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Abstract 

Acute kidney injury related to cardiac surgery (CS-AKI) is a serious medical issue that creates significant 
social and economic challenges globally. Inflammatory responses and disruptions in water and salt balance 
are important contributors to CS-AKI. Earlier studies indicated that pre-surgery levels of NT-proBNP 
were a dependable indicator of CS-AKI. Emerging evidence indicates that the abnormal expression of 
microRNA (miRNA) and long non-coding RNA (lncRNA) plays a role in the occurrence of CS-AKI. 
However, the important roles and mechanisms by which NT-proBNP affects lncRNA and miRNA in 
CS-AKI are still unclear. Here, we investigated lncRNA and miRNA expression patterns in BNP-high, 
BNP-stable, AKI, and non-AKI groups through whole transcriptome sequencing analysis. The BNP group 
exhibited differential expressions of 105 miRNAs and 138 lncRNAs. We identified 7 common miRNAs 
and lncRNAs in both the BNP and AKI groups. A functional and pathway enrichment analysis of the target 
genes associated with these miRNAs and lncRNAs was conducted, indicating that miR-135a-5p, 
miR-138-5p, miR-143-3p, and miR-206 are key factors in CS-AKI, particularly in regulating inflammatory 
responses and water-salt balance. These results provide fresh perspectives on research directions and 
possible treatment approaches for CS-AKI. 
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1. Introduction 
Acute kidney injury following cardiac surgery 

(CS-AKI) is a prevalent and serious issue, affecting 
about 40% of patients and resulting in significant 
mortality[1, 2]. Recent research has pointed out that 
disruptions in water and salt balance, along with 
inflammation, play a role in AKI[3-5]. Numerous 
clinical studies have identified a link between 

pre-surgery NT-proBNP and BNP levels and the 
occurrence of CS-AKI, particularly in severe cases, 
with NT-proBNP significantly improving CS-AKI 
prediction[6-8]. Currently, our comprehension of the 
relevant molecular mechanisms between CS-AKI and 
NT-proBNP is rather restricted. 

Non-coding RNAs (ncRNAs), prevalent in the 
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human genome, are crucial for gene regulation[9] and 

hold potential as biomarkers for diagnosing diseases 
like AKI[10]. Research indicates that the improper 
regulation of ncRNAs is linked to the pathological 
development of CS-AKI[11-14]. Within the group of 
ncRNAs, lncRNAs and miRNAs are crucial 
components that need to be studied in relation to 
CS-AKI[9, 10]. Exploring the link between 
NT-proBNP and CS-AKI through lncRNAs and 
miRNAs is crucial, as it could lead to more effective 
treatments for CS-AKI. 

Our past findings showed that the NT-proBNP 
prior to operation, when elevated, had a connection 
with a boosted possibility of CS-AKI. Therefore, the 
current research concentrated on exploring the 
ncRNA alterations in expression among participants 
diagnosed with CS-AKI and probing into potential 
regulation modes via RNA sequencing. 

2. Materials and Methods 
2.1 Patients and ethics approval 

This cohort study included 30 participants who 
underwent heart surgery at Fuwai Hospital in Beijing, 
China. Individuals with mental disorders, significant 
liver and kidney issues, a history of major surgeries 
excluding cardiac surgery, or those who declined to 
join the trial were not included. The study procedure 
was supervised and approved by Fuwai Hospital's 
Institutional Review Board (IRB), which waived the 
requirement for written informed consent due to the 
retrospective nature of the research. The study was 
carried out in full compliance with the applicable 
regulations and guidelines. 

2.2 Gathering samples and data origins 
Healthcare professionals documented the 

patients' fundamental and clinical information, 
encompassing demographic details, biochemical 
markers, and data from before, during, and after 
surgery. Samples of serum and urine were gathered at 
different times during the after-surgery phase (0, 12, 
16, 24 hours) and before surgery[15, 16]. As 
mentioned in our earlier article[6], the hospital 
laboratory regularly measured serum NT-proBNP 
levels before and after surgery. Additionally, we 
periodically monitor plasma levels of biochemical 
markers. 

