanMethylation450K) were obtained from the 
UCSC Xena platform (http://xena.ucsc.edu/) using 
data from The Cancer Genome Atlas (TCGA, 
https://www.cancer.gov/tcga) and Genotype-Tissue 
Expression (GTEx, https://commonfund.nih.gov/ 
GTEx) database. Single-cell expression profiles of 
FUT1 in various cell types were analyzed using the 
TISCH database (https://tisch.comp-genomics 
.org)[16,17]. Transcriptome data were normalized 
using the log2(TPM + 1) transformation method. 
Detailed information on the nomenclature and 
abbreviations of the 33 cancer types included in this 
study is provided in Table S1. 

Survival analysis and diagnostic model 
The relationship between FUT1 mRNA 

expression levels and prognosis was assessed for 
overall survival (OS), disease-specific survival (DSS), 
disease-free interval (DFI), and progression-free 
interval (PFI). Kaplan-Meier analysis was performed 
using the ‘survival’ R package, with optimal cutoff 
values determined by ‘survminer’. To prevent bias, 
the ratio of high- to low-expression groups was set to 
≥0.2, and significance was evaluated using log-rank 
tests. Cox proportional hazards modeling was used to 
calculate hazard ratios (HR) and 95% confidence 
intervals (CI) for each cancer type. Results were 
visualized with ‘ComplexHeatmap’.Diagnostic 
performance was evaluated with ROC analysis using 
the ‘pROC’ R package, including AUC calculations, 
95% CIs, and smoothed ROC curves. 

Genomic alterations and genomic instability 
analysis 

The mutation frequency of FUT1 across cancers 
was analyzed using the cBioPortal database 
(https://www.cbioportal.org/), with a differential 
mutation frequency plot generated. The Cancer Type 
Summary module in cBioPortal was employed to 
evaluate the frequencies of three genomic alteration 
types—mutations, amplifications, and deep 
deletions—across multiple cancer type[18–20]. The 
Kruskal-Wallis rank-sum test was used to assess 
statistical differences in FUT1 expression among 
different CNV groups across cancers. Somatic 
mutation data from the TCGA database were 
analyzed using the ‘maftools’ R package. 

The correlation between FUT1 expression and 
genomic instability indicators—including 
Aneuploidy, Homologous Recombination Defects, 
Tumor Ploidy, SNV Neoantigens, Nonsilent Mutation 
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Rate, and Silent Mutation Rate—was calculated using 
the cor.test function[21]. Correlation coefficients were 
visualized using radar charts generated with the 
‘fmsb’ R package. 

Correlation analysis between mRNA 
expression levels, DNA methylation, and RNA 
modification patterns 

Pan-cancer DNA methylation data were 
obtained, and probe annotations were performed 
using the ‘ChAMP’ R package. Spearman correlations 
between FUT1 expression and DNA methylation beta 
values at various genomic loci were calculated using 
the cor.test function. RNA modification patterns, 
along with associated genes and functional 
annotations, were retrieved from the RM2Target 
database (http://rm2target.canceromics.org/#/ 
home), which is a comprehensive resource for targets 
of RNA modification writers, erasers, and readers 
(WERs)[22]. The expression levels of these genes were 
extracted and analyzed to assess their correlation with 
FUT1 expression. 

mRNA expression analysis in carcinogenic 
pathways 

The CancerSEA database (http://biocc.hrbmu 
.edu.cn/CancerSEA/home.jsp) was used to obtain 14 
functional state-related gene sets across different 
cancer types. Hallmark gene sets 
(h.all.v7.2.symbols.gmt) were retrieved from the 
Msigdb database (http://software.broadinstitute 
.org/gsea/msigdb). GSVA analysis was performed 
using the ‘GSVA’ package in R, and enrichment scores 
for each gene set in each sample were calculated to 
create an enrichment score matrix. The correlation 
between FUT1 mRNA expression levels and GSVA 
scores of various carcinogenic pathways was then 
assessed. 

Protein-protein interaction network 
construction 

The FUT1 protein interaction network was 
constructed using STRING (https://string-preview 
.org/) and GeneMANIA (http://genemania 
.org/)[23,24]. Cytoscape was used for weight 
calculation and network visualization. Furthermore, 
the ‘gprofile2’ R package was applied to perform GO 
and KEGG functional enrichment analysis of the 
interacting proteins. 

