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Abstract 

The clinical manifestation of aortic dissection (AD) is complex and varied, making early diagnosis crucial for 
patient survival. This study aimed to identify immune-related markers to establish a nomogram model for AD 
diagnosis. Three datasets from GEO—GSE52093, GSE147026 and GSE153434—were combined and used for 
identification of immune-related causative genes using weighted gene co-expression network analysis, and 136 
immune-related genes were obtained. Then, 15 pivotal genes were screened by the protein–protein interaction 
network. Through machine learning including the Least Absolute Shrinkage and Selection Operator algorithm, 
random forest algorithm, and multivariate logistic regression, four key feature genes were obtained—CXCL1, 
ITGA5, PTX3, and TIMP1—and the diagnostic scores based on these four genes were proved to be effective in 
distinguishing between AD patients and healthy donors. External dataset (GSE98770 and GSE190635) 
validation revealed this nomogram displayed strong predictive significance. Further analysis revealed that these 
genes are related with neutrophils, resting NK cells, resting mast cells, activated mast cells, activated dendritic 
cells, central memory CD4 T cells, γδ T cells, natural killer T cells, and myeloid-derived suppressor cells in AD. 
Finally, these four genes were validated to be upregulated in AD patients’ tissue and serum samples compared 
with controls. These results suggest that this nomogram model, using machine learning identified four 
immune-related genes CXCL1, ITGA5, PTX3, and TIMP1, displays superior diagnostic ability in distinguishing AD 
and healthy individuals, and immune cells commonly associated with these hub genes may be therapeutic 
targets for AD. 
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Introduction 
Cardiovascular disease is the leading cause of 

death and disability worldwide in most developed 
and developing countries [1]. Aortic dissection (AD) 
is a fatal disease with a high mortality rate that affects 
the complex three-layered wall of the aorta. The 
Stanford system, the most commonly used anatomical 

typing system, classifies AD into two types: type A 
thoracic AD (TAAD) involves the ascending aorta; 
and type B thoracic AD (TBAD) does not include the 
ascending aorta and spreads distally from the isthmus 
[2]. In untreated acute TAAD, the initial mortality rate 
is about 1% per hour, a significant proportion of 
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patients cannot survive beyond three days, and nearly 
80% died within two weeks [3]. The 30-day mortality 
rate for TBAD is 13.9% lower than for TAAD [4]. 
Therefore, early diagnosis is crucial for intervention in 
AD. 

The clinical presentation of AD is characterized 
by its complexity and variability. Patients often lack 
specific signs and symptoms. Clinicians look for 
common symptoms, such as chest and back pain; 
however, atypical symptoms in pain-free patients can 
present a diagnostic challenge, leading to potential 
misdiagnosis [5]. Computed tomography (CT) 
angiography is commonly used to diagnose AD, but it 
is the last option for diagnosis, so clinicians have little 
time to plan surgery. Therefore, rapid identification of 
biomarkers is essential for the early diagnosis of AD. 
Recently, computational methods, particularly 
machine learning, have gained attention for their 
ability to predict events and support clinical 
decision-making [6]. Machine learning is a branch of 
computer science that uses data patterns to identify 
and predict outcomes. It excels in situations involving 
many variables, especially when these relationships 
are complex and non-linear [7-9].  

Several models for diagnosing AD have emerged 
in recent years. These include clustering-based 
integrated learning models for AD screening [10], 
chromatin regulatory factor-based diagnostic models 
[11], and multimachine diagnostic models [12]. 
However, some models did not consider changes in 
the immune microenvironment associated with AD. 
Notably, aortic inflammation is a prominent feature of 
AD. Immune cell infiltration of the intima and 
adventitia leads to increased oxidative stress, 
inflammatory factors, and elevated expression of 
matrix metalloproteinases (MMPs). These factors lead 
to vascular smooth muscle cell (VSMC) apoptosis and 
aortic remodeling and play a vital role in the 
pathogenesis of AD [13]. Immune infiltration occurs 
in the central and lateral perimeters of AD specimens 
and involves various cell types, such as neutrophils, 
mast cells, macrophages, and lymphocytes. Aortic 
immune cells show considerable heterogeneity, 
displaying different cellular states and functions in 
each population. In addition, the recruitment and 
activation of macrophages within the midcapsules are 
key events in the early stages of acute AD [14]. 
Therefore, it is important to characterize AD based on 
the immune cells or immune function level. 

To date, the mechanistic role of immune 
infiltration in AD remains unclear. In this study, Gene 
Expression Omnibus (GEO) datasets were used to 
explore the possible pathogenesis and analyze 
differential immune-related genes between healthy 
individuals and AD samples, then multiple machine 

learning algorithms were adopted to identify the hub 
genes, and a nomogram model was established. This 
study identified as an excellent performance in the 
diagnosis of AD. And the diagnostic model was 
verified by patient tissue and serum samples. These 
results provide novel machine-learning-based 
approaches for AD diagnosis and immunomodu-
lation assessment.  