2.3 Group division 
Patients were categorized into two groups 

according to NT-proBNP values: patients whose 
post-surgical to pre-surgical specific value was equal 
to or greater than 2 were categorized into the 
BNP-high group. On the other hand, patients whose 

specific value was less than 2 were assigned to the 
BNP-stable group. Besides, among the 30 participants, 
those who were diagnosed with AKI were categorized 
as AKI, while the rest were classified as non-AKI. The 
patients had their CS-AKI diagnosed as per the 
diagnostic criteria defined in the Kidney Disease 
Improving Global Outcomes (KDIGO) guidelines[17]. 

2.4 RNAseq 
TRIzol (Thermo Fisher Scientific, USA) method 

was applied to isolate RNA. The NanoDrop ND-1000 
(Nano Drop, Wilmington, DE, USA) was used to 
quantify the RNA concentration and quality of each 
sample. The RNA integrity was analyzed by the 
Agilent 2100 Bioanalyzer (Agilent Technologies, 
USA). The Collibri Stranded RNA Library Prep Kit 
(Thermo Fisher Scientific, USA) was used for mRNA 
library preparation. Afterward, PCR was employed to 
enrich DNA fragments followed by library 
purification and validation. RNA sequencing was 
performed on the Illumina NOVA 6000 
platform[18-20]. 

The NEBNext® Multiplex Small RNA Library 
Prep Set for Illumina (NEB, USA) was used to 
establish the small RNA library. In this procedure, 3' 
adapters tailored for microRNAs and other small 
RNAs were ligated to RNA molecule ends, followed 
by the addition of 5' adapters. Single-strand cDNAs 
were amplified using RT-PCR and subsequently 
purified through gel electrophoresis. The quality of 
the cDNA construct was confirmed using the Agilent 
2100 Bioanalyzer. Using the cBot (Illumina, USA), 
cluster generation was completed. Finally, the small 
RNA library underwent sequencing on the same 
sequencing platform as the mRNA library[21-24]. 

2.5 Bioinformatics analysis 
High-quality data were acquired by filtering the 

raw next-generation sequencing reads using Seqtk 
(https://github.com/lh3/seqtk). Under the guidance 
of the Ensembl GTF gene annotation file, the Cuffdiff 
software was utilized to obtain the FPKM (Fragments 
per kilobase of exon per million fragments mapped) 
values of mRNA at the gene level and small RNAs 
(including miRNAs and lncRNAs). These FPKM 
values served as the expression profiles of mRNA and 
small RNAs. Subsequently, the fold change and 
P-value between the two groups of samples were 
calculated to screen for differentially expressed 
mRNAs, miRNAs, and lncRNAs. For mRNAs, GO 
(Gene Ontology) and KEGG (Kyoto Encyclopedia of 
Genes and Genomes) pathway analyses were 
conducted directly. Meanwhile, the target genes of 
miRNAs and lncRNAs were predicted, and then GO 
and KEGG pathway analyses were performed on 
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these target genes as well. Distinct lncRNAs and 
miRNAs were identified in both the AKI and BNP 
groups, and their overlaps were illustrated using 
Venn diagrams[25-29]. 

2.6 Statistics 
Variables following a normal distribution were 

analyzed using a Student's t-test, with results 
presented as mean ± standard deviation (SD). 
Normality tests were performed on continuous 
variables for data analysis. The Mann-Whitney U test 
was used to analyze non-parametric data not 
following a normal distribution, with results 
presented as medians and interquartile ranges (IQRs). 
Categorical variables were analyzed using either 
Fisher's exact test or the χ² test, with results presented 
as numbers (%). For the continuous variables, Pearson 
correlation analysis was applied when the data 
exhibited a normal distribution; otherwise, Spearman 
correlation analysis was utilized[30-33]. Statistical 
significance was set at a P-value ≤ 0.05. 

