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Abstract 

Purpose: Processing and analyzing clinical texts are challenging due to its unstructured nature. This 
study compared the performance of GPT (Generative Pre-trained Transformer)-3.5 and GPT-4 for 
extracting information from clinical text. 
Materials and Methods: Three types of clinical texts, containing patient characteristics, medical 
history, and clinical test results extracted from case reports in open-access journals were utilized as 
input. Simple prompts containing queries for information extraction were then applied to both models 
using the Greedy Approach as the decoding strategy. When GPT models underperformed in certain 
tasks, we applied alternative decoding strategies or incorporated prompts with task-specific definitions. 
The outputs generated by GPT models were evaluated as True or False to determine the accuracy of 
information extraction. 
Results: Clinical texts containing patient characteristics (60 texts), medical history (50 texts), and clinical 
test results (25 texts) were extracted from 60 case reports. GPT models could extract information 
accurately with simple prompts to extract straightforward information from clinical texts. Regarding sex, 
GPT-4 demonstrated a significantly higher accuracy rate (95%) compared to GPT-3.5 (70%). GPT-3.5 
(78%) outperformed GPT-4 (57%) in extracting body mass index (BMI). Utilizing alternative decoding 
strategies to sex and BMI did not practically improve the performance of the two models. In GPT-4, the 
revised prompts, including definitions of each sex category or the BMI formula, rectified all incorrect 
responses regarding sex and BMI generated during the main workflow. 
Conclusion: GPT models could perform adequately with simple prompts for extracting straightforward 
information. For complex tasks, incorporating task-specific definitions into the prompts is a suitable 
strategy than relying solely on simple prompts. Therefore, researchers and clinicians should use their 
expertise to create effective prompts and monitor LLM outcomes when extracting complex information 
from clinical texts. 

Keywords: Natural Language Processing, Medical Records, Access to Information, Medical Informatics. 

Introduction 
An Electronic Health Record (EHR) is a digital 

repository of a patient's medical data, accessible 
electronically by healthcare providers [1]. EHR data is 
categorized into structured and unstructured data 
based on the presence of a predetermined format [2]. 
Clinical texts as unstructured data constitute a 
significant portion of medical data and contains 
valuable information [1, 3]. However, processing and 

analyzing clinical texts is challenging due to the lack 
of a defined format and its narrative nature, posing 
significant obstacles to research based on clinical texts 
[1, 4].  

 Interest in large language models (LLMs) for 
clinical applications has surged within just a few 
months following the introduction of ChatGPT (Chat 
Generative Pre-trained Transformer; OpenAI), as 
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conversational AI (artificial intelligence) application 
based on GPT models, a type of LLMs [5]. A session of 
ChatGPT is initiated by entering a query, typically 
referred to as a “prompt”, and ChatGPT subsequently 
generates a natural language response [5]. Natural 
language processing is a technology that transforms 
unstructured language into structured data [6]. Thus, 
processing of unstructured clinical text may be 
possible by applying ChatGPT with the clinical text as 
input to a prompt containing a query for data 
processing. 

 Prompt engineering, such as using prompts with 
task-specific definitions, enables GPT models to 
effectively extract relevant information from 
unstructured clinical texts [7, 8]. Additionally, 
selecting appropriate decoding strategies is crucial for 
improving performance in tasks with ambiguity or 
inconsistency [9, 10]. Therefore, it is important to 
explore which approaches, including prompt 
engineering and decoding strategies, are most 
effective in addressing challenges when extracting 
information from clinical texts. 

 The pre-anesthesia evaluation note clearly 
summarizes the basic information, medical history, 
and test results of the surgical patients, making it 
useful for quickly understanding the patient's 
condition and assessing the patient's risk [11]. The 
information in the pre-anesthesia evaluation note may 
be leveraged by clinicians as well as large language 
models to draft a range of medical documents, such as 
medical progress notes, surgical consent forms, and 
insurance claims [7, 12].  

In this study, we compared the performance of 
GPT-3.5 and GPT-4 using prompts designed to extract 
information from unstructured clinical texts related to 
pre-anesthetic evaluations, derived from case reports 
published in open-access journals. Furthermore, we 
evaluated the effectiveness of alternative decoding 
strategies and the inclusion of task-specific definitions 
in prompts as methods to enhance performance in 
tasks where GPT models demonstrated limitations. 

Materials and Methods 
Data Sources and Clinical Texts as Input 

We conducted a search for case reports in 
open-access journals related to anesthesiology 
through PubMed and obtained the original texts of 60 
case reports that were published between 2018 and 
2023. One author (MSK) extracted 60 clinical texts 
containing patient characteristics, 50 clinical texts 
containing patient's medical history, and 25 clinical 
texts containing clinical test results from the selected 
case reports.  