Materials and Methods 
Public data collection and de-batching  

AD-related datasets were obtained from the 
GEO database (https://www.ncbi.nlm.nih.gov/ 
geo/). The inclusion criteria were defined as follows: 
(1) the dataset samples were from aortic tissue; (2) the 
dataset included AD patients and unaffected controls; 
and (3) the dataset included human gene expression 
profiles. After a thorough review, we selected the 
GSE52093, GSE147026, GSE153434, GSE98770 and 
GSE190635 datasets. Each dataset was carefully 
examined to confirm it met our predefined criteria. 
The GSE52093 dataset comprised 7 AD patient 
samples and 5 control samples, the GSE147026 dataset 
included 4 patient samples and 4 control samples, and 
the GSE153434 dataset had 10 control samples and 10 
patient samples. All data were converted to log2 
format for subsequent analyses. This transformation 
involves applying a logarithmic function to the raw 
expression values. Next, we applied the Surrogate 
Variable Analysis (SVA) algorithm [15] to remove the 
batch effect in three of the gene expression profiling 
datasets, GSE52093, GSE147026, and GSE153434, and 
then merged these datasets into a single training 
dataset, which included 21 AD samples and 19 control 
samples. We apply SVA to three datasets to ensure 
that the results were comparable and not confounded 
by batch effects. GSE98770 and GSE190635 datasets 
were used for validation. Figure S1 depicts the 
relationship between the samples before and after 
removal of the batch effect.  

Identification of immune-related 
disease-causing genes 

The R package “limma” with a significance 
threshold of P < 0.05 was used to identify 
differentially expressed genes (DEGs) between AD 
and control samples in the combined dataset [16]. 
Differential gene expression data were visualized by 
volcano plots, graphs, and heat maps. We then 
assessed the availability of 1131 variant genes and 
constructed gene co-expression networks using the R 
package “WGCNA” [17]. We chose a soft threshold of 
β = 10 to build these networks, targeting a scale-free 
R2 of 0.98. Subsequently, the neighbor-joining matrix 
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was converted into a topological overlap matrix 
(TOM), which quantitatively describes the similarity 
of the nodes by comparing the weighted correlations 
between nodes and other nodes. Genes within the 
same module showed a high degree of co-expression, 
and the correlation between each module and the 
clinical data was calculated to identify clinically 
relevant modules. 

Gene enrichment analysis 
Gene Ontology (GO) enrichment and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
pathways were analyzed in R using the 
“clusterProfiler” software package to gain insight into 
the biological functions of the immune-related 
pathogenic genes [18]. 

Protein–protein interaction networks 
The protein–protein interaction (PPI) network 

was analyzed using STRING (https://string-db.org/) 
[19]. To enhance the visual display of images 
downloaded from STRING and to identify important 
interacting genes, Cytoscape software and the 
MCODE plug-in were used [20]. All genes capable of 
interacting in the PPI network were selected for 
further analysis. The top 30 important genes in the PPI 
network were predicted and explored using five 
topological analysis algorithms—DMNC, MCC, 
MNC, Degree, and EPC—provided by the cytoHubba 
plug-in for Cytoscape. 

Machine learning 
Three algorithms were used to identify feature 

genes among the 15 pivotal genes. Least Absolute 
Shrinkage and Selection Operator (LASSO) is a 
regression method used for variable selection to 
increase prediction accuracy and improve the 
comprehensibility of statistical models [21]. LASSO 
specific parameters: family = "binomial", nfolds = 10, 
and ten-fold cross-validation is used to adjust the 
optimal value of the parameter λ . The minimum 
lambda is defined as the optimal value. Support 
Vector Machine (SVM) is a powerful method to 
establish class boundaries and thus make label 
predictions based on single or multiple feature vectors 
[22]. SVM specific parameters are: halfve. above = 20 
and k = 10. and 10-fold cross validation is used to 
improve the accuracy of the algorithm performs well 
in high dimensional spaces and is able to handle 
nonlinear feature interactions. Random Forest (RF) is 
a suitable method for predicting continuous variables 
with minimal fluctuations because of its lack of 
restrictions on variable conditions, and superior 
accuracy, sensitivity, and specificity in predicting 
continuous variables and providing predictions [23]. 

The RF parameters are as follows: ntree = 500, mtry = 
3, importance = T, and the Gini index is used as an 
important measure. The Random Forest prediction is 
highly reproducible and the Random Forest algorithm 
was used to rank the DEGs based on the reduction of 
the Gini index and the top 15 genes with significant 
values greater than 3 were selected for downstream 
analysis. The diagnostic efficacy and optimal 
thresholds of these models were assessed by 
analyzing receiver operating characteristic (ROC) 
curves. This analysis included calculating the area 
under the ROC curve (AUC), sensitivity, specificity, 
positive predictive value (PPV), negative predictive 
value (NPV), accuracy, and their corresponding 95% 
confidence intervals (CIs). 

