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Abstract 

RAC1, a member of the Rho family GTPases, has been implicated in various cancers, yet its pan-cancer 
landscape and role in the tumor immune microenvironment remain underexplored. This study presents 
a comprehensive analysis of RAC1 across 33 cancer types, revealing its high expression in a broad range 
of cancers and its association with poor prognosis. RAC1 expression correlates with genomic alterations, 
including CNVs, TMB, and MSI. RAC1 knockdown reduces cell proliferation and metastasis in breast and 
lung cancer cells, suggesting its oncogenic potential. Notably, RAC1 is negatively correlated with B cell 
infiltration, indicating its role in regulating the immune microenvironment. Functional enrichment analysis 
showed that high RAC1 expression is linked to lower enrichment in B cell activation and immune 
response pathways. Single-cell transcriptome analysis identified RAC1 expression primarily in epithelial 
cells, associated with tumor progression, and spatial transcriptome analysis showed a mutually exclusive 
co-localization between B cell infiltration regions and RAC1-expressing epithelial cells. Based on RAC1 
expression and B cell interaction, a prognostic signature was established to predict prognosis at the 
pan-cancer level. 

  

Introduction 
Cancer is a major contributor to global mortality, 

posing significant challenges to efforts aimed at 
extending human lifespan1. Advances in diagnostics 
have led to a surge in cancer detection, amplifying the 
global disease burden2. Breakthroughs in targeted 
therapies have significantly improved outcomes for 
several cancers3. Therefore, it is crucial to discover 
additional therapeutic targets and prognostic 
indicators for cancer. 

 RAC1, or Ras-related C3 botulinum toxin 
substrate 1, is a small GTPase protein that is a critical 
regulator of cell motility, cytoskeletal dynamics, 
oxidative stress response and inflammatory processes. 
In cancer, RAC1’s overexpression is linked to tumor 

growth, metastasis, and resistance to chemotherapy, 
positioning it as a promising therapeutic target4. 
RAC1 is commonly characterized by its heightened 
expression and/or enhanced activity in a spectrum of 
solid malignancies, such as bladder5, and hepato-
cellular carcinomas6. At the same time, RAC1 is also 
closely related to tumor metastasis7. In lung cancer, a 
study has indicated that RAC1 is highly expressed in 
circulating tumor cells and lung metastatic cells8. In 
bladder cancer, the KDM6A-ARHGDIB axis can 
suppress the migratory ability of tumor cells by 
inhibiting RAC19. Additionally, prior studies have 
indicated RAC1's role in the development of drug 
resistance across various cancer types10. In breast 
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cancer, a study has demonstrated that RAC1 is 
associated with endocrine therapy resistance in 
estrogen receptor-positive breast cancer11. Moreover, 
within melanoma, RAC1 can enhance the expression 
of PDL112. However, despite RAC1 being a potent 
biomarker for cancer, our understanding of its role in 
pan-cancers as well as immune microenvironment 
remodeling is not yet comprehensive. Therefore, there 
is an urgent need to investigate the function of RAC1 
across various types of cancers.  

 Our study found that RAC1 is highly expressed 
in multiple cancers and associated with poor 
prognosis. It negatively correlates with B cell 
infiltration, suggesting a regulatory role in the 
immune microenvironment. Functional analysis 
linked high RAC1 expression to reduced activation of 
B cell-related pathways. Spatial transcriptomics 
revealed a mutually exclusive pattern between 
RAC1-expressing epithelial cells and B cell infiltration 
regions. We developed a prognostic signature 
combining RAC1 expression and B cell infiltration, 
which effectively predicts prognosis across cancer 
types. 

Materials and Methods 
Cancer data processing and analysis 

All transcriptomic and clinical data 
encompassing 33 cancer types from The Cancer 
Genome Atlas (TCGA) data portal (https:// 
portal.gdc.cancer.gov) are downloaded through the 
University of California Santa Cruz (UCSC) Xena 
platform (https://xena.ucsc.edu/)13. Single-cell 
transcriptomic data are obtained from the GEO 
database. These single-cell transcriptomic data of 
BRCA, LUAD, STAD, PAAD are derived from four 
GEO datasets (GSE16152914, GSE11757015, 
GSE16729716, GSE15569817) (https://www.ncbi.nlm. 
nih.gov/geo/)18. And These samples, comprising 
both normal tissue and tumour single-cell sequencing, 
have been selected for subsequent analysis. Spatial 
transcriptomics data for BRCA, LUAD, and PAAD 
were obtained from GSE22560019, GSE18948720, and 
GSE23531521, respectively. Additionally, RNA-seq 
data for LUAD were obtained from GSE3021922. The 
full names and abbreviations of the 33 cancer types 
explored can be found in Supplementary Table 1. 

Differential RAC1 expression analysis  
 The differential gene expression of RAC1 

between normal tissues and tumor at pan-cancer level 
were analysed using the TIMER2.0 network server 
(http://timer.comp-genomics.org/)23 and the 
statistical significance was calculated using the 
Wilcoxon test. The variation in RAC1 mRNA 

expression between normal and tumour tissues in the 
GTEx and TCGA datasets was analysed with 
SangerBox. (http://sangerbox.com/)24 Furthermore, 
the expression of RAC1 in pan-cancer with 
corresponding normal tissues in the TCGA database 
was analysed by R software (version 4.3.1) and R 
package “ggpubr” (version 0.6.0). We calculated the 
differentially expressed significance with p value < 
0.05 using one-way ANOVA.  