3. Results 
3.1 Population characteristics 

Table 1 shows no remarkable differences in 
baseline data, details within the operation, and AKI 
incidence after the operation between BNP groups. 
Pre-surgery NT-proBNP levels of the BNP-high group 
were dominantly decreased compared to the 
BNP-stable group (P<0.001), with biochemical 
indicators showing no noticeable distinctions, as 
shown in Table 2. As shown in Table S1, the 
NT-proBNP fold change was 9.69 (8.11-12.81) for the 
BNP-high group and 1.19 (0.91-1.47) for the 
BNP-stable group. Still, there were no significant 
discrepancies in other heart function markers (Figure 
1C). Figure 1 compares the pre- and post-surgery 
biochemical index ratios in these 2 BNP groups. In 
contrast to the group with stable BNP levels, the 
group with high BNP levels demonstrated 
substantially elevated SG proportion before and after 
surgery (Figure 1A). Renal function did not show any 
statistically significant changes across the groups 
(Figure 1B). The comparison of inflammatory factors 
between groups revealed that the ratios of TNF and 
IL10 at 24 hours after surgery and pre-surgical were 
significantly higher in the BNP-high group compared 
to the BNP-stable group (Table S1, Figure 1D).  

Spearman correlation analysis revealed no 
significant correlation between BNP multiple and 
water-salt metabolism and inflammation indexes 
(Table 3). TNFα T5/T1 demonstrated a prominent 
medium positive association with inflammatory- 
promoting elements IL-6, CRP, and IL-8, as well as 

with the anti-phlogistic element IL-10 (r=0.574, 
P=0.001). 

Table 1. Comparison of baseline data grouped according to BNP 
multiples. 

Variables BNP-high(n=15) BNP-stable(n=15) P-value 
Age, year 59.87±8.14 54.87±15.22 0.275 
Male, n (%) 10(66.67%) 13(86.67%) 0.196 
BMI, (kg/m2)  25.59±3.25 24.10±2.93 0.196 
Smoking, n (%) 9(60%) 10(66.67%) 0.624 
Diabetes mellitus, n (%) 3(20%) 2(13.33%) 0.624 
CHD, n (%) 9(60%) 7(46.67%) 0.464 
Hyperlipidemia, n (%) 6(40%) 7(46.67%) 0.713 
Hypertension, n (%) 11(73.33%) 8(53.33%) 0.256 
Heart failure, n (%) 0(0)  1(6.67%) 0.309 
Asthma, n (%) 1(6.67%) 0(0)  0.309 
PVD, n (%) 1(6.67%) 2(13.33%) 0.543 
cerebral infarction, n (%) 0(0)  1(6.67%) 0.309 
Previous surgery, n (%) 5(33.33%) 8(53.33%) 0.269 
Previous cardiac surgery, n (%) 1(6.67%) 4(26.67%) 0.142 
Pulmonary hypertension, n (%) 1(6.67%) 4(26.67%) 0.142 
Liver insufficiency, n (%) 0(0)  1(6.67%) 0.309 
LVEF (%) 61.80±5.57 60.27±7.51 0.530 
RWMA, n (%) 5(33.33%) 3 (20%) 0.409 
Surgery    
CPB, n (%) 10(66.67%) 10(66.67%) 1.000 
CPB duration (min)  73(0-101) 68(0-150) 0.567 
Blocking duration(min)  50(0-76) 43(0-95) 0.683 
Pre-surgical anticoagulants, n 
(%) 

8 (53.33) 4 (26.67%) 0.136 

Pre-surgical statins, n (%) 8 (53.33%) 6 (40%) 0.464 
After-surgery    
After-surgery atelectasis, n (%) 9 (60%) 7 (46.67%) 0.464 
after-surgery pleural effusion, n 
(%) 

10(66.67%) 12(80%) 0.409 

Arrhythmia after surgery, n (%) 2(13.33%) 6(40%) 0.099 
after-surgery atrial fibrillation, n 
(%) 

2(13.33%) 4(26.67%) 0.361 

Anesthesia duration(min) 273.93±57.90 281.40±80.57 0.772 
Operation duration (min) 210.13±50.39 223.27±76.34 0.596 
ICU stay time (h)  41(21-90) 44(19-93) 0.744 
AKI, n (%) 5(33.33%) 6(40%) 0.705 

Data are expressed as numbers (percentages) for categorical variables and 
mean±SD or median (25th-75th percentile) for continuous variables, as appropriate. 
Abbreviations: BMI, body mass index; CHD, coronary heart disease; PVD, 
peripheral vascular disease; LVEF, left ventricular ejection fraction; RWMA, 
regional wall motion abnormality; CPB, cardiopulmonary bypass; AKI, acute 
kidney injury. 