Constructing schematics and evaluating 
receiver operating characteristics 

Nomogram of candidate genes was constructed 
using the R software package “rms” [24], where 
“score” represents the score of the candidate genes 
and “total score” is the cumulative score of all 
mentioned genes. A calibration curve was used to 
assess the prediction accuracy of the nomogram. 

External validation 
GSE98770 and GSE190635 datasets were used for 

validation. The GSE98770 dataset contained 6 patient 
samples and 5 control samples, and the GSE190635 
datasets contained 4 patient samples and 4 control 
samples. In the dataset, gene expression profiling was 
performed with mRNA and miRNA microarrays. In 
the validation dataset, the results of the predictive 
model are compared with the results of the training 
set to validate the model. 

Analysis of infiltrating immune cells 
The immune microenvironment (IME) includes a 

variety of innate and adaptive immune cells, 
alongside stromal cells such as fibroblasts, lympho-
cytes, endothelial cells, adipocytes, inflammatory cells 
of bone marrow origin, blood vessels, a variety of 
signaling molecules, and extracellular matrix (ECM). 
Analyzing immune cell infiltration is critical to 
understanding disease progression and treatment 
response. The proportion of immune cells was 
quantified using the CIBERSORTx and ssGSEA 
algorithms [25]. To further our understanding, we 
performed single sample gene set enrichment analysis 
(ssGSEA), an extension of the GSEA approach, 
creating 23 immune genomes. The immunological 
characteristics of all samples were assessed by 
ssGSEA using the “GSVA” R package [26]. To analyze 
the level of the IME, we used the “ESTIMATE” 
software package [27]. 
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Ethics statement and clinical sample collection 
A total of ten healthy serum and aortic samples 

were obtained from organ donors, and samples from 
12 patients with AD were obtained from patients who 
underwent surgery at the Second Affiliated Hospital 
of Hainan Medical University from 2021 to 2022. The 
collected samples were cleaned, aliquoted, labeled, 
preserved in liquid nitrogen within 20 minutes of 
vascular resection, and processed rapidly. CT 
angiography was performed to assess the status of 
AD. The use of human blood and tissue was approved 
by the Institutional Review Board of the Second 
Affiliated Hospital of Hainan Medical University 
(approval number, 2021-011-03), and all methods 
were performed in accordance with the relevant 
guidelines.  

RNA extraction and qRT-PCR 
Total RNA extraction was performed using a 

RNeasy Micro Kit (Qiagen, 74104). Subsequently, 
cDNA synthesis was performed using the QuantiTect 
Reverse Transcription Kit (Qiagen, 205311). 
Quantitative real-time polymerase chain reaction 
(qRT-PCR) was performed using SYBR Green qPCR 
Master Mix (Bio-Rad,1725110). The primer (5′-3′) 
sequences for qPCR were as follows: CXCL1 forward, 
AGCTTGCCTCAATCCTGCATCC; CXCL1 reverse, 
TCCTTCAGGAACAGCCACCAGT; ITGA5 forward, 
GCCGATTCACATCGCTCTCAAC; ITGA5 reverse, 
GTCTTCTCCACAGTCCAGCAAG; PTX3 forward, 
CGAAATAGACAATGGACTCCATCC; PTX3 
reverse, CTCATCTGCGAGTTCTCCAGCA; TIMP1 
forward, GGAGTGTCTGCGGATACTTC; TIMP1 
reverse, GCAGGTAGTGATGTGCAAGAGTC; β-actin 
forward, CACCATTGGCAATGAGCGTTC; and 
β-actin reverse, AGGTCTTTGCGGATGTCCACGT. 

Protein extraction and western blotting 
Aortic tissue was collected in 1.5 ml Eppendorf 

tubes. Proteins were extracted by adding 300 ml of 2% 
SDS loading buffer to 1 mg of ground tissue 
supplemented with β-mercaptoethanol. Samples were 
boiled in a metal bath at 99°C for 10 minutes. Proteins 
were separated using SDS page gels and transferred 
to PVDF membranes (Bio-Rad, #1620177) for 3 hours 
using a wet transfer machine (Bio-Rad, #1703930). The 
membranes were blocked with 5% milk for 1 h at 
room temperature and then incubated overnight at 
4°C with primary antibodies diluted with 5% BSA. 
CXCL1 (Invitrogen, #PA1-29220, 1:1000), PTX3 
(Invitrogen, #PA5-101097, 1:1000), ITGA5 (Protein 
tech, #10569-1-AP, 1:1000), TIMP1 (Santa Cruz, 
#sc-21734, 1:1000), and β-actin (Santa Cruz, #sc-47778, 
1:2000) primary antibodies were used in this study. 