Immune microenvironment correlation 
analysis 

The ‘TCGAplot’ R package was used to analyze 
the correlation between FUT1 mRNA expression 
levels and immune-related genes across various 

cancers, including immune checkpoint genes, 
chemokines, chemokine receptors, immune 
stimulators, and immune inhibitors. The correlation 
between mRNA expression levels and immune 
infiltration was also assessed, including immune cell 
proportions and immune scores. Additionally, the 
relationship between mRNA expression levels and 
TMB and MSI was explored. 

Drug sensitivity prediction 
The TIDE database (http://tide.dfci.harvard 

.edu/download/) was used to obtain 
immunotherapy trial studies[25,26]. FUT1 expression 
levels were compared between responders (R) and 
non-responders (NR) to evaluate its predictive value 
for immunotherapy response. The statistical 
significance of differences was calculated using the 
Wilcoxon rank-sum test, implemented in R with the 
wilcox.test function. 

For pan-cancer analysis, the Connectivity Map 
(CMap) database (https://portals.broadinstitute.org/ 
cmap/) was utilized. The XSum (eXtreme Sum) 
optimal feature-matching method was applied to 
compare gene-related features with CMap gene 
signatures, generating similarity scores for 1,288 
compounds. These scores were used to evaluate the 
potential functional effects of compounds on FUT1. 

Cell culture and transfection 
UMUC3, MDA-MB-361 and HCT116 were 

purchased from the Chinese Academy of Sciences 
Committee Type Culture Collection Cell Bank 
(Shanghai, China). Cells were grown in DMEM 
(Pricella, cat#PM150210) and Leibovitz’s L-15 
(Pricella, cat#PM151010), 10% certified 
heat-inactivated FBS (Pricella, cat#164210-50), 100 
U/mL penicillin-streptomycin, and 5% carbon 
dioxide in an incubator at 37°C. GenePharma 
obtained siRNA and negative controls (Suzhou, 
China). FUT1 was targeted by siRNA with the 
sequence 5′-GUGGGCAUUAAUGCAGACUTT-3′, 
while siRNA-control had the sequence 
5′-UUCUCCGAACGUGUCACGUTT-3′. The 
siRNA-FUT1 and siRNA control gene were 
cotransfected with the above three cells using 
liposome 2000 (Invitgen, cat#11668030). 

Quantitative real-time PCR (qRT-PCR) 
After total RNA was extracted from cells using 

the Steadypure Quick RNA Extraction Kit (Accurate 
Biology, cat#AG21023), RNA purity was assessed 
spectrophotometrically (A260/A280 > 1.8) to ensure 
RNA quality for subsequent experiments. 
Subsequently, 1 μg of total RNA was 
reverse-transcribed into cDNA using the HiScript II Q 
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RT SuperMix (Vazyme, cat# R223). qRT-PCR was 
performed with the SYBR Green Master Mix 
(Vazyme, cat# Q711). Relative RNA expression levels 
were calculated using the 2-△△Ct method, normalized 
to GAPDH as the internal control. The primer 
sequences used in this study were as follows: FUT1 
(forward: 5’-CTTCCTGCTAGTCTGTGTCCT-3’, 
reverse: 5’-ATTGGGGTAGACAGTCCAGGT-3’) and 
GAPDH (forward: 5’-GTCAGCCGCATCTTCTTT-3’, 
reverse: 5’-CGCCCAATACGACCAAAT-3’). 

CCK-8 assay 
UMUC3, MDA-MB-361, and HCT116 cells (2,500 

cells/well) were seeded in 96-well plates in 100 μL of 
medium and cultured for the designated time periods. 
After adding 10 μL of the CCK-8 reagent (Biosharp 
Life Sciences) to each well, the plates were incubated 
for 2 hours. The optical density (OD) was measured at 
450 nm using a microplate reader. 

Colony formation assay 
UMUC3, MDA-MB-361, and HCT116 cells were 

seeded at a density of 1,000 cells per well in 6-well 
plates and incubated for 2–3 weeks to allow colony 
formation. The colonies were then fixed with 
paraformaldehyde, stained with crystal violet, and 
imaged. Colonies containing at least 50 cells were 
counted under a microscope. 

