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Abstract 

Oral squamous cell carcinoma (OSCC), one of the most common cancers in Taiwan, needs new therapeutic 
agents and treatments. The aim of this study was to investigate the anti-proliferative activity of 
{N-[3-chloro-4-[5-[3-[[[4-[(cyclopropylcarbonyl)-amino]3-(trifluoromethyl)phenylamino]carbonyl]amino]phe
nyl]-1,2,4-oxadiazol-3-yl]phenyl]-3-pyridine-carboxamide} (COC), a synthetic molecule, in OSCC cells. COC 
exhibits potent tumor-suppressive efficacy with IC50 values of 195 nM and 204 nM toward SCC2095 and SCC4 
OSCC cells, respectively. Our data revealed that COC caused caspase-dependent apoptosis and 
downregulated the MAPK signaling pathway. In addition, COC modulated the levels of E-cadherin and 
β-catenin and inhibited migration. COC also decreased p-STAT3 levels, and the overexpression of STAT3 
partially attenuated COC-induced cytotoxicity. Therefore, our findings suggest the use of COC as a new 
approach to oral cancer treatment. 
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Introduction 
According to the report of the American Cancer 

Society (ACS), the estimated number of new cases of 
oral squamous cell carcinoma (OSCC) is more than 
58,000 in 2024, with an increasing trend of 2.3% per 
year in the USA [1]. OSCC is the 2nd leading cause of 
cancer deaths in South and South-East Asia, and 
Taiwan is within the top 5 countries owing to the high 
incidence in the area [2]. Tobacco smoking, 
secondhand smoke, betel nut chewing, heavy alcohol 
drinking, and human papillomavirus infection are the 
risk factors for OSCC [3]. Currently, there are multiple 
treatment strategies for OSCC, including surgery, 
radiotherapy, chemotherapy, and immunotherapy. 
However, recurrence, severe side effects, trauma, and 
high hospital charges have negative impacts on the 
efficacy of therapy and patient compliance [4, 5]. 

Despite the combination of surgery, chemotherapy, 
and immunotherapy, the 5-year survival rate of 
patients with OSCC after therapy remains between 25 
and 50% [6]. Therefore, new drugs or therapeutic 
strategies are needed. 

 Epidermal growth factor receptor (EGFR) is a 
member of the human epidermal growth factor 
receptor tyrosine kinase (RTK) family, which 
regulates proliferation, cell cycle, migration, and 
differentiation [7]. Upon epidermal growth factor 
(EGF) binding, activated EGFR triggers phospho-
rylation and activation of downstream signaling 
pathways, such as the mitogen-activated protein 
kinase (MAPK) and phosphatidylinositol 3'-kinase 
(PI3K)/Akt, which contribute to metastasis, 
anti-apoptosis, and angiogenesis [7]. EGFR overex-
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pression has been found in multiple tumors including 
breast cancer, lung cancer, and OSCC [8, 9]. For 
example, a high EGFR gene copy number is common 
in patients with OSCC and oral premalignant lesions 
[10]. EGFR amplification is associated with HPV 
infection, smoking, and poor overall survival in OSCC 
[11, 12]. Yokokawa et al. demonstrated that the high 
co-expression of EGFR and c-Met, another RTK 
mesenchymal-epithelial transition factor, is a strong 
prognostic factor in OSCC, with a survival rate below 
22% [13]. The knockdown of EGFR or the use of an 
EGFR/c-Met inhibitor induces cell death enhances 
radio/chemo-sensitivity in OSCC cells [14, 15]. For 
example, the EGFR inhibitor PD153035 inhibits OSCC 
cell proliferation induced by the carcinogen 
7,12-dimethyl benz[a]anthracence via downregulation 
of p-EGFR and p-STAT3 in vivo [16]. Tivantinib, a 
c-Met inhibitor, causes G2/M cell cycle arrest and 
apoptosis by downregulating FAK in OSCC cells [17]. 
Iwase et al. reported that C225, an anti-EGFR 
monoclonal antibody, induces Fas-mediated 
apoptosis and downregulates the expression of p-Akt 
and c-FLIP [18]. Iressa (gefitnib), an FDA-approved 
EGFR inhibitor for lung cancer therapy, causes G1 cell 
cycle arrest and suppresses invasion by modulating 
p27 and MMP-2 in OSCC cells [19]. Iressa induces 
apoptosis and enhances the sensitivity of OSCC cells 
to cisplatin by suppressing the activation of ERK and 
Akt [14]. Notably, an anti-EGFR antibody-drug 
conjugate (MRG003) has shown a response rate of 
40% in patients with EGFR-positive OSCC in a Phase I 
clinical trial [20]. {N-[3-chloro-4-[5-[3-[[[4- 
[(cyclopropylcarbonyl)amino]3-(trifluoromethyl)phen
ylamino]carbonyl]-amino]phenyl]-1,2,4-oxadiazol-3-y
l]phenyl]-3-pyridine-carboxamide} (COC), a synthetic 
compound (Fig. 1A), suppresses lung tumor growth 
by targeting EGFR signaling [21]. The dysregulation 
of EGFR and high co-expression of EGFR and c-Met 
are strongly associated with the carcinogenesis of oral 
malignancies and chemoresistance [13, 22]. However, 
there is a lack of information on COC regarding OSCC 
treatment. Therefore, this study aimed to investigate 
the anti-proliferative effects and potential molecular 
target of this compound against OSCC. 