After washing the membrane three times with TBST 
buffer, the membrane was incubated with secondary 
antibodies for 1 h at room temperature. Finally, blots 
were imaged using Bio-Rad Clarity ECL substrate 
(Biorad, #1705060) and ChemiDoc XRS+ System 
(Biorad). 

Enzyme-linked immunosorbent assay (ELISA) 
Blood samples were collected in dry blood 

collection tubes, let stand for 1 h at room temperature. 
Samples were centrifuged at 3500 rpm for 15 min at 
4°C, then aliquoted and stored in -80°C. CXCL1 (Elab 
Sciences, #E-EL-H0045), TIMP1 (Elab Science, 
#E-EL-H0184), ITGA5 (Boster Bio, #EK2227), and 
PTX3 (Invitrogen, #EH386RB) ELISA Kit were used to 
measure the concentration of each protein marker in 
serum. ELISA experiments were performed according 
to the user manuals from the manufacturer’s protocol. 
Briefly, the standard curve was made by diluting the 
standard sample at different dilutions. Blank, samples 
and dilution of standard were added into the 96 well. 
Biotinylated antibody working solution were added 
and incubated for 1 hour at 37°C. Decant the antibody 
and wash with 350 µl wash buffer for 3 times and pat 
it dry against clean absorbent paper. Then, HRP 
conjugated working solution were added to the well 
and incubated for 30 min at 37°C. Wells were washed 
for 5 times using wash buffer. Add 90 µl Substrate 
Reagent to each well and incubated for 15 min, then 
50 µl STOP solution were added. The absorbance of 
OD 450 nm was measured immediately using Tecan 
Spark plate reader.  

Statistical analysis 
The R software package was used for 

bioinformatics analyses, as described above. For 
validation experiments, data were expressed as mean 
± standard deviation (SD). Comparisons between 
groups were made using the student’s t-test with 
statistical significance set at P < 0.05. Graphs were 
generated using GraphPad Prism 9.  

Results 
Identification of immune-related 
disease-causing genes 

First, the DEGs between AD and control samples 
in the merged datasets were screened, and a total of 
1131 DEGs were identified using the thresholds of 
false discovery rate (FDR) < 0.05 and |log2FC| ≥ 1 
(Figure 1A). The immunity scores were significantly 
increased in AD patients compared with controls 
using the ESTIMATE algorithm (P < 0.05) (Figure 1B). 
Subsequently, WGCNA was performed to elucidate 
the relationship between the DEGs and immunity. We 
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used the expression data of these genes, along with 
the immunity scores, as clinical features. The 
distribution of samples is shown in Figure 1C. To 
satisfy the requirement for a scale-free network 
distribution, we explored the values of the parameter 
“power” in the adjacency matrix. We defined a range 
of choices for the network construction parameters 
and computed the scale-free distribution topology 
matrix. As shown in Figure 1D, when the squared 
correlation coefficient reached 0.85 for the first time 
(indicated by the red line), we determined the value of 
“power”, i.e., “power = 8.” Using dynamic pruning 
(Figure 1E) and topological overlap matrix (TOM) 
clustering (Figure 1F), the 1131 genes were classified 
into three distinct modules. The correlation between 
each module and the clinical features was calculated, 
as shown in Figure 1G. After careful analysis, the 
green module was chosen for further examination. It 
exhibited a strong correlation with immunity and 
pathogenicity, boasting a correlation coefficient of 
0.86 and a P-value of 1×10−12. Therefore, 136 genes in 
the green module, identified as targets associated 
with immunity and pathogenicity, were included in 
further analyses. 

Enrichment analysis and PPI networks 
GO enrichment analysis revealed that the key 

genes were closely associated with biological 
processes such as the inflammatory response and the 
cytokine response, cellular components such as 
secretory granules and platelet α-granules, and 
molecular functions such as cytokine activity, receptor 
regulator activity, and signaling receptor binding. 
KEGG analysis revealed that the key genes were 
mainly related to the HIF-1 signaling pathway, 
cellular senescence, iron metabolism, cytokine–
cytokine receptor interactions, and the p53, TNF, and 
IL-17 signaling pathways (Figure 2A–D). Then, a PPI 
network was constructed using the STRING database. 
In this network, proteins are represented by nodes, 
and the lines between the nodes indicate the presence 
of interactions between the proteins. This network 
revealed interactions between 136 of the genes, as 
shown in Figure 2E. We predicted and explored the 
top 30 important genes in the PPI network using five 
topological analysis algorithms, DMNC, MCC, MNC, 
Degree, and EPC, in the cytoHubba plug-in for 
Cytoscape. Through these analyses, 15 genes were 
identified as hub genes (Figure 2F). 