Designing Prompts for the GPT models 
In this study, prompts for extracting information 

from clinical texts were designed based on zero-shot 
learning, a type of in-context learning where only task 
descriptions were provided without any examples 
[13]. 

The prompt for clinical texts containing patient 
characteristics contained a query that extracted basic 
information about patients undergoing surgery under 
anesthesia. The body mass index (BMI) was included 
in basic information extracted through the prompt, 
but a formula for calculating BMI using height and 
weight was not included in the prompt. This 
approach aimed to investigate whether GPT models 
could autonomously calculate BMI using height and 
weight values from clinical text without a BMI value, 
even in the absence of a BMI formula within the 
prompt. Thus, it was considered as a true response if 
the GPT models provided a BMI value from clinical 
texts with height and weight values but no BMI value. 
However, if GPT models did not provide BMI values 
despite the presence of height and weight values in 
clinical texts, it was specifically defined as a false 
response.  

The prompt for clinical texts containing a 
patient’s medical history was designed to ascertain 
the presence or absence of a specific disease, yielding 
a binary response. The prompt for clinical texts 
containing clinical test results were created with the 
aim of extracting information about the specific 
clinical test results. 

Extracting information using the GPT models 
The GPT-3.5 and GPT-4 models were utilized 

through the OpenAI API (Application Programming 
Interface). This API offers a method for users to 
programmatically interact with the GPT models, 
allowing them to generate text, answer inquiries, 
carry out language-related tasks, and perform other 
functions [14]. The created prompts were used to 
query GPT models through codes written using 
Python (version 3.8.13; Python Software Foundation, 
Wilmington, DE, USA), and LangChain (version 
0.0.235; https://www.langchain.com) which is a 
Software framework for developing applications 
using large language models (LLMs). In the 
parameter setting of each model, 'gpt-3.5-turbo' and 
'gpt-4' were set as models of GPT-3.5 and GPT-4, 
respectively. In the parameter settings of the 
ChatOpenAI Class imported from LangChain, the 
'model' parameter was set to 'gpt-3.5-turbo' and 'gpt-4' 
to use the 'gpt-3.5-turbo-0613' and 'gpt-4-0613' models 
as GPT-3.5 and GPT-4, respectively. Each prompt was 
applied to both GPT-3.5 and GPT-4 only once to 
obtain a single output. As the main workflow, 
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prompts containing queries to extract information 
were applied to GPT models using the Greedy 
Approach as the decoding strategy [10]. To apply this 
strategy, the temperature parameter was set to zero to 
elicit a deterministic response, while default values 
were retained for all other parameters. Temperature 
controls the level of randomness in the output. When 
the temperature is set to 0, randomness is eliminated, 
and the model generates the consistent response for a 
given query [15]. 

After conducting the main workflow, if the 
performance of the GPT models for a specific task was 
low, the following process was performed to apply 
other decoding strategies instead of Greedy 
Approach. First, the same prompts used in the main 
workflow were applied to the GPT models five times 
with the temperature set to 1, resulting in five 
outputs. Self-Consistency, which determines the final 
output through majority voting for the five outputs, 
and First Valid Value, which selects the valid value as 
the final output if any of the five outputs have a valid 
value, were employed as decoding strategies [9]. 
Self-Consistency has been proposed in previous 
research to complement the reasoning ability of LLMs 
[9]. In programming, First Valid Value refers to 
selecting the first non-NA or non-NULL value from a 
list or vector. In this study, the concept of First Valid 
Value was applied as a decoding strategy. Despite the 
utilization of alternative decoding strategies, for tasks 
where GPT models demonstrated low performance, a 
revised prompt containing task-specific definitions 
was reapplied to both models.  

Evaluation of the generated outputs  
Two authors (MSK and NK) proceeded with the 

evaluation of the output generated from GPT models. 
Each evaluator assessed the output as True for correct 
responses and False for incorrect responses. When the 
judgments between the two evaluators were different, 
the final judgment was determined through 
consensus.  

In the case of clinical texts containing patient 
characteristics, if the GPT models failed to compute 
and provide BMI despite the presence of height and 
weight data, the response was considered incorrect. 
When only one of height or weight was present in the 
clinical texts where BMI existed, even if the GPT 
models were unable to calculate and provide the 
missing height or weight, it was not considered 
incorrect due to the complexity of the calculation 
involved. Regarding sex, if the GPT models were 
unable to confirm the sex despite the presence of clues 
such as sex-specific words or organs in the clinical 
text, the response was considered incorrect. 
Concerning surgery-related diagnosis, if the models 

provided a patient's diagnosis that wasn't directly 
linked to the surgery, it was considered an incorrect 
response. 