Materials and methods 
Chemicals and antibodies 

The chemical synethsis of COC was performed 
by the co-author Dr. Eman M. E. Dokla as previous 
report [21]. Briefly, a solution containing 
N-[4-[5-(3-aminophenyl)-1,2,4-oxadiazol-3-yl]-3-chlor
ophenyl]-3-pyridinecarboxamide (0.51 mmol) and 
phosgene (2.55 mmol) was refluxed in tetrahydro-
furan for 4 h under N2. Then, the appropriate aniline 

(0.77 mmol) and N,N-diisopropylethylamine (1.02 
mmol) were added and refluxed overnight. The 
reaction mixture was concentrated, and the residue 
was purified by silica gel column chromatography. 
The identity of COC were verify by nuclear magnetic 
resonance spectroscopy and high-resolution mass 
spectrometry. The following antibodies were obtained 
from Cell Signaling Technology (MA, USA): p38 
(#9212), ERK (#9102), EGFR (#4267), MEK (#9122), 
c-Met (#3148), STAT3 (#9139), JNK (#9252), PARP 
(#9542), Akt (#9272), mTOR (#2972), p-(Ser473)-Akt 
(#9271), cleaved caspase 9 (#7237), p-(Ser2448)-mTOR 
(#2971), p-(Ser217/221)-MEK (#9154), p-(Thr180/ 
Tyr182)-p38 (#9215), p-(Thr202/Tyr204)-ERK (#9101), 
p-(Ser727)-STAT3 (#9145), cleaved caspase 3 (#9664), 
and E-cadherin (#3195). β-catenin (GTX101435) and 
p-(Thr183/Tyr185)-JNK (GTX24821) were purchased 
from GeneTex, Inc (CA, USA). β-actin (#A5441) was 
obtained from Sigma-Aldrich (MO, USA), and 
pro-caspase-8 (#MAB4708) was purchased from 
Millipore (MA, USA).  

Cell culture 
SCC2095 and SCC4 human oral cancer cells were 

obtained from Prof. Susan R. Mallery and JCRB, 
respectively. Both cells were cultured in DMEM/F12 
medium. Oral fibroblasts were the gifts from Prof. 
Tzong-Ming Shieh (China Medical University), and 
were maintained in DMEM medium. All of the cell 
lines were maintained in a humidified environment at 
37oC with 5% CO2.  