Analysis of the prognostic Role of RAC1 
To explore the relationship between RAC1 

expression and tumor prognosis at the pan-cancer 
level, we analyzed three prognostic indicators: 
Overall Survival (OS), Disease-Specific Survival 
(DSS), and Progression-Free Interval (PFI). This was 
achieved using univariate Cox regression analysis and 
Kaplan-Meier survival analysis with SangerBox. 
Samples are divided into high and low groups based 
on the median expression of RAC1. R packages 
“survminer” (version 0.4.9) and “survival” (version 
3.5.5) were used to plot Kaplan-Meier survival curves 
and statistical significance was calculated by the 
log-rank test.  

Relationship between RAC1 expression and 
clinical stage 

The relationship between RAC1 expression and 
clinical tumour stage in pan-cancer level was analysed 
using R package “ggpubr” (version 0.6.0). Significance 
was verified using Kruskal-Wallis test. Cancer types 
with significant p-values were selected and displayed 
using R packages “ggplot2” (version 3.4.4). 

Assessment of the diagnostic utility of RAC1 
 The diagnostic accuracy of RAC1, measured by 

the receiver operating characteristic (ROC) curve, area 
under the curve (AUC), sensitivity, and specificity, 
was evaluated. The analysis of the ROC curve was 
conducted using R package “pROC”25 (version 1.18.5). 
Typically, an AUC value close to 1.0 on the ROC curve 
signifies high diagnostic precision.  

Differential analysis and Enrichment analysis of 
RAC1 

 Samples in TCGA pan-cancer datasets are 
divided into high and low group according on the 
median expression of RAC1. Differentially expressed 
analysis for RAC1 in the pan-cancer level was 
performed by R package “DEseq2” (version 1.40.1). 
The DEGs in pan-cancer level were visualized by 
volcano plot using R package “ggplot2” (version 
3.4.4). And top ten B cell related genes, such as CD19, 
CD79A, MS4A1, IGHG1 and so on, were selected to 
labelled on volcano plot. Furthermore, The DEGs in 
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multi-type cancer were then conducted GSEA (Gene 
Set Enrichment Analysis enrichment) analyses on GO 
(Gene Ontology) pathway using R package 
“clusterProfiler” (version 4.8.1). Six GO pathway (“B 
cell activation”, “B cell receptor signalling pathway”, 
“immunoglobulin production”, “T cell receptor 
complex”, “immunoglobulin complex”, “antigen 
binding”) were defined as B cell activation and 
immune functions related pathway and selected to 
displayed using R package “ggplot2” (version 3.4.4). 
The significant GSEA enrichment results were 
determined on FDR, which is < 0.05.  

Correlation between RAC1 expression and 
Tumour Mutational Burden (TMB) and 
Microsatellite Instability (MSI) 

 All mutation-related information was sourced 
from the UCSC Xena and VarScan226 platforms, with a 
focus on Variant Aggregation and Making data for 
detailed examination. The relationship between RAC1 
mRNA expression and both Microsatellite Instability 
(MSI) and Tumour Mutational Burden (TMB) was 
assessed. The results were plotted as radar chart using 
R package “fmsb” (version 0.7.5). The interconnec-
tions between these variables were evaluated using 
Spearman’s rank correlation coefficient analysis. 

Correlation between RAC1 expression and 
CNV levels 

 CNV (Copy number variation datasets) for all 
TCGA samples processed by the GISTIC27 (version 
2.0) software form the GDC (https:// 
portal.gdc.cancer.gov/). Copy number data and gene 
expression of RAC1 were integrated together. The 
integrated data were transformed each expression 
value with a log2(x+1) transformation. Finally, cancer 
types with fewer than three samples within a single 
cancer type were excluded. The visualization was 
performed by R package “ggplot2” (version 3.4.4). 

Correlation between RAC1 expression and 
immune cell infiltration  

 First, R package “CIBERSORT”28 (version 0.1.0) 
was used to compute immune cell infiltration score 
for 22 types of cell in the tumour immune 
microenvironment in pan-cancer level. Then, the 
expression levels of RAC1 and their correlation with 
these 22 types of tumour-infiltrating immune cells 
were calculated using Pearson correlation coefficient. 
An value of Pearson correlation coefficient greater 
than 0.15 is considered to indicate a positive 
correlation, while a value less than -0.15 indicates a 
negative correlation. The correlation results were 
displayed using a heatmap using R package 
“ComplexHeatmap” (version 2.16.0). R package 

“xCell”29 (version 1.1.0), “Timer”30 (version 2.0), as 
well as “Quantiseq”31 (version 1.10.0) were also used 
to infer the tumour immune infiltration in the 
pan-cancer levels. The B lineage score is equal to the 
sum of the fractions of B cell-related immune cell 
subsets in different R packages for inferring tumour 
immune infiltration. The Pearson correlation 
coefficient between the mRNA expression of RAC1 
and B lineage score was calculated in pan-cancer 
levels including BRCA, LUAD, PAAD, STAD, BLCA 
and so on. The results are presented using scatter 
plots using R package “ggplot2” (version 3.4.4). 
ImmuneScore, StromalScore, and ESTIMATEScore for 
33 different types of cancer in TCGA were conducted 
in R package “ESTIMATE”32 (version 1.0.13). 