 

3.2 DELs across various groups 
Table S2 shows QC results of lncRNA 

sequencing and miRNA sequencing. Figures 2A and 
2B present lncRNAs with differential expressions 
(DELs) between 2 BNP groups. Among the 138 DELs 
found, 108 exhibited up-regulation and 30 exhibited 
down-regulation. The predicted differential lncRNA 
target genes underwent GO term and KEGG pathway 
enrichment analysis, with results displayed as scatter 
plots (Figures 2C and 2D). According to the top 30 
enriched GO terms, the target genes were chiefly 
engaged in regulating dendritic spine morphogenesis 
(Figure 2C). The top 30 KEGG pathways showed 
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significant enrichment in pathways associated with 
renin secretion and actin cytoskeleton regulation 
(Figure 2D). The supplementary materials (Figure S1) 
include the differential lncRNAs identified for the 
AKI group and the GO and KEGG analysis results of 
the target genes. 

 

Table 2. Comparison of clinical characteristics of patients in 
BNP-high group and BNP-stable group. 

Variables BNP-high BNP-stable P-value 
Pre-surgical    
SG 1.018±0.012 1.025±0.012 0.113 
K (mmol·L-1) 3.98±0.32 3.84±0.34 0.278 
Na (mmol·L-1) 142.93±2.17 141.78±3.05 0.247 
Creatinine (μmol·L-1) 73.86±31.61 77.17±8.10 0.698 
NT-proBNP (pg·ml-1) 49.70(34.40-122) 444(348-631) <0.001* 
CK-MB (ng·ml-1) 0.64(0.56-1.25) 0.86(0.63-1.64) 0.267 
CK (U·L-1) 62.93±27.87 67.60±19.66 0.615 
HsTnI (ng·ml-1) 0.006(0.003-0.028) 0.014(0.006-0.028) 0.250 
LDH (U·L-1) 160.93±36.40 192.87±41.43 0.033* 
IGF1 (ng·ml-1) 30.01±1.99 28.18±3.60 0.096 
CRP (mg·L-1) 2061.58±1164.12 2353.80±1024.79 0.472 
IL6 (pg·ml-1) 14.52±9.85  17.63±11.44 0.432 
 IL8 (pg·ml-1) 477.91±261.23 675.24±513.19 0.195 
 IL10(pg·ml-1) 416.72±233.46 529.13±312.75 0.274 
 TNFα (pg·ml-1) 263.58±165.40 272.92±107.68 0.856 
HsCRP (mg·L-1) 2.79±3.62 2.51±2.89 0.816 
After-surgery    

Variables BNP-high BNP-stable P-value 
SG 1.022±0.016 1.014±0.011 0.089 
K (mmol·L-1) 4.25±0.36 4.27±0.26 0.836 
Na (mmol·L-1) 141.39±2.55 140.79±2.03 0.484 
Creatinine (μmol·L-1) 70.56±19.84 68.05±7.47 0.650 
Maximum creatinine 
value within 48 hours 
(μmol·L-1) 

95.01±31.22 101.38±18.58 0.502 

Highest creatinine value 
in 7 days (μmol·L-1) 