Cell viability 

The cell viability of COC was evaluated by the 
reagent (3-(4,5-dimethylthiazol-2-yl)-2,5- 
diphenyltetrazolium bromide, MTT). All cell lines 
(5×103) were seeded into a 96-well plate for overnight. 
Then, the cells were treated with COC (25, 50, 100, 
250, and 500 nM) dissolved in DMSO. After 24 h, MTT 
reagent was added into the 96-well plate. The plate 
was incubated for 4 h and the supernatant was 
discarded [23]. Then, the plate filled with DMSO, and 
the absorbance at 590 nm was determined using a 
microplate reader (Thermo Scientific Multiskan Go).  

 Western blot 

Each protein samples (5 µg) were subjected to 
SDS-PAGE gel for electrophoresis and then 
electro-transferred to nitrocellulose membranes. The 
milk containing PBST is used as the blocking solution 
for these membranes and washed three times by 
buffer solution. Then, the primary antibodies were 
incubated with these membranes with shaking for 
overnight. After washing, the corresponding 
secondary antibody solutions were incubated with 
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these membranes for 1 h. Then, the membranes were 
put into an ChemiDOCTM Touch Imaging System 
(Bio-Rad), where the proteins on the membranes were 
detected.  

Flow cytometric analysis 
Cells (2×105) were treated with COC or 

staurosporine for 24 h. Then, the Annexin V-FITC/PI 
apoptosis detection kit was used as the double 
staining reagents (BD Pharmingen, San Diego), and 
these cells were determined using a flow cytometer 
(BD FACSCantoTM, BD Biosciences). 

Wound closure assays 
SCC4 cells were seeded in 6-well plates for 24 h, 

the wound was created on the monolayer cells using a 
micropipette tip, and DMSO or COC was added. The 
wound was observed and imaged under a 
phase-contrast microscope.  

The migration assays 
The 24-transwell polycarbonate membrane (8 

µm) chambers (Corning, USA) were used for the 
migration in vitro. Briefly, SCC4 cells (1.5×105) were 
seeded into the top chamber with serum-free medium 
(200 µL) for incubated at 37oC for 24 h, DMSO or COC 
(50, 100 nM) were added. 500 µL of 10% FBS medium 
were filled in lower chamber. After 24 h, the migrated 
cells were collected and fixed in methanol (90%) [24]. 
Then, these cells were labeled with crystal violet for 10 
min, and were counted in nine fields of vision 
observed with 100x fields. 

Transfection 
Both of the pCMV-Flag (#CV012) and STAT3- 

CA-Flag (#HG10034-HF) plasmids were purchased 
from the company (Sino Biological, Pennsylvania, PA, 
USA). SCC2095 oral cancer cells were transfected with 
the plasmids (1 µg/well) using Fugene HD 
transfection reagent (Roche) in a 6-well plate [23]. 
After 24 h, these cells were filled in the appropriate 
concentrations of COC or DMSO and then the data 
were detected using Western blot analysis. 

Statistical analysis 
The above results were statistically analyzed 

using Student’s t tests. A P value < 0.05 indicated 
significant. All of the data were repeated for three 
tests. 

Results 
COC inhibits OSCC growth 

To examine the inhibitory effects of COC on oral 
cancer cells, SCC2095 and SCC4 OSCC cells were 