Transwell matrigel invasion assay 
The Transwell chambers were pre-coated with 

Matrigel to assess cell invasion. Matrigel was diluted 
with serum-free cell culture medium, mixed 
thoroughly, and 50 μL of the mixture was added to 
each chamber insert. The inserts were incubated in a 
CO₂ incubator for 2 hours, followed by the addition of 
100 μL serum-free medium to each insert, which was 
then placed in the incubator for 30 minutes. After 24 
hours of siRNA transfection, the three cell lines were 
washed with PBS and serum-free DMEM. The lower 
chamber was filled with 600 μL DMEM containing 
20% FBS as a chemoattractant, and 200 μL of 
serum-free cell suspension was added to the upper 
chamber. The cells were incubated for 24 hours in a 
CO₂ incubator, after which the non-invading cells on 
the upper surface of the insert membrane were 
removed. The cells that had invaded to the lower 
surface of the Transwell membrane were fixed, 
stained with 0.1% crystal violet, and washed. The 
stained cells were counted under a microscope from 
six randomly selected fields to determine the number 
of positively stained invasive cells. 

Wound-healing assay 
UMUC3, MDA-MB-361, and HCT116 cells were 

cultured in 6-well plates until they formed a 100% 
confluent monolayer. A sterile 10 μL pipette tip was 
used to create a straight scratch in the cell monolayer. 
The medium was then replaced with serum-free 
medium after washing to remove debris. Wound 
closure was monitored by capturing images at 0 and 
48 hours. 

Statistical analysis 
R (v4.2.2) and GraphPad Prism (v.9.2) were 

utilized for statistical data calculations. The Student’s 
t-test was utilized for difference analysis when 
comparing the two groups in the experimental setup. 
In the CCK8 experiment, a two-way ANOVA was 
used to compare differences. For all statistical studies, 
a two-tailed p < 0.05 was considered statistically 
(*p<0.05, **p < 0.01, ***p < 0.001, and **** p < 0.0001). 

Results 
Pan-cancer analysis of FUT1 expression in cells 
and tissues 

RNA expression profiles of 1,019 cancer cell lines 
were retrieved from the CCLE database to analyze 
FUT1 expression across cancers. The highest levels of 
FUT1 expression were observed in SCLC, while 
certain gastrointestinal cancers, including STAD, 
COAD_READ, and ESCA, also exhibited relatively 
high expression (Figure 1A). 

Next, we analyzed FUT1 mRNA expression 
across various human cancer types using TCGA data 
and compared it to corresponding normal tissues 
from the GTEx database. The results showed that 
FUT1 mRNA expression was significantly higher in 
many cancers compared to their normal counterparts. 
Notably, KICH exhibited the highest FUT1 
expression, with a median expression of 6.09 TPM, 
representing a 6.16-fold increase compared to benign 
kidney tissue. In contrast, in lung cancers, including 
LUAD and LUSC, FUT1 expression was significantly 
higher in normal tissues than in tumor tissues (Figure 
1B). In COAD, the FUT1 mRNA expression level 
increases with advancing pathological stage, whereas 
in KIRC, the expression follows an opposite trend. 
Additionally, FUT1 expression is found to be 
associated with age in certain tumors (Figure S1). 

Further analysis of paired tumor and adjacent 
normal tissues from the TCGA database revealed that 
FUT1 mRNA expression was generally higher in 
tumor tissues across most cancer types compared to 
adjacent normal tissues (Figure 1C). 
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Figure 1. FUT1 expression patterns and prognostic significance across pan-cancer. (A) FUT1 mRNA expression levels in pan-cancer cell lines based on the CCLE 
database. (B) Boxplot comparing FUT1 mRNA expression levels between tumor and normal tissues across various cancers. Data were integrated from TCGA and GTEx 
databases. Statistical significance was assessed using Wilcoxon rank-sum test (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001). (C) Bubble plot illustrating differential FUT1 
mRNA expression levels between tumor and adjacent normal tissues in TCGA pan-cancer data. (D) Heatmap depicting single-cell level expression of FUT1 across different 
cancers using the TISCH database. Data were clustered by cell type and tissue of origin. (E) Heatmap summarizing the prognostic role of FUT1 in pan-cancer using Cox regression 
and log-rank tests. Survival types analyzed include OS, DSS, DFI, and PFI. Red and blue indicate risky and protective roles, respectively. (F-I) Forest plots displaying the hazard 
ratios (HR) with 95% confidence intervals for FUT1 in (F) overall survival (OS), (G) disease-specific survival (DSS), (H) disease-free interval (DFI), and (I) progression-free interval 
(PFI) across cancers. HRs were derived from univariate Cox regression analysis, with significant results annotated. 
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To investigate FUT1 mRNA expression at the 
single-cell level, we analyzed pan-cancer single-cell 
RNA-seq data from TISCH. The results indicated that 
FUT1 was predominantly expressed in endothelial 
cells across most cancers. Additionally, it was also 
expressed in epithelial cells, with malignant epithelial 
cells exhibiting significantly higher expression than 
normal epithelial cells. In some cancers, FUT1 was 
also expressed in immune cell populations, with 
monocyte and macrophage subsets showing higher 
expression compared to other immune cell types 
(Figure 1D). 