Single cell sequencing analysis of RAC1 
 TISCH2 website (http://tisch.comp-genomics 

.org/home/)33 was used to examine the expression of 
RAC1 across different cellular components within the 
tumour microenvironment in the pan-cancer levels. 
Single-cell transcriptomic data downloaded from 
GEO were analysed in R using 10x matrix file in the R 
package “Seurat”34 (version 4.3.0). In brief, cells with > 
20% of reads coming from mitochondrial transcripts 
and with < 300 nFeatures were excluded as probable 
dying cells and Contaminated cells. Batch effects were 
mitigated by employing R package “Harmony” 
(version 0.1.1). Additionally, R package “SingleR” 
(version 2.2.0) was utilized to assist the annotation of 
cell types within the clusters. All plots of single-cell 
transcriptomic data was drawn by functions in R 
package “Seurat” (version 4.3.0). 

Spatial transcriptomics analysis 
All spatial transcriptomics data were 

preprocessed using standard quality control 
procedures. Raw data were normalized, and 
low-quality spots were filtered out based on gene 
count thresholds and mitochondrial gene content. B 
cell regions were identified using a gene set 
comprising "CD79A", "CD79B", "BLNK", "CD19", and 
"MS4A1". UCell35 (version 2.4.0) scoring was 
performed to quantify the expression of these 
markers, with spots scoring above 0.1 defined as B cell 
regions. Epithelial regions were classified into 
RAC1-low and RAC1-high regions based on the mean 
expression of RAC1. The R package "SPOTlight"36 
(version 1.4.1) was used to perform deconvolution 
and annotation of spatial transcriptomics data. 
SpatialFeaturePlot was used to visualize. 

Prognostic model construction 
Pan-cancer data were integrated, and batch 

effects were removed. The TCGA dataset was split 
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into a training set (60%) and a test set (40%). A 
multivariate regression analysis was conducted to 
construct a prognostic model using RAC1 expression 
and scores for B cells naive, B cells memory, and 
Plasma cells generated by CIBERSORT (version 0.1.0). 
The prognosis risk score was defined by a 
combination of selected predictors weighted by their 
Cox regression β coefficients. The prognostic model 
was validated in the test set using survival curves, 
with the median score as the cutoff. Additionally, the 
model was validated using three independent 
datasets [Fudan University Shanghai Cancer Center's 
(FUSCC) TNBC cohort37, METABRIC (https:// 
github.com/cBioPortal/datahub), GSE3021922]. In 
these datasets, survival curves were analyzed using 
the optimal cutoff value for stratification. 

Cell lines and cultures 
The triple-negative breast cancer MDA-MB-231, 

BT-549 cell lines, non-small cell lung carcinoma A549, 
NCI-H1395 cell lines and gastric cancer cell line AGS 
were obtained from American Type Culture 
Collection (ATCC) (Manassas, VA). MDA-MB-231, 
BT-549, A549, NCI-H1395 and AGS were cultured in 
high-glucose Dulbecco’s Modified Eagle’s Medium 
(DMEM) (Cytiva, USA) supplemented with 10 % Fetal 
Bovine Serum (FBS) (FBS, ExCell, China). NCI-H1395 
cells were raised in were maintained in RPMI 1640 
medium (Gibco, Thermo Fisher, China) supplemented 
with 10% fetal bovine serum (FBS, ExCell, China). All 
cells were incubated in a constant-temperature 
incubator at 37℃ with 5 % CO2. 

Knock down the expression of RAC1 in cell 
lines 

MDA-MB-231, BT-549, A549, NCI-H1395 and 
AGS cell lines were seeded in a 6-well plate to reach 
50-70% confluency on the day of transfection. Small 
interfering RNA (siRNA) and Lipofectamine™ 
RNAiMAX (Thermo, 13778150) were separately 
mixed in Opti-MEM. These two components were 
then combined and incubated at room temperature 
for 15-20 minutes. The transfection complex was 
added to the cells, which were incubated for 4-6 
hours. After the incubation, the transfection medium 
was replaced with complete medium, and the cells 
were cultured for an additional 48-72 hours. The 
sequences provided for hRAC1 siRNAs are as follows: 

NC si: 
Sense: UUCUCCGAACGAGUCACGUTT 
Antisense: ACGUGACUCGUUCGGAGAATT 
hRAC1 si-1: 
Sense: AAGGAGAUUGGUGCUGUAAAATT 
Antisense: UUUUACAGCACCAAUCUCCU 