97.03±30.32 101.71±18.51 0.614 

CK-MB (ng·ml-1) 54.81±68.94 87.41±148.71 0.448 
CK (U·L-1) 326.67±102.44 382.67±188.42 0.321 
HsTnI (ng·ml-1) 1.215(0.532-3.598) 1.919(0.987-2.871) 0.595 
LDH (U·L-1) 276.33±91.38 318±128 0.314 
IGF1 (ng·ml-1) 16.95±4.47 19.65±6.75 0.206 
CRP (mg·L-1) 2104.58±1017.08 1885.69±929.88 0.543 
IL6 (pg·ml-1) 16.42(12.45-20.93) 15.96(7.25-20.70) 0.567 
IL8 (pg·ml-1) 623.54±495.09 490.54±218.36 0.775 
IL10 (pg·ml-1) 447.48±226.57 376.92±141.76 0.315 
TNFα (pg·ml-1) 310.54(238.25-423.25) 213.25(143.25-335.75) 0.089 
HsCRP (mg·L-1) 13.02(11.88-13.62) 12.35(11.97-13.01) 0.161 

Data are expressed as numbers (percentages) for categorical variables and 
mean±SD or median (25th-75th percentile) for continuous variables, as appropriate.  
*P<0.05 comparison between BNP-high group and BNP-stable group. 
Abbreviations: SG, urine specific gravity; NT-proBNP, N-terminal pro-B type 
natriuretic peptide; CK-MB, Creatine kinase isoenzymes; CK, Creatine kinase; 
hsTnI, High sensitivity troponin I; CRP, C-reactive protein; IL6, Interleukin-6; IL8, 
Interleukin-8; IL10, Interleukin-10; TNFα, Tumor necrosis factor-α; hsCRP, High 
sensitivity C-reactive protein 

 

 

 
Figure 1. Comparison of after-surgery and pre-surgery ratios of related biochemical indexes in BNP high group and BNP stable group, pop, after-surgery; pre, pre-surgery. (A) 
Metabolism of body fluids and salts K, Na, SG, Urine specific gravity; (B) Renal function Cr, Creatinine; eGFR, estimated glomerular filtration rate; (C) Cardiac function CK-MB, 
creatine kinase isoenzymes; hsTnI, high sensitivity troponin I; LDH, lactic dehydrogenase; IGF1,insulin-like growth factor 1; (D) Inflammatory factors CRP, C-reactive protein; IL6, 
Interleukin-6; IL8, Interleukin-8; TNFα, tumor necrosis factor-α. *P<0.05 comparison between BNP-high group and BNP-stable group. 
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Figure 2. The differential lncRNA of BNP grouping. (A) heatmap of differential lncRNA. (B) volcano plot of differential lncRNA. (C) GO term enrichment plot of differential 
lncRNA target genes. (D) KEGG pathway enrichment plot of differential lncRNA target genes. 

 
 

3.3 Differential expression of miRNAs across 
various groups 

We collected 20 MB of raw small RNA 
sequencing data per sample (QC results in Table S2). 
The heatmap and volcano plot show differentially 
expressed miRNAs (DEMs) identified by edgeR in the 
BNP groups (Figures 3A and 3B), revealing 62 
up-regulated and 43 down-regulated miRNAs. 
Forecasted genes targeted by DEMs underwent GO 
and KEGG analysis, of which the results are displayed 
in Figures 3C and 3D. GO analysis indicates target 
genes are mainly involved in macromolecule and 
RNA biosynthesis/modification and are located in 
nuclear components. KEGG analysis shows 
significant clustering in metabolic pathways and 
glycosphingolipid biosynthesis-ganglion series. 
Similar analyses were conducted for the AKI group. 

3.4 Common DEMs and DELs in different 
groups 

Seven miRNAs as well as seven lncRNAs were 
screened out by Venn diagrams. Among them were 
four novel lncRNAs, namely MSTRG.129696.18, 
MSTRG.39610.1, MSTRG.129293.3, and MSTRG 
.129696.10. These are graphically depicted in Figure 4 
to afford additional elucidation and serve as a 
referential resource. Table 4 displays their regulation 
status. The 7 lncRNA target genes screened out 
showed no association with pathways associated with 
AKI or BNP rise. Among the 3 already identified 
lncRNAs that are transcribed from exons, high 
expression levels in the kidney and heart, however, 
are shown only by NON-HSAT160556.1. BNP and 
AKI pathways are closely involved with 4 miRNAs, 
namely hsa-miR-206, hsa-miR-138-5p, hsa-miR- 
135a-5p, and hsa-miR-143-3p (Figure 5). 
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Figure 3. The differential miRNA of BNP grouping. (A) heatmap of differential miRNA. (B) volcano plot of differential miRNA. (C) GO term enrichment plot of differential 
miRNA target genes. (D) KEGG pathway enrichment plot of differential miRNA target genes. 