treated with COC, and cell viability was evaluated. As 
shown in Fig. 1B, COC decreased the viability of 
SCC2095 cells in a concentration-dependent manner, 
with an IC50 of 195 nM. COC also inhibited SCC4 cells 
with an IC50 of 204 nM (Table 1). Next, we analyzed 
the toxicity of COC for 24 h in oral fibroblasts. The 
results demonstrated that oral fibroblasts were less 
sensitive to COC, with an IC50 of > 500 nM, than 
SCC2095 and SCC4 cells (Fig. 1C). We also examined 
the baseline expression of EGFR and c-Met in OSCC 
cell lines and oral fibroblasts. As shown in Fig. 2A, the 
two OSCC cell lines expressed relatively high levels of 
EGFR and c-Met, whereas fibroblasts expressed low 
levels of EGFR (Table 1). The effects of COC on the 
expression of EGFR and c-Met in OSCC cells were 
then evaluated by western blotting. As shown in Fig. 
2B, COC decreased the expression levels of EGFR and 
c-Met in a concentration-dependent manner in both 
OSCC cell lines. After treatment with COC for 6 h, the 
expression of EGFR and c-Met in SCC2095 cells 
decreased (Fig. 2C). Unlike SCC2095 cells, there was 
no obvious alteration in the expression levels of EGFR 
and c-Met after treatment with COC in SCC4 cells for 
24 h (Fig. 2C). 

 

Table 1. Oral cancer cell EGFR and c-Met expression* and 
sensitivity to COC. 

Cell line Relative expression COC IC50 (nM), mean ± S.D. 
EGFR c-Met 

SCC2095 High High 195.3 ± 5.0 
SCC4 High High 203.9 ± 3.0 
Fibroblasts Modest  Low > 500 

*Based on a relative scale of low, modest, and high.  
 

COC induces apoptosis in OSCC cells 
To examine how COC affected cell growth, we 

investigated the impact of COC on apoptosis. The 
results show that COC induced apoptosis of SCC2095 
and SCC4 cells in a concentration-dependent manner 
(Fig. 3A). Flow cytometry results revealed that the 
percentage of apoptotic SCC2095 cells increased from 
6.3% to 43.4% after treatment with 250 µM COC (Fig. 
3B). A similar trend was also observed in COC-treated 
SCC4 cells. Western blotting showed that COC 
promoted the activation of three apoptosis-related 
proteins, PARP, caspase 9, and caspase 3, through 
cleavage in a dose-dependent manner (Fig. 3C). 
Moreover, pro-caspase 8 was downregulated in 
COC-treated cells, indicating that COC induced 
caspase-dependent apoptosis (Fig. 3C). 

COC inhibits Akt/mTOR and MAPK signaling 
molecules 

Akt and MAPK are part of pathways associated 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

1084 

with cell proliferation and tumor progression [25, 26], 
which led us to evaluate their role in OSCC cells. As 
shown in Fig. 4A and 4B, COC downregulated the 
levels of p-Akt (Ser473) and its downstream target 
p-mTOR (Ser2448) in a concentration-dependent 
manner. COC also downregulated the MAPK family 
members p38, JNK, ERK, and MEK (Fig. 4A, 4B).  

STAT3 inhibition by COC leads to cell death 
The oral carcinogen arecoline and the betel nut 

extract cause oral carcinogenesis through STAT3 
activation, which is downstream of the mTOR 
pathway [27-29]. As shown in Fig. 5A, COC 
downregulated p-STAT3 (Ser727), whereas the total 
protein expression levels of STAT3 remained 
constant. To determine whether COC inhibited cell 
growth by interfering with STAT3, a STAT3 construct 
was transfected into SCC2095 cells. Western blotting 
revealed that transfection of the STAT3-CA-Flag 
plasmid reversed the inhibitory effect of COC on 
p-STAT3 and cleaved caspase 3 (Fig. 5B). We also 
observed that the relative cell viability of COC-treated 
cells was higher than that of wild-type cells (Fig. 5C). 