UTT 

hRAC1 si-2: 
Sense: AGACGGAGCUGUAGGUAAATT 
Antisense: UUUACCUACAGCUCCGUCUTT 
For RAC1 knockdown using the CRISPR system, 

lentivirus was produced by co-transfecting HEK293T 
cells with the desired plasmid, along with psPAX2 
and pMD2.G (Addgene). After 72 hours, the virus was 
harvested by filtering through a 0.45 µm filter. The 
collected lentivirus was either used immediately to 
infect target cells with the addition of 8 µg/ml 
polybrene (H9268, Sigma), or stored at -80°C for 
future use. Infected cells were then selected with 
puromycin (ant-pr-1, InvivoGen) at a concentration of 
2 µg/ml. RAC1 was knocked out in the A549 cell line 
using Cas9 sgRNA plasmids (Addgene). The 
sequences of sgRNAs are follows: 

crspRAC1-1-S: CACCGAGTGTGTGGTGGTGG 
GAGAC 

crspRAC1-1-AS: AAACGTCTCCCACCACCAC 
ACACTC 

crspRAC1-2-S: CACCGCTTCGTCAAACACTGT 
CTTG 

crspRAC1-2-AS: AAACCAAGACAGTGTTTGA 
CGAAGC 

Western blotting  
Proteins were extracted using radioimmuno-

precipitation assay (RIPA) buffer, supplemented with 
protease and phosphatase inhibitors. Protein 
concentrations were determined using a bicinchoninic 
acid (BCA) quantification kit. The proteins were then 
separated on 10% acrylamide sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) gels 
and subsequently transferred to a polyvinylidene 
difluoride (PVDF) membrane. Following blocking 
with 5 % skim milk, the membrane was incubated 
overnight at 4℃ with primary antibodies. Then, the 
membrane underwent three 10-min washes with 
TBST (TBS + Tween), followed by incubation with 
secondary antibodies at room temperature for 1h. 
Immunoreactive signals were detected using an 
enhanced chemiluminescence (ECL) development kit 
(Merck Millipore, Billerica, MA) and analyzed using 
Image Lab 6.1 software (Bio-Rad Laboratories, USA). 
The following antibodies were used: Beta Actin 
(60008-1-Ig, 1:1000, Proteintech); RAC1 (66122-1-Ig, 
1:1000, Proteintech).  

CCK-8 viability assay 
A total of 1000-3000 cells per well were initially 

seeded into 96-well plates. Measurements were 
started after 24h and extended for seven consecutive 
days. Cell Counting Kit-8 (CCK8) was combined with 
serum free medium at 1:10 ratio and introduced into 
the 96-well plates at, 100μl per well, followed by a 2h 
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incubation at 37℃. Subsequently, the microplate 
reader was used to quantify absorbance at 450 nm. 
Technical replicates were performed 3 times for each 
condition. 

Cloning formation experiment 
Following the instructions provided by the 

transfection reagent kit, Opti-MEM™ (Gibco, Thermo 
Fisher, China), RAC1- NC/Si, and the transfection 
agent (Lipo8000, Beyotime, China) were combined 
and allowed to incubate. The mixture was 
subsequently distributed evenly across the wells of a 
6-well plate, into which cells were then seeded. After 
the cells had formed colonies, they were fixed using 
4% paraformaldehyde and stained with 0.5% crystal 
violet. The colonies were subsequently imaged and 
quantified for statistical evaluation. 

Transwell migration assay 
For transwell migration assay, a total of 

15 × 104 of MDA-MB-231, 15 × 104 BT549, 
15 × 104 A549, 15 × 104 NCI-H1395 and 15 × 104 of AGS 
cells were suspended in 200 μl of DMEM without FBS 
and seeded on the top chamber of 24-well plate-sized 
Transwell inserts (Corning Falcon). The lower 
chambers contained DMEM with 20% FBS. After 
incubation for 10 h, the inserts were fixed and stained 
with crystal violet. Cells in the upper chamber were 
removed with cotton swabs. The average confluence 
of migrated cells was analyzed by ImageJ according to 
three random fields captured by 10× microscope. Each 
experiment was conducted in triplicate.  

Animal experiment 

 The animal procedures and study designs were 
approved by the Institutional Animal Care and Use 
Committee (IACUC) of Fudan University Shanghai 
Cancer Center (FUSCC) under approval number 
FUSCC-IACUC-S2023-0421. All protocols adhered to 
the ethical guidelines set by the IACUC and the 
institution. Mice were housed in a pathogen-free 
environment, with controlled room conditions 
(temperature: 18-23°C, humidity: 40-60%, and a 
12-hour light/dark cycle). For each experiment, 
animals were randomly allocated to the experimental 
groups, and no blinding was applied. The study used 
BALB/c nude mice, aged 6-8 weeks. For in vivo tumor 
growth and survival assessment, 6-8-week-old 
BALB/c nude mice were first anesthetized and their 
injection sites were shaved. A total of 1×10⁶ A549 cells 
were suspended in D-PBS (Gibco) and combined in a 
1:1 ratio with BME (Cultrex, 3632-010-02), yielding a 
final concentration of 1×10⁷ cells/ml. The cell 
suspension was then injected subcutaneously into the 

dorsal subcutaneous tissue of the mice. Tumor 
dimensions were measured every 2-3 days using an 
electronic caliper. Tumor volume was calculated 
using the formula (length × width² / 2), where length 
represents the largest tumor diameter and width 
represents the perpendicular tumor diameter. 

Statistical analysis 
In this research, GraphPad Prism 8.3.0 and R 

software (version 4.3.1) were utilized to process, 
visualize, and perform statistical evaluations of all 
data. Thresholds were established for statistical 
significance as follows: p < 0.05 (*), p < 0.01 (**), p < 
0.001 (***), and p < 0.0001 (****). 