Embedding and dimension reduction of clinical 
texts 

Sentence embedding was performed on clinical 
texts related to the low performance of GPT models 
for certain tasks, using the OpenAI API. The model 
utilized for embeddings was 'text-embedding- 
ada-002,' and the resulting output dimension after 
embeddings was 1536. After embedding, the 
1536-dimensional real-number vectors obtained from 
each clinical text were reduced to 2-dimensional 
real-number vectors using t-Distributed Stochastic 
Neighbor Embedding (t-SNE) [16]. The 2-dimensional 
vectors obtained through dimensionality reduction 
were labeled as true and false responses according to 
the responses of the GPT models for certain tasks with 
the low performance. The formation of clusters for 
each label was confirmed through visualization. The 
Silhouette score was calculated to provide a 
quantitative measure of how well-defined and 
distinct each cluster was [17]. Dimensionality 
reduction using t-SNE as well as the calculation of the 
Silhouette score, was performed using scikit-learn 
library (version 1.3.0; https://scikit-learn.org/ 
stable/). As a complementary approach, comparisons 
were conducted between true and false response for 
the mean values of the two components of the 
two-dimensional vectors obtained after 
dimensionality reduction. For these comparisons, 
Student's t test or Wilcoxon rank sum test was 
performed depending on the results of Shapiro-Wilk 
normality test for residuals derived from a linear 
regression model estimated from the mean values of 
two components and two labels. 

Statistical analysis 

Statistical analyses and data visualization were 
conducted using R software (version 4.3.1; R 
Foundation for Statistical Computing). Data were 
presented as number or percentage. The comparison 
of the ratio of correct and incorrect responses between 
GPT-3.5 and GPT-4 was conducted using McNemar’s 
test, with 95% confidence (CI) intervals of the p value 
derived from 1000 bootstrap samples to enhance 
reliability. When performing multiple comparisons of 
accuracy among the three decoding strategies, i.e., 
Greedy Approach, Self-Consistency, and First Valid 
Value, a Bonferroni correction was applied by 
multiplying the initially obtained p values by 3. A p 
value < 0.05 was considered statistically significant. 
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Results  
The main workflow of this study was shown in 

Figure 1. The main workflow for collecting outputs 
generated from GPT models using prompts and codes 
was performed in August 2023. Further evaluations 
using alternative decoding strategies and the revised 
prompts were conducted in October 2023. Table 1 
provides characteristics of sixty case reports enrolled 
in this study. All clinical texts with references are 
available in the Supplementary Data. 

Information extraction from clinical texts 
containing patient characteristics  

Examples of clinical text containing patient 
characteristics, the prompt and GPT models’ 
performance for extracting patient characteristics with 
Greedy Approach were presented in Figure 2. Both 
models accurately extracted data regarding age, 
height, weight, and ASA (American Society of 
Anesthesiologists) classification from all clinical texts. 
For surgery name, only GPT-4 demonstrated a 100% 
accuracy rate without statistically significant 
difference between the two models (p = 0.248, 95% CI: 
0.023 to 1.000).  

Regarding sex, neither of the two models 
achieved a 100% accuracy rate, but GPT-4 
demonstrated a statistically significantly higher 
accuracy rate (95%) compared to GPT-3.5 (70%) (p < 
0.001, 95% CI: 7.6 × 10-6 to 0.043). For the eighteen 

clinical texts where GPT-3.5 provided incorrect sex 
information, it consistently misclassified “male” as 
“none.” This misclassification was due to the inability 
of GPT-3.5 to identify “man,” “boy,” and “he” as 
male-related words, as well as “prostate” as 
male-related organs.  

 

Table 1. Characteristics of sixty case reports 

  n = 60 
Age (yr) 59 [0.17 - 93]* 
Patient Category  
 Adult  51 (85) 
 Pediatric 9 (15) 
Sex   
 Male 36 (60) 
 Female 24 (24) 
Author Country of Origin  
 Asia 53 (88.3) 
 Europe 3 (5) 
 North America 3 (5) 
 Africa 1 (1.7) 
Publication year  
 2018 1 (1.7) 
 2019 15 (25) 
 2020 9 (15) 
 2021 10 (16.7) 
 2022 15 (25) 
 2023 10 (16.7) 

Data are given as median [range] or number (%). *One case described the patient's 
age as 'middle-aged,' which was approximated as 50 years to calculate the median 
and range.  

 

 
Figure 1. Main Workflow of this study. A. Three types of clinical texts extracted from case reports in open-access journals related to anesthesiology were utilized as input. 
Prompts containing queries for information extraction were then applied to both GPT-3.5 and GPT-4 using Greedy Approach as the decoding strategy. The resulting outputs 
were then assessed to determine the accuracy of information extraction. B. Greedy Approach. The temperature was set to zero so that GPT models could provide a consistent 
and deterministic response by eliminating randomness in the output. 
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Figure 2. Information extraction from sixty clinical texts containing patient characteristics. A. Examples of clinical text containing patient characteristics. B. Prompt for 
information extraction. C GPT models’ performance about extracting patient characteristics. In terms of sex, GPT-4 demonstrated a significantly higher accuracy rate (95%) 
compared to GPT-3.5 (70%). GPT-3.5 exhibited significantly better performance (78%) for BMI extraction compared to GPT-4 (57%). *p value < 0.05, **p value < 0.01, ***p value 
< 0.001. 