 

 
Figure 1. Co-expression analysis to identify immune-related pathogenic genes. (A) Volcano plot depicting changes in gene expression in unaffected and AD samples. Red and 
blue dots represent genes with up- and downregulated expression, respectively. (B) Violin plot showing differences in immune scores. Red, AD patients; blue, controls. (C) 
Dendrogram depicting sample distribution. (D) Plot of neighbor-joining matrix weights and neighborhood matrix weights. Left: plot of power parameters of selected 
neighborhood matrix weights. The horizontal axis represents the weight parameter, and the vertical axis represents the square of the correlation coefficient between log(k) and 



Int. J. Med. Sci. 2025, Vol. 22 

 
https://www.medsci.org 

878 

log(p(k)) in the corresponding network. Higher values of the squared correlation coefficient indicate that the network is closer to a scale-free distribution. The red line represents 
the critical value where the squared correlation coefficient reaches 0.85. Schematic representation of the average connectivity of genes under different power values of the 
neighborhood matrix weight parameters in the right panel. The red line represents the average connectivity under the power parameter selected in the left panel. (E) Tree 
diagram illustrating the division of gene co-expression modules. Different colors on the gene tree represent each module. (F) Heatmap showing the topological overlap matrix 
(TOM). Light yellow and dark red represent lower and higher TOM values, respectively. (G) Heatmap showing the correlation between individual modules and clinical features. 
The green module is strongly correlated with AD. Numbers in the upper and lower brackets represent correlation coefficients and P-values, respectively.  

 
Figure 2. Molecular mechanisms of modular genes. (A–C) GO enrichment analysis: biological processes (A), cellular components (B), and molecular functions (C). The y-axis 
indicates different GO terms, the x-axis indicates the proportion of genes enriched in GO terms, the circle size corresponds to the number of genes, and the color represents 
the P-value. (D) KEGG pathway enrichment analysis: circle size represents the number of genes, and color represents the significance value. (E) PPI network revealing 
interactions between 136 genes. (F) Venn diagram showing the intersection of five topological analysis algorithms. 

 

Machine-learning-based diagnostic modeling 
Three algorithms were used to identify feature 

genes from the 15 hub genes. For the LASSO 
algorithm, after ten rounds of cross-validation, we 
chose the smallest criterion with the highest accuracy 
to construct the LASSO classifier, which resulted in 
the identification of eight feature genes (Figure 3A). 
For the SVM-RFE algorithm, the minimum classifier 

error was achieved when the number of features 
reached 12 target genes (Figure 3B). According to the 
criterion of MeanDecreaseGini > 1.5, the Random 
Forest algorithm identified five significant feature 
genes (Figure 3C). The feature genes derived from the 
three algorithms were subjected to comparative 
analysis, leading to the identification of four pivotal 
feature genes—CXCL1(C-X-C motif chemokine 
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ligand), ITGA5 (Integrin Subunit Alpha 5), PTX3 
(pentraxin 3), and TIMP1 (tissue inhibitor of 
metalloproteinases 1)—illustrated in Figure 3D. Then, 
multivariate logistic regression was used to calculate 
the regression coefficients of the four feature genes 
and their expression levels in the training dataset, 
which were then used to derive the diagnostic scores 
as follows: 

Diagnostic Score = (CXCL1 × 0.1525) + (ITGA5 × 
0.2043) + (PTX3 × 0.1331) + (TIMP1 × 0.0984). 

As can be seen from the forest plot, P < 0.05 and 
odds ratio (OR) > 1 for all four of these characteristic 
genes, further confirming that these four genes are 
risk factors that may differ significantly between AD 
patients and unaffected individuals (Figure 3E). 

 

 
Figure 3. Machine learning algorithm for identifying feature genes. (A) Ten-fold cross-validation for selecting the best parameters for the LASSO model. Each curve represents 
a different gene. The figure shows the LASSO coefficient curve. The vertical solid line represents the partial likelihood deviation SE, and the dashed line is perpendicular to the 
optimal lambda. (B) SVM-RFE feature selection algorithm. The relationship between the number of trees and the error rate. Genes are ranked according to their relative 
importance. (C) Analysis of the number of trees, the error rate, and the relative importance ranking of genes by random forest. (D) Venn diagram of common feature genes 
identified by the LASSO, random forest, and SVM-RFE algorithms. (E) Forest plots of the four feature genes. 
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Figure 4. Diagnostic score performance assessment. (A–C) Violin plots showing the distribution of diagnostic scores (A), ROC curves illustrating the predictive performance 
of the diagnostic scores (B), and expression box plots showing the genetic profile of AD compared with the control population (C) in the training set. (D–F) Violin plots showing 
the distribution of diagnostic scores (D), ROC curves illustrating the predictive performance of diagnostic scores (E), and expression box plots showing the genetic profile of AD 
compared with the control population (F) in the external validation set. 