Results 
The landscape of the expression of RAC1 in 
pan-cancer levels 

To explore RAC1 expression in primary cancers 
versus adjacent normal tissues, we analyzed RNA 
sequencing data from TCGA and GTEx. With the 
exception of cancers without corresponding normal 
tissues (MESO and UVM), our analysis indicated that 
RAC1 significantly upregulated in 27 cancers, 
including ACC, BLCA, BRCA, CESC, CHOL, COAD, 
DLBC, ESCA, GBM, HNSC, KIRC, KIRP, LGG, LIHC, 
LUAD, LUSC, OV, PAAD, PRAD, READ, SKCM, 
STAD, TGCT, THCA, THYM, UCEC, and UCS (Fig. 
1a). Among these, the increase in RAC1 expression is 
most pronounced in CHOL, PAAD, and STAD, 
highlighting its potential role in gastrointestinal (GI) 
tumors. However, RAC1 expression is significantly 
downregulated in LAML. 

To investigate whether RAC1 can accurately 
diagnose tumors, we conducted ROC curve analyses 
and calculated the AUC values for RAC1 at the 
pan-cancer level. RAC1 demonstrated strong 
predictive capacity across 28 types of cancers, with 
AUC values ranging from 0.695 to 1.00 (Fig. 1b). 
Tumors with an AUC value above 0.95 include 
CHOL, GBM, LGG, PAAD, READ, STAD, and TGCT. 
The ROC analysis revealed that RAC1 serves as a 
reliable diagnostic marker. 

We further analyzed the differences in RAC1 
expression levels between paired tumor and normal 
tissues (Fig. 1c). RAC1 expression remains 
significantly elevated in the paired tissues of BLCA, 
BRCA, CHOL, ESCA, HNSC, KIRC, KIRP, LIHC, 
LUAD, LUSC, and STAD, suggesting that RAC1 plays 
an even more critical role in these tumors. In the 
paired tissues of KICH, RAC1 mRNA expression is 
significantly lower. There is no statistically significant 
difference in RAC1 expression in PAAD. 
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Figure 1. The landscape of the expression of RAC1 in pan-cancer levels. (a) Difference expression of RAC1 between normal and tumour tissues across 33 types of 
cancers in TCGA. (b) ROC curve of RAC1 in 28 types of cancers in TCGA. (c) Differential expression of RAC1 in paired normal and tumour tissues from 18 types of cancers 
in TCGA. Red indicates tumours, and blue indicates normal. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
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Figure 2. RAC1 is associated with higher clinical stages and poorer OS in various cancers. (a) Forest plot about the results of survival analysis of RAC1 expression 
on OS in 13 types of cancer with a Pvalue < 0.05. (b) Boxplot shows the correlation between RAC1 and clinical stages in 7 types of cancer. (c) Kaplan-Meier plot of significance 
between RAC1 expression and OS ((P < 0.05)). Red indicates high group, and blue indicates low group. 

 

High RAC1 expression is associated with 
advancing stages and poor prognosis  

The integrated analysis of RAC1 expression 
across different clinical stages (I, II, III, and IV) at the 
pan-cancer level reveals a positive correlation 
between RAC1 expression and clinical stages in 7 
cancers, including ACC, BRCA, COAD, KIRC, LIHC, 
PAAD, and READ (Fig. 2a). Notably, RAC1 
expression progressively increases with advancing 
clinical stage in ACC, BRCA, KIRC, LIHC, and PAAD, 
suggesting that RAC1 is associated with tumor 
progression in these cancers. 

An integrated analysis of the three indicators 
revealed that higher expression of RAC1 is associated 
with poorer clinical prognosis, identifying RAC1 as a 
hazard factor for many cancers. For OS, RAC1 was 
found to be a hazard factor for GBMLGG, LGG, LIHC, 
MESO, GBM, ACC, LUAD, SKCM, PAAD, KICH, 
UVM, and BLCA, with a p-value < 0.05 (Fig. 2b). 
Notably, the hazard ratio in KICH was as high as 
17.14 (P = 0.01). Kaplan-Meier survival analysis of OS 
data demonstrated a significant correlation between 
RAC1 expression and unfavorable prognosis in 
GBMLGG, LGG, LIHC, MESO, GBM, ACC, LUAD, 

SKCM, PAAD, KICH, UVM, BLCA, and BRCA (Fig. 
2c). Additionally, univariate Cox regression analysis 
of DSS and PFI data at the pan-cancer level was 
conducted to further evaluate the prognostic value of 
RAC1. The analysis demonstrated that higher RAC1 
expression is positively correlated with poor 
prognosis in GBMLGG, LGG, MESO, GBM, ACC, 
LIHC, KICH, UVM, LUAD, PAAD, CESC, and SKCM 
concerning DSS (Fig. S1a), and in GBMLGG, LGG, 
ACC, MESO, UVM, PAAD, KIPAN, and STES 
regarding PFI (Fig. S1b). In conclusion, RAC1 may 
serve as a significant clinical predictor for the tumors 
mentioned above. 