 
Specifically, in 14 out of 16 clinical texts that 

contained the word “man”, GPT-3.5 categorized the 
sex as “none”. GPT-4 provided incorrect sex 
information in three clinical texts. In one case, GPT-4 
failed to identify the word “woman,” and in the other 
two cases, it missed recognizing the words “he” and 
“prostate.” When the GPT models generated “male” 
or “female” instead of “none”, those answers were 
always correct. Performance of GPT models in 
extracting sex from sixty clinical texts was 
additionally evaluated using Self Consistency and 
First Valid Value as alternative decoding strategies. 
Schematic diagrams of these alternative strategies 
used for further evaluations were shown in Figure 3A. 
The results of further evaluations were summarized 
in Figure 3B. In GPT-3.5, despite First Valid Value 
(82%) providing better accuracy than Greedy 

Approach (70%) and Self Consistency (70%), there 
was no statistical difference (p = 0.023; 95% CI: 0.0015 
to 0.248; Bonferroni corrected p = 0.070). In GPT-4, 
alternative decoding strategies did not contribute to 
performance improvement. A revised prompt 
containing definitions of each sex category (Figure 3C) 
was employed using the Greedy Approach on clinical 
texts from which incorrect sex information had been 
extracted when the original prompt was used in both 
models. In GPT-3.5, 17 out of 18 cases that previously 
resulted in incorrect sex identification were corrected 
to display the accurate sex response with the revised 
prompt. GPT-3.5 still exhibited an inability to identify 
the word “he” correctly. Upon executing the revised 
prompt in GPT-4, the three cases that had previously 
generated incorrect responses were rectified to 
provide the accurate answers. 
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Figure 3. Further evaluations for sex information extraction from sixty clinical texts using alternative decoding strategies. A. The original prompt used in the main workflow was 
applied to the GPT models five times with the temperature set to 1, resulting in five outputs. Self-Consistency, which determines the final output through majority voting for the 
five outputs, and First Valid Value, which selects the final output if any of the five outputs have a valid value instead of “none”, were employed as alternative decoding strategies. 
B. The performance of GPT models in extracting sex information from sixty clinical texts was evaluated using three different strategies. There were no significant differences 
among the three decoding strategies in both models. C. The revised prompt was created by adding sex-related clues to the original prompt. In GPT-3.5, the revised prompt 
corrected 17 out of 18 cases of incorrect sex identification. In GPT-4, the revised prompt successfully corrected all three previously incorrect cases. 

 
GPT-3.5 exhibited statistically significant better 

information extraction performance (78%) in BMI 
compared to GPT-4 (57%) (p = 0.012; 95% CI: 6.1 × 10-5 

to 0.503). According to the presence or absence of BMI 
values and the possibility of calculating BMI using 
height and weight, clinical texts were categorized into 
three types: seven clinical texts containing the BMI 
value, sixteen clinical texts without a BMI value and 
where BMI cannot be calculated due to absence of 
height or weight, and thirty-seven clinical texts 
without a BMI value but where BMI can be calculated 
due to presence of height and weight values. In this 
study, if GPT models did not provide BMI values 
despite the presence of height and weight values in 
clinical texts without a BMI value, it was considered 

as a false response. Figure 4 displayed examples of 
three types of clinical texts and the performance of 
GPT models in extracting BMI values based on the 
type of clinical text. All false responses in BMI 
extraction occurred only in the thirty-seven clinical 
texts without a BMI value but with height and weight 
information, allowing BMI calculation (Figure 4C). In 
these thirty-seven clinical texts, GPT-3.5 and GPT-4.0 
provided BMI values as the true response using 
height and weight values in 24 and 11 cases, 
respectively. When the GPT models generated BMI 
values instead of “none”, those answers were always 
correct. Thus, the performance of GPT models in 
extracting BMI from only thirty-seven clinical texts of 
this type was further evaluated using Self Consistency 
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and First Valid Value as alternative decoding 
strategies. Schematic diagrams of these alternative 
strategies used for further evaluations were shown in 
Figure 5A.  