 

Validation and performance evaluation of the 
predictive models 

The diagnostic scores constructed using the four 
hub genes were effective in differentiating between 
AD and the unaffected population. First, in terms of 
the training set, the scores for AD patients were 
significantly higher than those of the unaffected 
population (P < 0.05) (Figure 4A), and the AUC value 
of the ROC curve was higher, at 0.972 (Figure 4B). The 
diagnostic genes were significantly different between 
the AD and control populations (Figure 4C). Second, 
the diagnostic scores in the AD group were 
significantly higher than those in the unaffected 
population in the external validation set (GSE98770) 
(P < 0.05) (Figure 4D), and the ROC curve showed an 
AUC value of 0.933 for the model (Figure 4E). 
Expression box plots showed that the diagnostic 
genes were significantly different between the AD 
and control populations (Figure 4F). To further 
evaluate the prediction performance, another external 
dataset was employed to validate the model, results 
showed strong prediction ability of the four-gene 
model (Figure S2). Thus, these results show the 
excellent predictive performance of the diagnostic 
score. 

Constructing a nomogram 
To validate the diagnostic ability of the four 

signature genes (CXCL1, ITGA5, PTX3, and TIMP1) 

for AD patients, we integrated them into a nomogram 
(Figure 5A). The calibration curve showed a small 
error between the actual and predicted survival risk, 
indicating high predictive accuracy (Figure 5B). 
Decision curve analysis (DCA) showed that the 
nomogram curve outperformed the grey line curve, 
indicating better clinical outcomes (Figure 5C). 
Clinical impact curves were constructed from the 
DCA results to visually assess the clinical impact of 
the nomograms. Notably, at a high-risk threshold of 
0.3, the “number at risk” curve was very close to the 
“number at risk with events” curve, suggesting that 
the nomogram has good predictive power (Figure 
5D). To evaluate the influence of demographic and 
clinical feature on the prediction accuracy, sex and 
age characteristics were added to the nomogram, as 
shown in Figure S3A. The calibration curve shows 
that the observed outcomes are consistent with the 
predicted probabilities (Figure S3B). This suggests 
that the nomogram exhibits good predictive power. 
The DCA curve shows better net benefit, suggesting 
that the nomogram has good clinical value (Figure 
S3C). 

Analysis of infiltrating immune cells 
Using training set expression profiles, we 

employed the CIBERSORT and ssGSEA algorithms to 
determine the composition of the immune cell types 
in each sample. Subsequently, we compared the 
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proportions of the various immune cells in AD and 
unaffected populations, as shown in Figure 6A and C. 
This analysis showed significant differences, 
particularly in monocytes, neutrophils, and natural 
killer (NK) cells. Significant associations between the 
four characteristic genes and various infiltrating 
immune cells were observed, and the most common 
co-related immune cells were neutrophils, resting NK 
cells, resting mast cells, activated mast cells, activated 
dendritic cells, central memory CD4 T cells, gamma 
delta (γδ) T cells, natural killer T cells, and 
myeloid-derived suppressor cells (Figure 6B and D). 
These results suggest that these commonly associated 
immune cells may serve as therapeutic targets for AD. 

The four hub genes were significantly elevated 
in AD patient samples 

Samples from ten healthy donors were obtained 
from cadaveric donations (Fig. S4A). A total of 12 AD 
patients with complete medical records were involved 
in this investigation, and Fig. S4B shows 
representative CT angiography images of each patient 
(left) and the corresponding sample images (right). 

The protein levels of CXCL1, TIMP1, ITGA5, and 
PTX3 were much higher in the AD samples than in the 
control group (Figure 7A and B). The qRT-PCR results 
also supported this trend (Figure 7C). Furthermore, 
the expression pattern in patient samples were 
examined by ELISA. Results showed that the four hub 
genes were overexpressed in patient serum compared 
with control group (Figure 7D). 

Discussion 
AD is a life-threatening cardiovascular disease 

that is difficult to diagnose because of its multifaceted 
clinical presentation. Although current imaging 
methods can accurately diagnose AD, they do not 
include the necessary biological information. The 
ability of machine learning to predict the risk of AD 
prevalence provides important support for medical 
research and clinical diagnosis by taking multiple 
factors into account, processing large-scale data, 
providing high-precision predictive capabilities, 
automated feature selection, and continuous 
optimization of models. Previously, several studies 
have been conducted to find biomarkers for the 

 