Knockdown of RAC1 inhibits the proliferation 
and migration of breast cancer and lung cancer 
cells 

To validate the pivotal role of RAC1 in tumor 
development, we performed functional assays using 
five cell lines representing three cancer types: breast 
cancer (MDA-MB-231 and BT549), lung 
adenocarcinoma (A549 and NCI-H1395), and gastric 
cancer (AGS). First, we constructed knockdown cell 
lines for these four cell types using siRNA. Western 
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blot and qPCR validated the knockdown efficiency of 
RAC1 (Fig. 3a-b, Fig. S2a-b). The CCK-8 proliferation 
assay indicated that knockdown of RAC1 significantly 
reduced the proliferative capacity (Fig. 3c, Fig. S2c). 
Cloning formation experiments demonstrated a 
significant reduction in the proliferation capacity 
when knock downing RAC1 (Fig. 3d, Fig. S2d). The 
Transwell migration assay demonstrated the 
migration-promoting function of RAC1 in these cell 
lines, with RAC1 knockdown significantly reducing 
the migratory ability (Fig. 3e, Fig. S2e). Finally, tumor 
formation assay in nude mice confirmed that 
knockdown of RAC1 can reduce the proliferation of 
A549 cells in vivo (Fig. 3f-h). In summary, these 
observations provided persuasive evidence at the 
biological level to support the oncogenic role of RAC1 
in breast cancer and lung adenocarcinoma. 

Correlation between expression of RAC1 and 
CNV status, TMB and MSI 

To explore the correlation between RAC1 
expression and genomic alterations, we examined 
data on RAC1 expression and CNV status across 33 
types of cancers. We observed that an elevated 
expression of RAC1 is associated with a Gain status in 
CNV, surpassing the expression observed in instances 
where CNV status was either Neutral or characterized 
by a Loss in 20 tumour types, including GBM, 
GBMLGG, LGG, CESC, LUAD, COAD, READ, BRCA, 
ESCA, STES, SARC, STAD, UCEC, HNSC, LUSC, 
LIHC, MESO, OV, TGCT, SKCM and BLCA (Fig. S3a). 
At the genomic level, CNV status may be a key 
determinant affecting the expression of RAC1. 

The TMB and MSI were considered as potential 
biomarkers for predicting response to 
immunotherapy and clinical outcomes. The radar 
chart indicates a positive correlation between RAC1 
expression and TMB in BLCA, ESCA, UCS, THYM, 
STAD, PAAD, MESO and LGG, while in COAD and 
OV, a negative correlation is observed (Fig. S3b). 
Regarding MSI, RAC1 expression shows a positive 
correlation in CHOL, DLBC, LIHC, PCPG, READ, and 
STAD. Conversely, in CESC, LGG, and PRAD, the 
correlation with RAC1 expression is negative (Fig. 
S3c). The results revealed a broad distribution of 
RAC1 expression in cancers characterized by either 
elevated or reduced TMB and MSI. 

High RAC1 expression is associated with 
increased immune checkpoint activities and 
low stromal and immune scores in various 
cancers 

To more specifically investigate the impact of 
RAC1 on the immune microenvironment, we 
analyzed the relationship between RAC1 expression 

and the activity of immune checkpoints and 
immunosuppressive factors at the pan-cancer level. 
The results depicted that RAC1 expression was 
positively correlated with many immune checkpoints, 
such as PDCD1, LAG3, CTLA4, HAVCR2, and TIGIT, 
and immunosuppressive factors, such as CSF1R, IL10, 
TGFB1, TGFBR1, and VTCN1, in most cancer types, 
namely ACC, BLCA, BRCA, KICH, KIRC, KIRP, LGG, 
LIHC, PAAD, PCPG, PRAD, and UVM. However, in 
ESCA and LUSC, the condition was the opposite (Fig. 
S4a, Fig. S4b). 

 The ESTIMATE algorithm was utilized to 
calculate the StromalScore, ImmuneScore, and 
ESTIMATEScore for RAC1 across 33 types of cancers. 
The analysis revealed that RAC1 expression was 
significantly negatively correlated with StromalScore, 
ImmuneScore, and ESTIMATEScore in ESCA, HNSC, 
LUSC, SKCM, STAD, TGCT, and UCEC (Fig. S4c). In 
COAD, THCA, and THYM, RAC1 expression was 
negatively correlated with ImmuneScore and 
ESTIMATEScore. Conversely, a positive correlation 
was observed in KIRC, LAML, LGG, LIHC, and 
PCPG. Overall, these findings suggest that high RAC1 
expression is generally associated with lower stromal 
and immune scores in the tumor microenvironment of 
most cancers. 

Potential influence of RAC1 on B lineage cell 
infiltration in the tumor microenvironment 

The tumor immune microenvironment is 
composed of various subsets of immune cells, each 
contributing to distinct immunological niches. To 
investigate the relationship between RAC1 expression 
and immune cell infiltration, we employed the 
CIBERSORT algorithm to analyze 22 types of immune 
cell infiltration scores within the tumor 
microenvironment. Interestingly, our analysis 
revealed a significant negative correlation between 
RAC1 expression and B cell lineage infiltration scores 
across most cancers. Specifically, RAC1 is negatively 
correlated with all three B cell subsets—naïve B cells, 
memory B cells, and plasma cells—in cancers such as 
BLCA, BRCA, CESC, KIRC, LAML, LGG, STAD, and 
STES (Fig. 4a).  