Results of further evaluation of the GPT models 
in extracting BMI from thirty-seven clinical texts are 
presented in Figure 5B. In GPT-3.5, the accuracy of 
First Valid Value (86%) was statistically significantly 
higher than that of Greedy Approach (65%; p = 0.013; 
95% CI: 8.7 × 10-4 to 0.136; Bonferroni corrected p = 
0.040) and Self Consistency (62%; p = 0.008; 95% CI: 
5.1 × 10-4 to 0.134; Bonferroni corrected p = 0.023), 
respectively. In GPT-4, the accuracy of First Valid 
Value (46%) was statistically significantly higher than 
that of Self Consistency (24%; p = 0.013; 95% CI: 8.7 × 

10-4 to 0.248; Bonferroni corrected p = 0.040). Instead of 
altering the decoding strategy, the performance of the 
GPT models for BMI extraction was assessed by 
revising the prompt within the existing main 
workflow with Greedy Approach. The prompt 
revision involved incorporating the BMI formula, 
which defines BMI, into the original prompt (Figure 
5C). Upon implementing the revised prompt, which 
included the BMI formula, through the Greedy 
Approach, GPT-4 answered with 100% accuracy. 
However, GPT-3.5 persisted in failing to generate BMI 
values in three instances of clinical texts containing 
height and weight values but no BMI values (Figure 
5D). 

 
 

 
Figure 4. Three types of clinical texts according to the presence or absence of BMI values and the possibility of calculating BMI using height and weight. A. There were no false 
responses for BMI value extraction from the two GPT models in clinical texts with BMI values. B. There were no false responses for BMI value extraction from the two GPT 
models in clinical texts without BMI and where BMI cannot be calculated due to absence of height or weight. C. If GPT models did not provide BMI values despite the presence 
of height and weight values in the clinical texts without BMI values, these instances were considered as false responses in this study. All false responses in BMI extraction occurred 
only in the thirty-seven clinical texts without a BMI value but with height and weight information, allowing BMI calculation. 
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Figure 5. Further evaluations for BMI extraction from thirty-seven clinical texts containing height and weight but no BMI values using alternative decoding strategies and revision 
of the prompt. A. The original prompt used in the main workflow was applied to the GPT models five times with the temperature set to 1, resulting in five outputs. 
Self-Consistency, which determines the final output through majority voting for the five outputs, and First Valid Value, which selects the final output if any of the five outputs have 
a valid value instead of “none”, were employed as alternative decoding strategies. B. The performance of GPT models in extracting BMI from the thirty-seven clinical texts, which 
contained height and weight values but no BMI values, was evaluated using three different strategies. In GPT-3.5, the accuracy of First Valid Value (86%) was statistically 
significantly higher than that of Greedy Approach (65%) and Self Consistency (62%), respectively. In GPT-4, the accuracy of First Valid Value (46%) was statistically significantly 
higher than that of Self Consistency (24%). C. The revised prompt was created by adding the BMI formula to the original prompt. D. Upon implementing the revised prompt 
through the Greedy Approach, GPT-4 answered with 100% accuracy, GPT-3.5 persisted in failing to generate BMI values in three clinical texts. *adjusted p value < 0.05, 
**adjusted p value < 0.01, *** adjusted p value < 0.001. 

 
Two-dimensional vectors were obtained through 

dimensionality reduction using t-SNE from the 
embedding vectors of the thirty-seven clinical texts 
containing height and weight values but no BMI 
values and additional analyses were conducted in 
these vectors (Figure 6A). The mean values of the two 
components of the two-dimensional vectors were 
compared between True and False responses 
generated from the GPT models using original 
prompt without the BMI formula according to each 
decoding strategy (Figure 6B). In GPT-3.5, there was a 
statistically significant difference in mean values of 
two components between True and False responses in 
the Greedy Approach (p = 0.015; 95% CI: 9.2 × 10-6 to 
0.435; Bonferroni corrected p = 0.045). In GPT-4, 
statistically significant differences in mean values of 
the two elements were observed between True and 

False responses in Greedy Approach (p = 0.003; 95% 
CI: 3.3 × 10-11 to 0.335; Bonferroni corrected p = 0.009) 
and Self Consistency (p < 0.001; 95% CI: 6.4 × 10-12 to 
0.092; Bonferroni corrected p < 0.001), respectively. 
Scatter plots and Silhouette scores of True and False 
responses of the GPT models according to three 
decoding strategies were illustrated in Figure 6C. In 
GPT-4, mean values of Silhouette score for the vectors 
corresponding to the True response under Greedy 
Approach and Self Consistency were 0.196 and 0.284, 
respectively. 

Information extraction from clinical texts 
containing previous medical history 

When using the prompt to verify the presence of 
a specific disease in a clinical text containing a 
patient's medical history (Figure 7A), GPT-4 
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accurately confirmed the presence or absence of the 
disease with 100% accuracy in all instances. In the case 
of GPT-3.5, the presence or absence of a specific 

disease was accurately determined, except for one 
instance where chronic renal failure was mistakenly 
classified as end stage renal disease (ESRD). 