 

Table 3. Spearman’s rank correlation coefficient (rho) for BNP multiple and other variables 

Variables r/P/N BNP multiple popSG/preSG CRP T5/T1 IL6  
T5/T1 

IL8 T5/T1 IL10 T5/T1 TNFα 
T5/T1 

BNP multiple r 1 0.25 0.172 0.237 0.2 0.355 0.203 
 P . 0.182 0.364 0.207 0.288 0.054 0.282 
popSG/preSG r 0.25 1 0.187 0.087 0.104 0.165 0.139 
 P 0.182 . 0.323 0.646 0.585 0.384 0.462 
 N 30 30 30 30 30 30 30 
CRPT5/T1 r 0.172 0.187 1 0.549** 0.121 0.544** 0.610** 
 P 0.364 0.323 . 0.002 0.523 0.002 <0.001 
IL6 T5/T1 r 0.237 0.087 0.549** 1 0.167 .597** 0.683** 
 P 0.207 0.646 0.002 . 0.379 <0.001 <0.001 
 N 30 30 30 30 30 30 30 
IL8 T5/T1 r 0.2 0.104 0.121 0.167 1 0.321 .407* 
 P 0.288 0.585 0.523 0.379 . 0.083 0.026 
IL10 T5/T1 r 0.355 0.165 0.544** 0.597** 0.321 1 .574** 
 P 0.054 0.384 0.002 <0.001 0.083 . 0.001 
 N 30 30 30 30 30 30 30 
TNFαT5/T1 r 0.203 0.139 0.610** 0.683** 0.407* 0.574** 1 
 P 0.282 0.462 <0.001 <0.001 0.026 0.001 . 
 N 30 30 30 30 30 30 30 

**Correlation is significant at the 0.01 level; *correlation is significant at the 0.05 level.  
T1, pre-surgical; T5, after-surgery 24 hours;  
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Abbreviations: pop, after-surgery; pre, pre-surgery; SG, Urine specific gravity; CRP, C-reactive protein; IL6, Interleukin-6; IL8, Interleukin-8; IL10, Interleukin-10; TNFα, 
tumor necrosis factor-α. 

 

Table 4. The common differential lncRNA and miRNA in BNP grouping and AKI grouping 

miRNA lncRNA 
miRNA name UP/DOWN regulation lncRNA name UP/DOWN regulation 
hsa-miR-135a-5p DOWN MSTRG.129293.3* DOWN 
hsa-miR-138-5p DOWN MSTRG.129696.10* DOWN 
hsa-miR-143-3p UP MSTRG.129696.18* DOWN 
hsa-miR-206 UP MSTRG.39610.1* DOWN 
hsa-miR-208b-3p UP NONHSAT160556.1 DOWN 
hsa-miR-223-5p UP NONHSAT182156.1 DOWN 
hsa-miR-499a-5p UP NONHSAT242152.1 DOWN 
* The novel lncRNA. 

 

 
Figure 4. The common lncRNA and miRNA of BNP grouping and AKI grouping by venn diagrams. (A) The common lncRNA of BNP grouping and AKI grouping by venn 
diagrams. (B) The common miRNA of BNP grouping and AKI grouping by venn diagrams. 

 
Figure 5. The regulatory pathway of hsa-miR-135a-5p, hsa-miR-138-5p, hsa-miR-143-3p, hsa-miR-206. 

 

4. Discussion 
The pre-surgical serum levels of NT-proBNP are 

broadly acknowledged as predictors for CS-AKI[6, 8]. 