To further investigate the potential relationship 
between RAC1 and B cell infiltration, we employed 
xCell, TIMER, and Quantiseq to calculate infiltration 
scores of immune subsets in the tumor 
microenvironment. Integrating infiltration scores 
from these algorithms allowed us to derive an overall 
B cell infiltration score, termed B_lineage scores. We 
observed that in the CIBERSORT algorithm, RAC1 
was negatively correlated with B_lineage scores in 
BRCA (R = -0.16, P = 9.3e-08), LUAD (R = -0.17, P = 
9.8e-05), PAAD (R = -0.14, P = 0.057), STAD (R = -0.25, 
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P = 9.7e-07), and BLCA (R = -0.24, P = 1.6e-06) (Fig. 
4b). Similar negative correlations were observed in the 
xCell algorithm for LUAD (R = -0.18, P = 3.2e-05), 
PAAD (R = -0.2, P = 0.0082), STAD (R = -0.26, P = 
1.5e-07), and BLCA (R = -0.19, P = 8.6e-05) (Fig. 4c). 
Using the TIMER algorithm, this phenomenon was 
also noted in LUAD (R = -0.17, P = 0.00017), STAD (R 
= -0.16, P = 0.0012), and BLCA (R = -0.15, P = 0.0022) 
(Fig. 4d). Finally, the Quantiseq algorithm confirmed 
negative correlations in LUAD (R = -0.11, P = 0.016), 
PAAD (R = -0.16, P = 0.033), STAD (R = -0.22, P = 

8.9e-06), and BLCA (R = -0.18, P = 2e-04) (Fig. 4e). 
Notably, STAD and BLCA consistently showed 
significant negative correlations between RAC1 
expression and B cell infiltration across all four 
algorithms, suggesting a potential 
immunosuppressive role of RAC1 in these tumors. 
These findings suggest that high RAC1 expression 
may be associated with reduced B cell infiltration, 
indicating a potential influence of RAC1 on the 
immune microenvironment in various cancers. 

 

 
Figure 3. Knock down RAC1 in breast cancer and lung cancer cells suppress cell proliferation and migration. (a-b) The knockdown efficiency of RAC1 in 
MDA-MB-231, BT549, A549, and NCI-H1395 cells at the protein level and RNA level. (c) The CCK-8 proliferation assay indicates that knockdown of RAC1 can significantly 
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reduce the proliferation efficiency of MDA-MB-231, BT549, A549, and NCI-H1395 cell lines. (d) The colony formation assay indicates that RAC1 knockdown significantly reduces 
colony formation. Representative images of colony formation assays (left) and quantification of the colony numbers (right) are shown. (e) The transwell assay indicates that RAC1 
knockdown significantly reduces the migratory ability of these cell lines. Representative images of Transwell migration assays (left) and quantification of the migrated cells (right) 
are shown. (f-h) In vivo experiments demonstrated that knockdown of RAC1 in nude mice reduces the proliferation efficiency of A549 cells. NC represents the negative control, 
Si1 and Si2 represent two different RAC1 knockdown groups. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 

 
Figure 4. RAC1 is negatively correlated with B infiltration. (a) The heatmap displays the results of the CIBERSORT analysis of RAC1 at the pan-cancer level.(b-e) The 
correlation dot plot illustrates the relationship between RAC1 and B cell infiltration using the CIBERSORT, Xcell, Timer and Quantiseq in BRCA, LUAD, PAAD, STAD and 
BLCA. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
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Based on the aforementioned research, we 
utilized differential expressed genes for GSEA 
analysis to explore the biological roles of RAC1 within 
the immune microenvironment across different 
cancer types. Our GSEA enrichment analysis at the 
pan-cancer level revealed that B cell-related pathways 
are predominantly enriched in the downregulated 
pathways in 12 types of cancer, including BRCA, 
STAD, CESE, PAAD, OV, READ, THCA, THYM, 
TGCT, LUSC, UCEC, and BLCA (Fig. 5a-l).  

Additionally, volcano plots of the differentially 
expressed genes in these cancers indicated that in the 
RAC1 low-expression group, the expression levels of 
B cell surface markers (such as CD19, CD79A, and 
MS4A1) and immunoglobulin-related genes (such as 
IGHG1 and CR2) were higher. These observations 
highlight a potential inverse relationship between 
RAC1 expression and B cell infiltration. Taken 
together, these results suggest that RAC1 may 
influence the immune microenvironment and 
potentially affect the activation and maturation of B 
cells. 

Pan-cancer single cell and spatial transcript-
omics reveals RAC1’s role in tumor immune 
microenvironment and B cell infiltration 

The composition of the tumor microenvironment 
is intricate, and single-cell level analysis is essential 
for understanding the occurrence and development of 
tumors. To precisely investigate the primary cell types 
through which RAC1 exerts its effects in the immune 
microenvironment, we utilized the TISCH2 web tool 
to analyze RAC1 expression in different 
microenvironmental cell subpopulations. This 
single-cell analysis, spanning 14 types of cancers, 
revealed that RAC1 is expressed in a variety of cell 
subpopulations, including CD8 T cells, dendritic cells 
(DC), endothelial cells, and fibroblasts. Notably, 
RAC1 was predominantly expressed in epithelial 
cells, malignant cells, and monocytes/macrophages 
(Mono/Macro cells) across these cancer types (Fig. 
S5).  