 

 
Figure 6. Embedding and dimensionality reduction of thirty-seven clinical texts containing height and weight but no BMI. A. Sentence embedding was performed on clinical texts 
and then real-number vectors obtained from each clinical text were reduced to two-dimensional vectors using t-Distributed Stochastic Neighbor Embedding (t-SNE). The 
two-dimensional vectors were labeled as true and false responses based on the GPT models’ responses. B. According to decoding strategies, comparisons were conducted 
between the two responses for the mean values of the two components of the two-dimensional vectors. There was a significant difference in mean values between the true and 
false responses with the Greedy Approach in GPT-3.5 and both the Greedy Approach and Self Consistency in GPT-4. C. Scatter plots with Silhouette score of true and false 
responses according to the three kinds of strategies. *adjusted p value < 0.05, **adjusted p value < 0.01, *** adjusted p value < 0.001. 
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Figure 7. Information extraction from clinical texts containing previous medical history or clinical test results. A. Examples of clinical texts containing previous medical history 
and prompt for verifying the presence of a specific disease. B. Examples of clinical texts containing clinical text results and prompt for extracting clinical test results. 

 

Information extraction from clinical texts 
containing clinical test results 

Examples of clinical texts containing clinical text 
results and prompt for extracting clinical test results 
were illustrated in Figure 7B. In both models, there 
was a single instance of incorrect information 
extraction from a chest X-ray when utilizing the 
prompt designed to extract specific test information 
from clinical text containing clinical test results. In this 
isolated case, both models interpreted the findings of 
chest computerized tomography as those of a chest 
X-ray. Aside from this particular occurrence, both 
models consistently and accurately extracted clinical 
test results from all clinical texts. 

Discussion 
In this study, both models accurately extracted 

data regarding age, height, weight, and ASA 
classification from all clinical texts containing patient 
characteristics. Regarding sex, GPT-4 demonstrated a 
significantly higher accuracy rate (95%) compared to 
GPT-3.5 (70%). However, GPT-3.5 exhibited 
statistically significantly better performance (78%) for 
extracting BMI compared to GPT-4 (57%). In GPT-4, 
all incorrect responses regarding sex and BMI during 
the main workflow were rectified by revising the 
original prompt to include definitions of each sex 
category or the BMI formula. Despite applying the 
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revised prompts, GPT-3.5 failed to answer with 100% 
accuracy for extracting Sex or BMI. Utilizing 
alternative decoding strategies for sex and BMI did 
not practically improve the performance of the two 
models. Additionally, both models demonstrated 
high accuracy in identifying specific diseases and 
extracting specific test results. 

Accurate sex identification is essential due to the 
inherent differences in anatomy, disease prevalence, 
and prognosis according to a patient's sex [18, 19]. In 
this study, GPT-3.5 did not demonstrate satisfactory 
performance in accurately extracting sex from clinical 
texts. Especially, GPT-3.5's inability to identify the 
word 'man' as male in many texts could be due to the 
various dictionary meanings of “man”. In traditional 
usage, the word "man" is occasionally employed to 
denote humanity as a whole [20]. This broader 
semantic scope may account for GPT-3.5's challenges 
in accurately discerning sex, as it potentially 
interpreted "man" in its more universal sense. A 
possible example of such situations in clinical text can 
be found in abbreviations for diseases or medications. 
For instance, if the abbreviation "MS" is mentioned in 
clinical texts, it could represent several different 
meanings (e.g., mitral stenosis, multiple sclerosis, or 
magnesium sulfate), necessitating contextual 
interpretation. In texts that contain polysemous terms 
like this, an incorrect interpretation by the LLMs can 
lead to the extraction of erroneous information. Both 
models also failed to identify male in a clinical text 
that mentioned the prostate, an organ exclusive to 
males. In this study, these limitations could be 
significantly reduced by incorporating definitions of 
each sex category directly into the prompts. 
Therefore, if researchers or clinicians provide clear 
definitions of the target variables they wish to extract 
in the prompts, utilizing their own domain 
knowledge rather than relying solely on LLMs, it 
could enhance LLM performance.  