 
Figure 5. Diagnostic nomogram. (A) Predictive nomogram. (B) Calibration curve to assess predictive performance. (C) Decision curve analysis (DCA) for clinical 
assessment. (D) Construction of clinical impact curves from DCA results.  
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identification or diagnosis of AD and to explore its 
underlying mechanisms. Xu et al. found that some 
plasma metabolites, such as 1,5-anhydro-D-glucitol, 
D-(+)-sucrose, and PC (O-16:0/0:0), are associated 
with the risk of developing TBAD [28]. Wan et al. 
found that MYC and ESR1 have diagnostic value and 
potential as biomarkers for age-related TAAD [29]. 
Sadeghipour et al. identified a novel EFEMP2 gene 
variant (c.C247T) associated with dominant 
non-syndromic thoracic aortic aneurysms [30]. Wang 
et al. found that S100A8/A9, PTX3, and CHI3L1 could 
be practical tools for biomarker identification of an 
elevated risk of acute kidney injury after TAAD 
surgery [31]. Huang et al. found that a combined CRP, 
d-dimer, and MMP9 detection model had the highest 
predictive value for one-year survival in acute type A 
aortic coarctation by ROC analysis [32]. All these 
studies provide clues and directions for the prediction 
and diagnosis of AD. 

In this investigation, we investigated gene 
expression levels in AD patients and unaffected 
controls using the GEO database, and a total of 136 
genes were identified as target genes associated with 
immunity and pathogenicity for further analysis. 
Through GO and KEGG analysis, we identified key 
genes that are mainly associated with biological 
processes such as the inflammatory and cytokine 

responses, cellular components such as secretory 
granules and platelet α-granules, and molecular 
functions such as cytokine activity, receptor 
modulator activity, and signaling receptor binding. 
These genes are also closely related to pathways such 
as the HIF-1 signaling pathway, cellular senescence, 
the iron metabolic response, TNF and IL-17 pathways. 
It has been reported that HIF-1α upregulated CXCL1 
through inducing miR-19a expression in endothelial 
cells (ECs)[33]. ITGA5 induction requires HIF-1 and 
HIF-2 under hypoxic [34], indicating close 
relationship between these genes and the identified 
signaling pathways. The enrichment of these 
biological functions and signaling pathways provides 
potential insights into the pathogenesis of AD. 
Finally, through LASSO, random forest, and 
SVM-RFE algorithms, four feature genes—CXCL1, 
TIMP1, ITGA5, and PTX3—were identified, and these 
four genes all showed upregulated expression levels 
in AD samples compared with controls. 
Consequently, a nomogram model using these four 
hub genes was constructed, which showed excellent 
signatures for predictive ability and diagnostic 
prospects. Two independent datasets and patient 
samples were utilized to validate the prediction 
model and performance. 

 

 
Figure 6. Analysis of immune cell infiltration in AD and unaffected controls. (A, C) Comparison plots illustrating changes in immune cell populations in AD and unaffected 
populations. (B, D) Heatmaps depicting the correlation between the four identified genes and infiltrating immune cells. *P < 0.05; **P < 0.01; ***P < 0.001. The horizontal axis 
represents the immune cell subtypes, and the vertical axis represents the key genes.  
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Figure 7. Validation of the four hub genes expression in control individuals and AD patients. (A-B). Protein level for CXCL1, TIMP1, ITGA5 and PTX3 in healthy donor 
(D1-D10) and AD patients (D1-D10) aortic samples. β-actin and Vinculin were used as internal control. ***P<0.001. (C) mRNA expression level of CXCL1, ITGA5, PTX3 and 
TIMP1 in healthy donors (D1-D10) and AD patients (A1-A12). β-actin was used as internal control. (D) Serum concentration of CXCL1, ITGA5, PTX3 and TIMP1 in healthy 
donors (D1-D10) and AD patients (A1-A12). *P < 0.05, **P < 0.01, ***P<0.001.  

 
The inflammatory response is included in AD 

progression [35]. Hyperinflammatory patients with 
AD have worse outcomes than their hypoinflam-
matory counterparts [36]. Vascular inflammation 
could by trigged by perivascular adipose tissue [37]. 
Of note, the role of macrophages in AD has been 
deeply investigated [38, 39]. It is well known that 
CXCL-1 and Matrix metalloproteinases are involved 
in IL-17 signature genes [40]. Our current study 
reveals an increase of neutrophils, monocytes, resting 
NK cells, macrophages, type 2 and 17 T-helper cells, 
and γδ T cells in AD tissues, alongside a decrease in 
naive B cells, resting mast cells, and activated B cells. 
The four hub genes show partially similar but 
differentiated correlations with immune cells. The 
immune cells related to AD have been mentioned in 
previous reports [41-43]. Our current research 
provides a spectrum of hypoxia and immune cell 
correlations related to AD, and provides new 

evidence supporting immune intervention by these 
four hub genes.  

 The major pathophysiological principle of aortic 
dissection is the increased pressure leading to the 
separation of layers of the media and creates a false 
lumen in the aortic wall. During this process, 
macrophage migrate and infiltrate into the aorta, 
neutrophils infiltration into the adventitia. While 
neutrophils are major cells that secrete MMP proteins, 
macrophages release ECM and mast cells also secrete 
MMPs, which jointly promote AD development [42], 
connecting AD to multiple immune markers, 
including the four hub genes in this study.  