FUT1 as a diagnostic and prognostic tool for 
different cancers 

To explore the association between FUT1 mRNA 
expression levels and survival prognosis, we 
performed survival analysis using Kaplan-Meier 
(Logrank Mantel-Cox test) and Cox regression. 
Analysis of OS, DSS, PFI, and DFI across pan-cancer 
types revealed that high FUT1 expression is a risk 
factor for poor survival prognosis in certain cancers 
(Figure 1E). Notably, high FUT1 expression was 
associated with poorer OS in ACC (HR = 3.277, 
logrank-test p = 0.001), BLCA, and COAD. Addition-
ally, higher FUT1 expression was linked to poorer 
DSS in BRCA (HR = 1.674, logrank-test p = 0.021) and 
GBM (Figure 1F-I). Kaplan-Meier survival curves 
showed that higher FUT1 expression correlated with 
lower OS probability in nine cancer types (Figure S2). 

Further evaluation of the diagnostic value of 
FUT1 in pan-cancer revealed that in diagnostic ROC 
models for READ and COAD, the area under the 
curve (AUC) reached 0.999 and 0.985, respectively. 
The ROC curves indicated that FUT1 can serve as a 
diagnostic biomarker for certain cancers (Figure S3). 

Genomic alterations and genomic instability 
analysis of FUT1  

Genomic strategies provide powerful tools for 
cancer analysis16. To assess potential genomic 
alterations of FUT1 in specific cancers, we performed 
a pan-cancer analysis of FUT1 copy number variations 
(CNVs) and genomic instability-related scores. FUT1 
amplification was the most common genomic 
alteration, with the highest alteration frequency 
observed in cervical cancer. Deep deletions were 
primarily found in head and neck cancer and 
melanoma, while mutations were most common in 
soft tissue sarcoma (Figure 2A-B). 

Further genomic exploration of the FUT gene 
family revealed that the overall mutation frequency of 
FUT genes was higher in COAD, SKCM), and UCEC 
(Figure S4A). FUT9 exhibited a high frequency of 
genomic alterations across pan-cancer types (Figure 

S3B). To further investigate the genetic aberrations of 
FUT genes in cancer, we analyzed the percentage of 
somatic copy number alterations (SCNAs). The results 
showed that SCNAs occurred at a high frequency in 
most cancer types (Figure S4C). Notably, somatic 
copy number alterations of FUT10 were highly 
correlated with FUT1 mRNA expression in most 
cancers (Figure S3D). 

Correlation analysis between FUT1 mRNA 
expression levels and various genomic instability 
scores, including aneuploidy, homologous 
recombination defects, tumor ploidy, SNV 
neoantigens, nonsilent mutation rate, and silent 
mutation rate, revealed a positive correlation in some 
cancers. This suggests that higher FUT1 expression is 
associated with increased chromosomal instability in 
these patients (Figure 2C-H). 

Correlation analysis of FUT1 expression with 
DNA methylation and RNA modification 
patterns 

To explore the potential reasons for the 
differential FUT1 mRNA expression levels between 
tumor and adjacent normal tissues in various cancers, 
we further investigated the impact of DNA 
methylation and RNA modification patterns on FUT1 
expression. Annotation of FUT1 methylation probes 
revealed that in most cancers, the methylation levels 
of DNA promoters and enhancers were negatively 
correlated with mRNA levels, such as in BRCA 
(ρ=-0.49, p =1.87e−48). However, in ovarian cancer 
(OV) (ρ=0.85, p=0.00342) and PCPG (ρ=0.35, 
p=1.25e−06), DNA promoter methylation levels were 
positively correlated with FUT1 mRNA expression 
(Figure 3A-B, Figure S4). 

We also examined the differences in methylation 
levels between tumor and adjacent normal tissues at 
various loci across different cancers. The results 
showed that in 22 cancer types, FUT1 DNA 
methylation patterns were complex. Notably, the 
methylation levels of CpG-shores were higher in 
tumor tissues, with the overall methylation level of 
FUT1 in LIHC tumor tissues being higher than in 
adjacent normal tissues (Figure 3C). 