In this study, the use of a prompt without a BMI 
formula aimed to verify the GPT models’ capability to 
comprehend the formula of BMI, and subsequently 
calculate and provide BMI using height and weight 
data extracted from clinical texts without BMI 
information. Both GPT models successfully generated 
BMI in some clinical texts when provided with height 
and weight data. It is believed that the GPT models 
possess prior knowledge of BMI, enabling them to 
calculate BMI using values of height and weight. 
However, both GPT models failed to generate BMI in 
all clinical texts where height and weight values were 
present but not BMI values. In a previous study on 
clinical text summarization utilizing LLMs, GPT-4 
tended to adopt a literal approach without 
interpretation, in contrast of medical experts [21]. This 

tendency may have led to GPT models in the current 
study failing to interpret the prompt broadly enough 
to calculate BMI from height and weight in some of 
the clinical texts. The authors of this previous study 
noted the need to investigate whether the model 
responds literally or more interpretively through 
temperature control [21]. Despite setting the 
temperature to 1 and employing the Self-Consistency 
method in this study, the models’ performance in 
extracting BMI information did not improve. The 
inconsistency in generating BMI may also stem from 
variations in contextual differences and the use of 
specialized medical terminology within clinical texts 
containing height and weight information [1, 22]. To 
find clues related to this hypothesis, this study 
conducted additional analyses using sentence 
embedding [23]. Sentence embedding refers to a 
numeric representation of a sentence in the form of a 
vector of real numbers, which encodes meaningful 
semantic information such as context and meaning 
[24]. By applying t-SNE to these high-dimensional 
vectors, we were able to project each clinical text onto 
a two-dimensional plane, enabling a visual inspection 
of clusters based on true and false responses 
generated by GPT models. In addition to visual 
evaluation, this study calculated Silhouette scores to 
quantify the cohesion of clusters. The Silhouette score 
ranges from -1 to 1, with a value closer to 1 indicating 
that the clusters are well-formed and internally 
cohesive [17]. In this study, Silhouette scores ranging 
from 0 to 0.15 were calculated, indicating that the 
clusters were not well separated and there was 
overlap between them. The low Silhouette scores 
might be attributed to several factors, including the 
possibility that the t-SNE may not adequately 
preserve the original data structure, the limited 
number of clinical texts, which may not be sufficient 
to form distinct and cohesive clusters, and the 
potential for GPT models to randomly decide whether 
to calculate BMI values [16]. Further research is 
warranted to address these issues.  

Interestingly, GPT-3.5 demonstrated the ability 
to generate BMI from a greater number of clinical 
texts compared to GPT-4 when using the prompt 
without a BMI formula. These results indicate that 
GPT-4 is more advanced in certain aspects, but it 
might not be optimized for specific types of data 
processing [25]. Both GPT-3.5 and GPT-4 utilize the 
"cl100k_base" tokenizer, which is based on Byte Pair 
Encoding (BPE) [26]. Although the tokenization 
process is consistent across the two GPT models, 
differences may arise from their training datasets such 
as variations in content and coverage and training 
procedures, including hyperparameters, schedules, 
and fine-tuning stages [27]. These differences may 
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result in distinct model biases, potentially making 
GPT-4 less effective than GPT-3.5 for certain tasks. 
Another possible explanation for GPT-3.5’s 
outperformance could be the trade-off between 
hallucination and creativity. Hallucination, defined as 
a false response generated by LLMs, can be seriously 
dangerous in medical situations [7]. However, a 
previous study suggested that the creativity of GPT 
models could be enhanced by the phenomenon of 
hallucination by allowing them to investigate a 
broader range of token sequences beyond just the 
most likely options on the based on the given input 
[28]. A recent study showed that GPT-4 exhibited 
fewer hallucinations than GPT-3.5 [29]. Although 
reducing hallucinations improves factual accuracy, it 
may inadvertently limit GPT-4’s creativity. In other 
words, this trade-off could lead GPT-4 to generate 
more conservative interpretations of queries and 
responses. Consequently, GPT-4 may have calculated 
and provided BMI information less frequently in 
clinical texts containing height and weight. Therefore, 
regardless of how advanced an LLM may be, 
continuous monitoring will be required to ensure that 
it accurately extracts the specific outcomes that 
researchers or clinicians seek from clinical texts. 

In this study, Self-Consistency and First Valid 
Value were applied as alternative decoding strategies 
to improve the low performance of sex and BMI 
extraction of the GPT models. Our findings suggested 
that Self-Consistency offered negligible performance 
enhancement for GPT models, due to these advanced 
language models' inherent efficiency in extracting 
information from input prompts. In this study, when 
the GPT models provided sex and BMI instead of 
“none”, those values were always accurate. So, the 
primary issue with extracting such information is not 
that GPT models generate incorrect values, but 
whether they can utilize or interpret the data present 
in clinical texts to provide values. Thus, if any of the 
five outputs obtained by applying the original prompt 
five times to the GPT models contained a value other 
than “none”, selecting an output with that value as 
the final output could enhance performance. In this 
study, the use of First Valid Value as a decoding 
strategy demonstrated better performance for 
extracting BMI from the thirty-seven clinical texts 
containing height and weight values but no BMI 
values in GPT-3.5, compared to Greedy Approach and 
Self-Consistency. However, it is essential to verify that 
the outputs provided by the LLM are accurate in 
order to apply the First Valid Value. 