Nevertheless, the precise pathophysiological 
mechanisms and molecular regulatory pathways 
underlying CS-AKI remain inadequately elucidated. 
It is postulated that disruptions in the water and salt 
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homeostasis related to BNP, in conjunction with 
inflammatory responses, are intimately correlated and 
play a crucial role in both the onset and the 
advancement of CS-AKI[3-5].  

In both BNP groups, our study made it clear that 
there were notable differences in urinary specific 
gravity quotient between the after-surgery and 
pre-surgical periods, thus highlighting variations in 
the metabolism of body fluids and salts. No 
significant differences were found in serum 
potassium and sodium levels. As BNP reduces 
sodium reabsorption in the renal inner medullary 
collecting duct without affecting water 
reabsorption[34], we suggest that the group with high 
BNP levels showed higher urinary specific gravity 
due to reduced reuptake of sodium.  

As a crucial effector organ, the kidney plays an 
essential role in keeping the homeostasis of the 
metabolism of body fluids and salts. Biotic elements 
influencing this internal balance can significantly 
impact renal function, with inflammatory mediators 
being particularly notable. Studies on marathon 
runners suggest that AKI is linked to sodium and 
water loss through sweat and increased serum 
copeptin levels[35, 36]. Marathon runners undergo 
sustained physical exertion, which induces an acute 
inflammatory response marked by elevated cytokine 
levels, including TNF-α, IL-6, and IL-8[35, 37]. 
Disruptions in cellular water and salt homeostasis can 
elevate tonicity beyond tolerable thresholds, thereby 
exacerbating inflammatory responses and inducing 
cellular apoptosis[38]. BNP plays a vital and 
coordinating role between cardiac and renal 
functions, particularly with regard to the modulation 
of inflammatory responses, sodium excretion, and the 
maintenance of water balance[34, 39]. It is widely 
acknowledged that inflammation has an intricate link 
with BNP and CS-AKI[34, 40-43]. A growing body of 
evidence suggests that elevated plasma 
concentrations of TNF-α, IL-6, IL-8, and IL-10 are 
significantly involved in the pathophysiology of 
CS-AKI. Consistent with the current literature, it is 
indicated by our findings that the ratios of IL-10 and 
TNF-α are significantly increased 24 hours following 
surgery in contrast to the pre-surgery in the group of 
high BNP levels. RNA sequencing of both 24-hour 
pre-surgical and post-surgical plasma samples was 
executed to investigate the potential pathways 
associated with CS-AKI. It is indicated by the results 
that in reply to NT-proBNP, the progression of 
CS-AKI might involve various inflammatory 
mediators, which demands more research for 
clarification of the interactions and underlying 
pathways. 

Through GO and KEGG pathway enrichment 

analyses, we have obtained important findings in 
CS-AKI patients characterized by increased BNP 
levels. We noticed that there were rather significant 
differences in the expressions of 7 microRNAs and 7 
lncRNAs before and after the operation. Specifically, 4 
of these miRNAs have demonstrated crucial roles. On 
the one hand, they are involved in regulating the 
homeostasis of body fluids and salts. For example, 
miR-143-3p, miR-206, and miR-138-5p are predicted 
to be involved in the inhibition of water reabsorption 
(corresponding pathway: hsa04962). Also, they are 
predicted to participate in sodium reabsorption 
(corresponding pathway: hsa04960), aldosterone 
synthesis and secretion (corresponding pathway: 
hsa04925), and vasodilation (corresponding pathway: 
hsa04270). On the other hand, they regulate the 
secretion of inflammatory factors, and these 
inflammatory factors play a significant role in 
regulating tissue damage. In addition, miR-135a-5p is 
associated with vasodilation (hsa04270). Particularly, 
it is the reduction of sodium intake that can lead to the 
upregulation of the level of miR-143-3p among 
patients with untreated hypertension[44]. Moreover, 
it has been confirmed that miR-206 can regulate the 
homeostasis of Na⁺ by targeting NCX2[45]. What 
these results suggest is that these miRNAs might 
genuinely be involved in the modulation of water and 
sodium metabolism, which means deeper exploration 
is needed.  