Unlike DNA and histone modifications, which 
regulate gene expression through reversible 
epigenetic modifications, RNA methylation 
represents another layer of gene expression 
regulatio[27]. We analyzed the correlation between 
key genes in seven RNA modification patterns and 
FUT1 mRNA expression levels. The results indicated 
a positive correlation between the expression levels of 
key RNA modification genes and FUT1 expression in 
most cancers, with a particularly strong positive 
correlation observed in OV (Figure 3D, Figure S4). 
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Figure 2. The association of FUT1 expression with genomic instability across pan-Cancer. (A) Pan-cancer analysis of genomic alterations in FUT1, including 
mutations, amplifications, and deep deletions, using TCGA data. (B) Differential FUT1 expression across various CNV (Copy Number Variation) types. The box represents the 
interquartile range (IQR), the line inside the box indicates the median, and whiskers represent the range. Statistical differences were assessed using the Kruskal-Wallis rank-sum 
test. (C-H) Radar plots displaying Spearman correlation coefficients between FUT1 expression and genomic instability scores: Aneuploidy Score (C), Homologous 
Recombination Defects (D), Silent Mutation Rate (E), Non-Silent Mutation Rate (F), SNV Neoantigens (G), and Tumor Ploidy (H). Each axis represents the magnitude of 
correlation, and significance levels are indicated as ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05. 
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Figure 3. Association between FUT1 DNA methylation, RNA modification patterns, and mRNA expression. (A) Heatmap showing the correlation between 
FUT1 DNA methylation levels and mRNA expression across cancers. (B) Scatter plot illustrating the relationship between FUT1 DNA methylation levels and mRNA expression 
in the TCGA-BRCA cohort. Spearman correlation coefficient (ρ) and statistical significance are annotated. (C) Heatmap displaying differential DNA methylation levels of FUT1 
between tumor and adjacent normal tissues across cancers. Genes with hypermethylation and hypomethylation are marked in red and blue, respectively (Wilcoxon rank-sum 
test). (D) Heatmap summarizing the correlation between FUT1 mRNA expression and the expression of key genes involved in seven RNA modification pathways (A-to-I, m1A, 
m5C, m5U, m6A, m7G, and pseudouridine). Statistical significance is denoted as ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05. 
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FUT1 involvement in multiple carcinogenic 
pathways  

The CancerSEA database categorizes 14 different 
functional states of tumor cell[28]. We analyzed the 
correlation between FUT1 expression levels and the 
functional state scores of these 14 tumor cell 
pathways. Our results revealed a strong positive 
correlation between high FUT1 expression and 
metastasis scores across pan-cancer types (R=0.5, p < 
2.2e−16), as well as positive correlations with scores 
for other pathways, including quiescence, invasion, 
and epithelial-mesenchymal transition (EMT) (Figure 
4A). 

Enrichment analysis of the Hallmark gene sets 
showed that in BLCA, BRCA, cervical CESC, CHOL, 
COAD, and UCEC, high FUT1 expression was 
positively correlated with multiple pathways in the 
proliferation gene set. Moreover, high FUT1 
expression had a significant impact on estrogen 
response, KRAS signaling, and TNF-α signaling via 
NF-κB pathways in most cancer types (Figure 4B). 

Further analysis of the correlation between FUT1 
expression levels and normalized enrichment scores 
(NES) for multiple proliferation and signaling 
pathways in BLCA, BRCA, COAD, ESCA, LIHC, and 
UCEC showed that in BRCA, COAD, and ESCA, high 
FUT1 expression was strongly positively correlated 
with the overall enrichment of proliferation pathways 
(Figure 4C). 

Construction of FUT1 protein interaction and 
co-expression network 

The construction of a protein-protein interaction 
(PPI) network provides further insights into the 
biological functions of FUT1 in pan-cancer. Using the 
STRING and GeneMANIA databases, we identified 
31 interacting proteins, including FUT1 (Figure 5A-B). 

GO and KEGG enrichment analyses revealed 
that FUT1 and its interacting proteins are primarily 
involved in metabolism-related pathways, such as 
fucosyltransferase activity, sialylation, and 
glycosphingolipid biosynthesis. Additionally, these 
proteins are associated with pathways regulating cell 
adhesion, which aligns with the strong positive 
correlation observed between FUT1 expression and 
invasion and EMT pathway scores described earlier 
(Figure 5C). 