This study showed that the prompt with a BMI 
formula as a definition in the form of a mathematical 
formula led to significant performance improvements 
in both models for providing BMI. In particular, the 

performance of GPT-4 was greatly improved with 
100% accuracy in generating BMI. In healthcare, it is 
common to utilize existing patient information to 
create clinically significant scoring systems such as 
Child Pugh Score and Model for End-Stage Liver 
Disease (MELD) in liver disease [30, 31]. Thus, it may 
be necessary to provide detailed definitions about 
each score system in the prompt when generating 
these scores from clinical texts through LLMs. In 
addition, embedding documents that detail scoring 
systems, combined with Retrieval-augmented 
generation (RAG), could be considered an effective 
way to provide prompts with task-specific 
information [32].  

The current study had some limitations. First, 
this study demonstrated the potential of GPT models 
in extracting information from well-structured clinical 
texts in case reports. However, real-world clinical 
texts derived from EHRs are typically written in an 
informative-dense and telegraphic style and are often 
more fragmented and prone to errors, which presents 
challenges for data processing and analysis [1]. 
Second, the relatively small number of case reports 
enrolled in this study may have constrained the depth 
and comprehensiveness of the evaluation. This 
limitation could also potentially increase the risk of 
overfitting and limit the generalizability of the 
findings to other clinical texts. Despite the limitations 
posed by the structured nature of the clinical texts and 
small sample size, the insights regarding prompt 
engineering for extracting information from clinical 
texts derived from our study may be applied to 
improve model performance in real-world clinical 
settings. In this study, application of bootstrap 
resampling helped mitigate statistical issues 
associated with a small dataset by producing a 
synthetic dataset that is representative of the broader 
population of clinical case reports, thereby enabling 
better estimation of the population confidence 
intervals [33]. We also employed Bonferroni 
correction to conservatively adjust the significance 
level in our statistical hypothesis testing to ensure that 
our findings were not false-positive discoveries on a 
small dataset [34]. Third, clinical texts can potentially 
contain protected health information (PHI) [35]. Until 
safer methods for conducting research using LLMs 
are available, it is crucial to take proactive measures to 
prevent risks to patient privacy and potential harm. 
Thus, we carefully considered the ethical concerns 
associated with AI research using clinical texts. To 
adhere to ethical standards and mitigate any potential 
risks to patient privacy, we utilized clinical texts from 
case reports published in open-access journals, which 
are publicly available and contain no PHI. Future 
research on EHR data using LLMs may require 
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strategies to safeguard patient PHI, such as 
de-identifying data, deploying LLMs in 
privacy-preserving local environments, or 
collaborating with healthcare institutions equipped 
with secure analytical infrastructure [36]. Fourth, this 
study focused solely on performance comparisons 
among GPT models and did not include other LLMs, 
such as clinical domain-specific models like BioBERT 
or ClinicalBERT. While comparing clinical 
domain-specific models for clinical information 
extraction would be valuable, these models are less 
accessible to clinical practitioners compared to GPT 
models [7]. Additionally, we prioritized examining 
the utility and challenges of alternative decoding 
strategies and prompt engineering when extracting 
information from clinical text using GPT models. To 
align with this objective, we concentrated on 
comparisons within a single model type rather than 
across multiple models. In contrast to other studies 
[9], we found that alternative decoding strategies did 
not significantly improve LLM task performance in 
extracting extraction from clinical vignettes. However, 
prompt augmentation using task-specific definitions 
for the element being extracted showed significant 
performance benefit. This technique can be readily 
applied in future studies by healthcare practitioners 
for a variety of information extraction tasks in 
healthcare. Finally, while prompts incorporating 
task-specific definitions can improve performance, 
they may not fully address the intrinsic limitations of 
the models. Given the rapidly evolving field of LLM 
technology, further evaluation of their information 
extraction capabilities using real EHR data will 
remain essential in clinical settings to ensure the 
accurate and objective extraction and interpretation of 
information, free from hallucinations [7, 29]. Prompt 
engineering is an evolving field, with techniques 
likely to change as newer models are introduced. 
Thus, this research highlights one of many possible 
methods to improve performance. In such contexts, 
applying optimized prompts and continuously 
monitoring outcomes obtained from LLMs to refine 
them will be essential for improving performance and 
ensuring reliable results in clinical settings. 

In summary, GPT models could perform 
adequately with simple prompts for extracting 
straightforward information from clinical texts. 
However, for more complex tasks, where GPT models 
may need to utilize their prior knowledge or 
context-based interpretation, incorporating 
task-specific definitions in the prompt could be the 
suitable strategy rather than relying solely on simple 
prompts. Therefore, when extracting complex 
information from clinical text using LLMs, researchers 
and clinicians should actively use their domain 

knowledge to craft effective prompts and 
continuously monitor the accuracy of the outcomes 
provided by the LLMs. 
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