Firstly, CXCL1 levels is elevated in the aortic 
tissue and plasma, leading to an accumulation of 
neutrophils in the aortic wall. This infiltration 
contributes to tissue damage and destabilization of 
the aortic structure. Elevated CXCL1 were observed 
not only in aortic aneurysms in mice [44] but also in 
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AD patients [45]. The tunica adventitia of dissected 
aortas displayed high CXCL1 expression, facilitating 
neutrophil egress from the bone marrow and 
infiltration into the aortic adventitia, and in turn 
leading to local inflammation and aortic expansion 
and rupture [46]. Secondly, TIMP1 is an important 
member of the metalloproteinase inhibitor family It 
plays a crucial role in regulating the activity of matrix 
metalloproteinases (MMPs) [47, 48]. Inflammatory 
cytokines (such as TNF-α and interleukins) can 
increase MMP activity, leading to ECM degradation 
and resulting in aortic dissection. While TIMP1 
regulates this process and participate the aortic wall 
instability. TIMP1 levels are found both elevated and 
decreased in patients with AD [49, 50]. Besides, 
fibroblast-specific TIMP1 targeted intervention has 
shown therapeutic effects on experimental mouse AD 
[51]. To keep a balance of TIMP1 and MMPs ratio 
might be valuable for AD prevention. Thirdly, ITGA5 
refers to integrin subunit α5. it also plays a crucial role 
in the remodeling and maintenance of the ECM. 
Notably, the relationship between ITGA5 and AD has 
received limited attention in previous studies. Two 
studies found high expression of ITGA5 in AD tissues 
[52, 53]. However, a reverse trend has also been found 
[54]. Our study revealed that ITGA5 is significantly 
upregulated in AD tissues. IGTA might participated 
in AD progression via ECM remodeling. Lastly, PTX3 
is a marker of vascular inflammation, it is rapidly 
upregulated during inflammation[55]. In aortic 
dissection, where there is significant vascular 
inflammation, may cause significant increase of PTX3. 
A previous study demonstrated that PTX3 was 
significantly overexpressed in ruptured tissues 
compared with stable abdominal aortic aneurysms 
[56]. In addition, Seim et al. reported elevated levels of 
PTX3 in patients with Loeys–Dietz syndrome 
compared with other inherited thoracic aortic diseases 
[57]. Furthermore, PTX3 has been associated with 
occasional pleural effusions in patients with acute AD 
[58]. Taken together, the four hub genes might 
participate aortic dissection via neutrophils attraction, 
ECM remodeling and acute inflammation. 

Although the four hub genes showed excellent 
diagnostic potentials in AD. They were reported to 
predict other disease. TIMP1 and CXCL1 has been 
reported to be elevated in colorectal cancer [59]. 
CXCL1 and PTX elevation has been reported in acute 
myocardial infarction[60]. PTX3 and TIMP1 was 
involved in a glioma patients’ diagnostic model[61]. 
However, the above study generated the prediction 
model combine with other hub genes. The 
combination of these four genes (CXCL1, TIMP1, 
ITGA5, and PTX3) has not been reported for disease 
prediction before, indicating its specificity for aortic 

dissection diagnosis.  
This study has some limitations. Firstly, our data 

sourced from the public GEO database may introduce 
selection bias, despite being a common practice in 
bioinformatics. These datasets may not fully represent 
all AD cases due to biases in sampling and submission 
by original researchers. To mitigate this, we randomly 
sampled and maximized the number of datasets, 
ultimately selecting three for diversity and two 
external ones for validation. This approach reduced 
bias and improved model applicability, but potential 
bias could still affect generalizability. Secondly, while 
nomogram-based models are valuable for 
personalized prediction and decision-making, they 
may face challenges in resource-limited communities, 
where alternative methods like decision tree 
modeling could be useful. Additionally, we have 
identified signature genes but not fully elucidated 
their regulatory mechanisms in AD, necessitating 
further studies. Lastly, despite the model's good 
performance in validation, sample size limits its 
clinical effectiveness. Given AD's low incidence, 
multicenter collaboration is essential for collecting 
sufficient samples for future analysis.  

Conclusion 
In this study, we utilized multiple machine 

learning algorithms to screen four immune-related 
genes—CXCL1, ITGA5, PTX3, and TIMP1—that 
exhibited distinct expression patterns between control 
and AD samples. Nomogram models constructed 
using these four genes demonstrated high predictive 
value for AD diagnosis. Further infiltrating immune 
cell analysis revealed that these genes are implicated 
in TNF, HIF-1, and IF-17 signaling pathways and are 
associated with some types of immune cells. Notably, 
these four hub genes were overexpressed in both 
patient tissues and serum samples. Our findings 
present a viable model for AD diagnosis and 
immunomodulation assessment. 
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