Correlation of FUT1 with the tumor 
microenvironment  

To explore whether FUT1 expression influences 
the tumor microenvironment (TME), we analyzed its 
association with stromal and immune cell 
components. The results indicated that FUT1 

expression was negatively correlated with 
StromalScore and ImmuneScore in most cancers, but 
showed strong positive correlations in UVM, SKCM, 
SARC, and PCPG (Figure 6A). 

Further analysis of immune cell infiltration in the 
TME revealed that FUT1 expression was generally 
negatively correlated with T cell infiltration across 
most cancers, although the differences were not 
statistically significant (Figure S6A). Correlation 
analysis of FUT1 expression with immune-related 
functional gene sets, including immune checkpoint 
genes, immunostimulators, immunoinhibitors, 
chemokines, and chemokine receptors, showed 
significant positive correlations in cancers such as 
UVM, PCPG, KIRP, and LIHC. In contrast, negative 
correlations were frequently observed in BRCA, 
LUSC, and head and HNSC (Figures S6B and S7A-D). 

FUT1 and drug sensitivity analysis 
Given the abundance of genetic mutations in 

tumors and their potential impact on prognosis and 
therapeutic outcomes, we evaluated the correlation 
between FUT1 expression and TMB as well as MSI. A 
strong positive correlation between FUT1 and TMB 
was detected in READ (Figure 6B), while a similar 
correlation with MSI was observed in MESO (Figure 
6C). 

To assess the association between FUT1 
expression and responses to immune checkpoint 
inhibitors (ICIs), analysis of immunotherapy cohorts 
revealed higher FUT1 expression in NR patients 
(Figure 6D, Figure S8, Table S2). Additionally, 
correlations between gene expression and the 
half-maximal inhibitory concentration (IC50) of 
measured antagonists in the GDSC1 and GDSC2 
databases indicated that FUT1 expression was 
positively correlated with IC50 for most drugs, 
suggesting that higher FUT1 expression is associated 
with lower drug sensitivity in cell lines. However, for 
small molecule tyrosine kinase inhibitors (TKIs), 
including Ibrutinib, Afatinib, Osimertinib, Gefitinib, 
and Sapitinib, higher FUT1 expression correlated with 
increased drug sensitivity (Figure S9). 

Further predictions using the CMap identified 
potential drugs targeting FUT1. In certain cancers, 
MS.275 was suggested to reverse molecular 
characteristics caused by dysregulated FUT1 
expression, potentially mitigating its pro-tumorigenic 
effects (Figure 6E). 

Preliminary validation of FUT1 in bladder, 
breast and colon cancer cells 

We selected three cancer cell lines from distinct 
cancer types—UMUC3, MDA-MB-361 and 
HCT116—to perform basic experiments validating the 
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specific biological functions of FUT1 in BLCA, BRCA, 
and COAD. FUT1 was transiently silenced in these 
cell lines using siRNA, and qRT-PCR was employed 

to confirm knockdown efficiency. FUT1 expression 
was significantly reduced in all three cell lines 
following siRNA transfection (Figure 7A). 

 

 
Figure 4. Exploring the functional role of FUT1 in pan-cancer tumorigenesis. (A) Correlation between FUT1 expression and 14 tumor progression signature scores 
across cancers. Spearman correlation coefficients (R) and p-values are shown. (B) Enrichment analysis of signaling and proliferation pathways in tumors with high and low FUT1 
expression. Pathway significance is evaluated using normalized enrichment scores (NES) from GSEA. (C) Correlation analysis between FUT1 expression and NES values for 
signaling and proliferation pathways in BLCA, BRCA, COAD, ESCA, LIHC, and UCEC tumors. 
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Figure 5. Protein-protein interaction network and functional enrichment analysis of FUT1. (A-B) Protein-protein interaction (PPI) networks of FUT1 visualized 
using (A) the STRING database and (B) the GeneMANIA platform, showing interacting proteins and associated pathways. (C) Gene Ontology (GO) and KEGG enrichment 
analysis of FUT1-interacting proteins. 

 
CCK-8 and colony formation assays 

demonstrated that FUT1 knockdown significantly 
inhibited proliferation in UMUC3 and MDA-MB-361 
cells, while the inhibitory effect on HCT116 cell 
proliferation was weaker (Figure 7B-H). Transwell 
invasion assays showed that FUT1 knockdown 
markedly reduced the invasive capacity of UMUC3, 
MDA-MB-361, and HCT116 cells, with a particularly 
pronounced difference observed in HCT116 cells 
(Figure 7I-J). 

Wound healing assays revealed that FUT1 
knockdown impaired the migratory ability of UMUC3 
and MDA-MB-361 cells, whereas the migration 
capacity of HCT116 cells following injury was not 
significantly affected (Figure 7K-L). 