COC inhibits OSCC cell migration 
Overexpression of STAT3 promotes tumor 

progression, therapeutic resistance, and angiogenesis 
of oral cancer cells [30-32]. SCC4 cells show high 
invasive potential [33]; therefore, this cell line was 
used for migration assays. As shown in Fig. 6A-6B, 
COC inhibited SCC4 cell migration after treatment for 
24 h, as determined by wound closure and Boyden 
chamber assays. Next, the anti-angiogenesis effects of 
COC on two epithelial-mesenchymal transition 
(EMT)-related gene products, including E-cadherin 
and β-catenin were evaluated by western blotting. 
The results demonstrated that E-cadherin, the 
epithelial marker, was upregulated in COC-treated 
cells (Fig. 6C). For β-catenin, COC decreased the levels 
of this mesenchymal marker in SCC4 cells (Fig. 6C). 
We also examined the effects of COC on cell migration 
in the ectopic overexpression of STAT3. As shown in 
Fig. S1A, migration increased from 81% to 92 % after 
COC treatment of STAT3-overexpressing cells. In 
addition, β-catenin was upregulated in COC-treated 
cells after transfection of STAT3-CA-Flag plasmid 
(Fig. S1B). The above results suggested the impact of 
STAT3 on migration in COC-treated OSCC cells.  

 
 

 
Figure 1. (A) Structure of COC. (B) Cytotoxicity of COC in SCC2095 and SCC4 OSCC cell lines, and (C) oral fibroblasts. Cells were treated with DMSO or COC at different 
concentrations for 24 h. *P < 0.05, **P < 0.01. 
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Figure 2. (A) Expression levels of Epidermal growth factor receptor (EGFR) and c-Met in cultured SCC2095, SCC4 oral cancer cells, and oral fibroblasts. Effects of COC on the 
expression levels of EGFR and c-Met. (B) Concentration- and (C) time-dependent effects of COC on the levels of EGFR and c-Met in OSCC cell lines. *P < 0.05, **P < 0.01. 
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Figure 3. Influence of COC on apoptosis. (A) Apoptotic SCC295 or SCC4 cells after COC treatment for 24 h. Staurosporine (Stauro., 50 nM) was used as a positive control. 
(B) Statistical analysis of the percentages of apoptotic cells in COC-treated cells. (n = 3). (C) Effects of COC on the protein levels of PARP, pro-caspase 8, cleaved caspase 3, and 
cleaved caspase 9. *P < 0.05, **P < 0.01. 

 
Figure 4. Effects of COC on the protein levels of p-Akt, Akt, p-mTOR, mTOR, p-p38, p38, p-ERK, ERK, p-JNK, JNK, p-MEK, and MEK in (A) SCC2095 and (B) SCC4 cells. Cells 
were exposed to different concentrations of COC for 24 h. *P < 0.05, **P < 0.01. 
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Figure 5. COC downregulates the expression levels of STAT3. (A) Protein levels of p-STAT3 and STAT3 in COC-treated OSCC cells. (B) Effects of STAT3 overexpression in 
COC-treated cells for 24 h. (C) STAT3-CA partially attenuated COC-mediated cytotoxicity in SCC2095 cells as assessed by MTT assays. *P < 0.05, **P < 0.01. 
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Figure 6. COC inhibits migration of OSCC cells. (A) SCC4 oral cancer cells were treated with COC (50 nM, 100 nM, and 250 nM), and images of wounds were captured by 
phase contrast microscopy. Magnification ×100. (B) Statistical analysis of the relative window area (%). (n = 3). (C) Effects of COC on E-cadherin and β-catenin for 24 h. *P < 0.05, 
**P < 0.01. 

 
Figure 7. Schematic representation of the pharmacological mechanism of COC-mediated apoptosis in OSCC cells. 

 

Discussion 
Here, we report that COC, a small molecule, 

induced apoptosis and downregulated Akt/mTOR 
and MAPK signaling. The IC50 for oral fibroblasts was 

higher than that for OSCC cells, indicating that COC 
is less toxic to the former cells. In addition, the 
anti-tumor activity of COC-mediated p-STAT3 
inhibition was investigated (Fig. 7).  
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 The majority of chemotherapeutic agents elicit 
anti-tumor activities via apoptosis [34]. During this 
process, the activation of caspases plays an essential 
role [35]. The death-inducing signaling complex 
(DISC) and the apoptosome are well-known 
caspase-activating complexes [35]. Poly(ADP-ribose) 
polymerase (PARP) cleavage by caspase activation is 
an early recognizable process in apoptosis [36]. 
Linhagen et al. reported that Iressa, a 
chemotherapeutic agent, causes apoptosis in acute 
myeloblastic leukemia by activating caspase-3 [37]. In 
the present study, COC induced caspase-dependent 
apoptosis and increased PARP cleavage in OSCC 
cells. 