This research indicates that miR-143-3p and 
miR-138-5p may influence inflammatory responses by 
regulating mediators linked to TRP channels and 
activating calcium signaling pathways and calcium 
influx. These findings are consistent with earlier 
studies showing elevated plasma levels of miR-143-3p 
in AKI caused by drugs and the dual role of 
miR-138-5p in modulating inflammatory responses in 
different diseases[46-48]. Variability in miR-138-5p 
expression and function across pathological contexts 
may result from individual patient differences and 
sample selection criteria[49-51]. 

Recent studies have identified miR-135a-5p as 
being downregulated in patients with atherosclerosis, 
where it has been implicated in promoting 
inflammatory responses and oxidative stress[52-55]. 
Meanwhile, miR-135a-5p has also been found to be 
decreased in smooth muscle cells of the human aorta, 
and in this case, it can alleviate vascular inflammation 
in rats with chronic kidney disease[56-62]. In this 
research, it was determined that miR-135a-5p 
exhibited a remarkable downregulation in both the 
AKI and BNP groupings and was linked to the 
process of migration of leukocytes across the 
endothelium (hsa04670). miR-206 contributes to 
inflammatory responses and increases the reactive 
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oxygen species (ROS) of mice via targeting as well as 
inhibiting SOD1[63-67]. Overexpressed miR-206 
increases inflammatory-stimulating immunomodu-
lators IL-1β, IL-6, and CCL5[68-70]. In the present 
research, a connection was uncovered between 
miR-206 and calcium influx along with the activation 
process of the calcium signaling pathway 
(hsa04020)[71]. Additionally, miR-143-3p, miR-206, 
miR-135a-5p, and miR-138-5p likely modulate 
inflammatory cytokine secretion and tissue damage, 
supporting their documented roles in existing 
literature[72-77]. The observations demonstrate the 
four miRNAs screened out might influence the 
inflammatory reaction in the kidney and the 
metabolism of body fluids and salts, indicating their 
potential intermediary role between NT-proBNP and 
CS-AKI. 

As an inflammation marker for the kidneys and 
myocardium, lactate dehydrogenase (LDH), mainly 
detected in the myocardium and kidneys[78-80], 
shows increased serum activity due to cell lysis or 
membrane disruption[78-82]. Studies show that 
elevated serum LDH levels in patients with AKI or 
CS-AKI suggest its potential as a predictive biomarker 
for CS-AKI[81, 82]. 

5. Conclusion 
Our study found no significant differences in 

nephric function or AKI incidence changes amid 
pre-surgical and after-surgery groups with stable or 
increased BNP levels. The study indicates that 
existing cardiac circulatory arrest procedures are 
generally safe, and the surgery-induced rise in 
NT-proBNP levels does not worsen renal function 
impairment. In larger cohorts, patients with 
pre-surgical elevated NT-proBNP levels show a 
higher incidence of AKI after cardiac circulatory 
arrest surgery, seemingly independent of operation. 
Pre-surgical low cardiac function or pre-existing renal 
impairment might account for this. 

MicroRNAs, including miR-138-5p, miR-143-3p, 
miR-135a-5p, and miR-206, impact the regulation of 
the inflammatory response to tissue injury and 
sodium and water metabolism. These microRNAs 
may impact NT-proBNP metabolism and AKI 
through inflammatory response factors, potentially 
regulating AKI in the BNP-high group. Future 
research shall clarify heart-kidney injury mechanisms 
and discover prospective treatment and prophylaxis 
loci. 

Generally, this study highlights the impact of 
DELs on CS-AKI. There is an intimate correlation 
between DEMs and inflammatory response and 
water-salt stability, offering significant insights into 
the molecular mechanisms of CS-AKI. These findings 

establish a foundation for the exploration of novel 
molecular markers indicative of early renal 
dysfunction, thereby facilitating the development of 
innovative CS-AKI treatment. 
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