Discussion 
FUT1, a rate-limiting enzyme in Lewis y antigen 

synthesis, plays a crucial role in tumor progression. Its 
suppression reduces Lewis y levels and inhibits 
cancer growth[29]. This study represents the first 
comprehensive pan-cancer analysis of FUT1, 
revealing its differential expression across tumor 
types and its prognostic significance. FUT1 was 
upregulated in 14 cancers and downregulated in 11, 
consistent with findings in liver, kidney, ovarian, 
colorectal, breast, prostate, and lung cancers[12,13,30–
34]. Kaplan-Meier survival analysis showed that 
FUT1 overexpression correlates with poor prognosis 
in BRCA and COAD, aligning with prior studies[12].  
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Figure 6. FUT1 as a pan-cancer biomarker for predicting therapeutic sensitivity. (A) Correlation between FUT1 expression and ImmuneScore, StromalScore, and 
ESTIMATEScore across various cancers. (B-C) Radar charts representing pan-cancer analyses of the correlation between FUT1 expression and (B) tumor mutational burden 
(TMB) and (C) microsatellite instability (MSI). (D) Differential expression of FUT1 in non-responders (NR) and responders (R) in immunotherapy cohorts. (E) Identification of 
potential small-molecule drugs to reverse FUT1 dysregulation using the Connectivity Map (CMap) database. 
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Figure 7. Functional validation of FUT1 in UMUC3, MDA-MB-361, and HCT116 cell lines. (A) Validation of siRNA-mediated FUT1 knockdown efficiency using 
qRT-PCR. (B-C) Effect of FUT1 knockdown on UMUC3 cell proliferation, as assessed by (B) CCK-8 assay and (C) colony formation assay. (D-E) Effect of FUT1 knockdown on 
MDA-MB-361 cell proliferation, as assessed by (D) CCK-8 assay and (E) colony formation assay. (F-G) Effect of FUT1 knockdown on HCT116 cell proliferation, as assessed by 
(F) CCK-8 assay and (G) colony formation assay. (H) Bar charts showing the statistical differences in colony formation between NC (negative control) and si-FUT1 groups in 
UMUC3, MDA-MB-361, and HCT116 cells. (I-J) Invasion assays comparing NC and si-FUT1 groups in the three cell lines. (K-L) Wound healing assays comparing migration ability 
between NC and si-FUT1 groups in the three cell lines. 
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Conversely, FUT1 downregulation in KIRC was 
associated with favorable outcomes, challenging 
earlier reports suggesting its oncogenic role[30,32]. 
These findings may be influenced by differences in 
the tumor microenvironment or epigenetic regulation, 
such as promoter methylation[35]. Notably, FUT1 was 
highly expressed in BLCA and UCEC, marking the 
first report of its association with poor prognosis in 
these cancers. In LUAD, FUT1 expression was lower 
in tumor tissues compared to normal tissues, with 
high expression linked to better outcomes. This 
contrasts with studies reporting elevated serum FUT1 
levels, which could be attributed to differences 
between mRNA and protein expression, as well as the 
potential secretion of FUT1 into the extracellular 
matrix or bloodstream, reflecting systemic changes 
rather than localized tumor expression[36]. In COAD 
and KIRC, FUT1 expression was stage-dependent, 
with higher levels in advanced-stage COAD and 
early-stage KIRC tumors[30,37]. Additionally, 
age-related differences in FUT1 expression were 
observed, with higher levels in younger KIRP and 
ESCA patients and older CHOL and THYM patients, 
suggesting potential age-specific roles. 

Functional analysis indicated that FUT1 
regulates cell adhesion, DNA repair, inflammation, 
and immune signaling. Experimental validation 
confirmed the role of FUT1 in promoting tumor cell 
invasion, migration, and proliferation. These findings 
align with reports that glycosylation mediated by 
FUT1 enhances β1 integrin-dependent cell adhesion 
in BLCA[38,39]. FUT1 also correlated with 
immune-related markers, including TMB and MSI, in 
several cancers. These associations suggest that FUT1 
might influence tumor immunogenicity and predict 
responses to immune checkpoint blockade (ICB) 
therapy. The strong correlation between FUT1 
expression and ICB gene expression in BRCA and 
THCA aligns with the clinical efficacy of ICB therapy 
in these cancers[40,41]. Furthermore, FUT1 was linked 
to TME components, particularly stromal and 
immune scores, across multiple cancers, supporting 
its role in immune cell infiltration and tumor 
progression. 