 Dysregulation of the PI3K/Akt pathway is 
involved in the growth of tumors and is associated 
with the progression of various types of cancers, 
including oral cancer [38, 39]. Iressa inhibits the cell 
growth of esophageal squamous cell carcinoma by 
downregulating Akt and inducing apoptosis [40]. Our 
results show that the expression levels of p-Akt and 
p-mTOR decreased after treatment of OSCC cells with 
COC. Moreover, the activation of MAPK has been 
implicated in oral carcinogenesis and is a prognostic 
biomarker for epithelial malignancies [41, 42]. For 
example, EGF increases the expression of 
cyclooxygenase-2 (an inflammation-related enzyme) 
by the activation of ERK and p38 MAPK in OSCC cells 
[43]. Cetuximab induces apoptosis of colorectal cancer 
cells by inhibiting MEK/ERK signaling [44]. p38 
MAPK activation contributes to the secretion of 
pro-inflammatory cytokines on tumor-associated 
macrophages and OSCC cells [26]. In the present 
study, p-MEK, p-ERK, p-p38, and p-JNK were 
downregulated after treatment with COC. 

 The constitutive activation of STAT3 is highly 
correlated with OSCC progression [45, 46]. The 
accumulation of p-STAT3 has been found in patients 
with OSCC reporting tobacco consumption but not in 
the normal mucosa [47]. Chen et al. reported that 
all-trans retinoic acid induced apoptosis and 
decreased PD-L1 expression in OSCC by inhibiting 
STAT3 [48]. In our study, COC downregulated 
p-STAT3 expression in OSCC cells. Furthermore, the 
ectopic expression of STAT3 partially attenuated 
COC-mediated cytotoxicity, suggesting that STAT3 is 
an essential biomarker for COC treatment.  

Treatment with STAT3 inhibitors or knockdown 
of STAT3 inhibits metastasis in various cancers, 
including OSCC [49-51]. Wang et al. reported that 
HJC0152, a STAT3 inhibitor, suppresses the growth 
and metastasis of OSCC by decreasing p-STAT3 and 
β-catenin in vitro and in vivo [52]. Oral mesenchymal 
stem cells promote EMT via the activation of STAT3 
and downregulation of E-cadherin, a biomarker of cell 

adhesion [30, 53]. The proinflammatory cytokine IL-6 
induces STAT3 phosphorylation, which leads to the 
interaction between the β-catenin/TCF4 complex and 
STAT3 signaling [54]. Our results show that COC 
increased the levels of E-cadherin and decreased the 
levels of β-catenin in SCC4 oral cancer cells. The 
inhibitory effects of migration and the levels of 
β-catenin were abrogated after treatment of 
STAT3-overexpressing OSCC cells with COC, which 
suggests that STAT3 plays a role in cell migration. 
Although our results demonstrated that COC 
inhibited the growth of OSCC via the inhibition of 
STAT3, a few limitations remain. First, a comparison 
of COC with chemotherapeutic agents might be 
valuable for the clinical use of COC. Second, 
structural modification of COC should be continued. 
Finally, the in vivo efficacy of COC was not evaluated 
in this study. 

Conclusion 
Taken together, our data show that the 

sensitivity to COC was lower in oral fibroblasts than 
in OSCC cells. We also demonstrated that COC 
inhibited STAT3 phosphorylation in oral cancer cells, 
and these inhibitory effects caused apoptosis and 
prevented migration. These results improve our 
understanding of the anti-proliferative mechanisms of 
COC in OSCC cells. 

Supplementary Material 
Supplementary figure.  
https://www.medsci.org/v22p1081s1.pdf 
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