FUT1 and its interacting proteins are primarily 
involved in critical metabolic pathways, as indicated 
by GO and KEGG enrichment analyses. These 
pathways are essential in tumor progression and in 
determining the response to immune therapy[42]. 
Glycosylation, the addition of sugar chains to proteins 
or lipids, can be categorized into N-glycosylation and 
O-glycosylation. N-glycosylation attaches sugars to 
asparagine or glutamine residues, while 
O-glycosylation attaches sugars to serine or threonine 
residues[43]. Sialylation, a specific form of 

glycosylation, occurs as a modification at the terminal 
ends of existing sugar chains. While all sialylation is a 
form of glycosylation, not all glycosylation involves 
sialylation[44]. Interestingly, the PPI results suggest 
that FUT1 interacts with ST3GAL1 and ST3GAL4, 
enzymes involved in O-linked and N-linked 
sialylation, respectively. ST3GAL1 adds sialic acid to 
O-linked sugars, playing a crucial role in cell 
interactions and signaling, while ST3GAL4 modifies 
N-linked sugars, influencing glycoprotein functions 
and immune regulation[45,46]. This indicates that 
FUT1-mediated glycosylation is intricately linked 
with sialylation processes, suggesting a potential 
mechanistic connection between FUT1, sialylation, 
and cancer progression. This link may offer valuable 
insights into how FUT1 influences tumor biology, 
with potential implications for therapeutic strategies 
targeting glycosylation pathways in cancer. 

To further explore the potential clinical 
applications of FUT1, we conducted an analysis of its 
association with drug sensitivity. Our findings 
suggest that higher FUT1 expression correlates with 
increased sensitivity to small molecule TKIs, 
including Ibrutinib, Afatinib, Osimertinib, Gefitinib, 
and Sapitinib. TKIs are a class of drugs that target 
EGFR, inhibiting its tyrosine kinase activity to prevent 
cancer cell proliferation. The glycosylation of EGFR, 
including deglycosylation, sialylation, and 
fucosylation, directly impacts its phosphorylation 
status and functionality[47]. For instance, the addition 
of sialic acid enhances the stability and activity of 
EGFR, thereby increasing its sensitivity to TKIs[48]. 
Given that FUT1 is involved in glycosylation 
processes, particularly in the sialylation and 
fucosylation of proteins, it is likely that FUT1 
contributes to EGFR modification, thereby influencing 
TKI sensitivity. These findings suggest that FUT1 
could serve as a potential biomarker to predict the 
efficacy of TKI therapies in cancer treatment. This 
opens up exciting possibilities for further research 
into FUT1 as a therapeutic target, particularly in the 
context of EGFR-targeted therapies. Exploring the 
mechanisms through which FUT1 influences drug 
sensitivity could lead to more personalized and 
effective treatment strategies, especially for patients 
with EGFR-mutant cancers. Furthermore, 
understanding how FUT1-mediated glycosylation 
impacts cancer therapy may reveal novel avenues for 
improving treatment outcomes and overcoming 
resistance to current therapies. 

Conclusions 
This study provides the first comprehensive 

pan-cancer analysis of FUT1, revealing its variable 
expression across tumor and normal tissues. Our 
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findings demonstrate significant associations between 
FUT1 expression, clinical prognosis, and DNA 
methylation, highlighting its potential as a 
stand-alone prognostic biomarker in multiple tumor 
types. FUT1 expression is also correlated with 
immune-related features, including immune cell 
infiltration, MSI, and TMB. These results suggest that 
FUT1 may influence tumor immunity differently 
across cancer subtypes, warranting further 
investigation into its precise roles in tumorigenesis. 

While this study provides valuable insights into 
the biological and clinical relevance of FUT1, several 
limitations should be noted. First, reliance on publicly 
available datasets may result in biases due to data 
heterogeneity and variability. Second, in vitro 
experiments cannot fully capture the complexity of 
tumor-immune interactions observed in vivo. Lastly, 
the mechanisms underlying the gene’s role in immune 
modulation, TMB, and MSI remain inadequately 
understood. Future studies should validate these 
findings in clinical cohorts and further investigate its 
potential as a therapeutic target and modulator of the 
tumor microenvironment. 

In summary, our results shed light on the 
multifaceted role of FUT1 in cancer progression and 
immunity, providing a foundation for developing 
targeted therapies and improving cancer treatment 
strategies. 
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