To explore the role of RAC1 in the immune 
microenvironment, we collected single-cell 
sequencing data from paired normal and tumor 
tissues for BRCA14, LUAD15, PAAD17 and STAD16 
from public databases, with BRCA also including 
paired metastatic lymph nodes. The markers used to 
annotate cell subtypes are shown in (Fig. S6a-d). In the 
single-cell data for BRCA, RAC1 expression showed a 
significant progressive increase in epithelial cells from 
normal tissue to tumor, and further to metastatic 
lymph nodes, while no significant difference in 

expression was observed in monocyte cells (Fig. 6a-c). 
In the single-cell data of LUAD and PAAD, the 
expression of RAC1 in tumour epithelial cells is 
significantly higher than that in normal epithelial 
cells. And there is no significant difference in the 
expression of RAC1 on Mono/Macro cells between 
tumour and normal tissues (Fig. 6d-f, j-l). In the STAD 
single-cell data, although the expression of RAC1 on 
Mono/Macro cells in tumour tissue has increased 
compared to normal tissue, it can be observed that the 
increases is not as significant as the rise in epithelial 
cells (Fig. 6g-i). We hypothesize that the high 
expression of RAC1 contributes significantly to the 
progression of epithelial malignancies. 

To further investigate the hypothesis that there is 
a negative correlation between RAC1 expression and 
B cell infiltration, we utilized spatial transcriptomics 
data38 from BRCA19, LUAD20, and PAAD21 to explore 
the co-localization patterns of B cell regions and RAC1 
epithelial regions. We first used SPOTlight to perform 
deconvolution and annotation of spatial 
transcriptomics data (Fig. S7a-c), providing a 
reference for the immune microenvironment. By 
analyzing the spatial distribution of EPCAM 
expression, RAC1 expression, and B cell regions, we 
found that RAC1 is strongly co-localized with 
EPCAM and B cells are mainly distributed in 
non-tumor core regions and tumor margin areas (Fig. 
7a, c, e). Next, we explored the co-localization 
relationship between B cell regions and RAC1 
epithelial regions. We found that areas surrounding 
Low RAC1 regions exhibited greater B cell immune 
infiltration, while High RAC1 regions had 
significantly fewer B cells (typical regions are circled 
in black). This trend was consistently observed across 
all three cancer types (Fig. 7b, d, f). In summary, 
spatial transcriptomics results indicate that B cells and 
RAC1 exhibit a mutually exclusive spatial localization 
relationship, suggesting that RAC1 may impair B cell 
infiltration in the tumor microenvironment. 

Prognostic signature based on RAC1 
expression and B cell infiltration in the 
pan-cancer levels 

Given that our study suggests a potential 
negative correlation between RAC1 expression levels 
and B cell infiltration in the tumor microenvironment, 
it is hypothesized that jointly evaluating RAC1 gene 
expression and B cell infiltration may offer valuable 
insights for predicting patient prognosis. Therefore, a 
prognostic model based on RAC1 gene expression 
levels and B cell infiltration has been developed. 
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Figure 5. The GSEA enrichment analysis and differential gene analysis of RAC1 in 12 types of cancers are related to the B cell activation pathway and B 
cell related genes. (a-l) The bar chart and volcano plot respectively display the B cell activation pathways associated with RAC1 and the top 10 B cell-related differentially 
expressed genes ranked by FoldChange in 12 type of cancers. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 
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Figure 6. RAC1 primarily exerts its main biological functions in epithelial cells. UMAP plot visualization of the cell subpopulations of the tuomr microenvironment in 
(a)BRCA, (d)LUAD, (g)STAD and (j)PAAD. The Featureplot illustrates the expression distribution of RAC1 across various cell subsets in (b)BRCA, (e)LUAD, (h)STAD and 
(j)PAAD. The violin plot displays the expression differences of RAC1 in epithelial cells and Mono/Macro cells between paired normal, tumour tissues and metastatic lymph nodes 
in (c)BRCA, (f)LUAD, (i)STAD and (l)PAAD. (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). 

 
 First, we partitioned the pan-cancer TCGA 

dataset into training and test cohorts with a 60% 
threshold. Next, we selected RAC1 expression levels 
and CIBERSORT-derived infiltration scores for naïve 
B cells, memory B cells, and plasma cells to construct 
the prognostic model. Using multivariate regression 
analysis of these four parameters, we formulated the 
RPBI (RAC1 plus B cell Infiltration) score as follows: 
RPBI score = (0.52920 * RAC1) + (1.67389 * memory B 
cells score) + (-0.55879 * naive B cells score) + (-0.13764 
* plasma cells score). The RPBI score was validated to 

have a significant predictive effect on cancer 
prognosis in both the training cohort (Fig. 8a; p < 
0.0001) and the test cohort (Fig. 8b; p < 0.0001). 
Additionally, when the relationship between RPBI 
and tumor staging was examined, it was found that 
the RPBI score significantly increased with advancing 
tumor stages (Fig. 8c). The pie charts illustrate the 
distribution of high and low groups based on the 
RPBI score in four types of cancer: BLCA, BRCA, 
LUAD, and PAAD (Fig. 8d). High RPBI scores are 
associated with a significantly increased risk of death 
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in in several cancer types, particularly in GBM (HR = 
3.575, 95% CI: 1.635 - 7.816, p = 0.001), LGG (HR = 
11.048, 95% CI: 4.679 - 26.089, p < 0.001), LIHC (HR = 
2.857, 95% CI: 1.860 - 4.387, p < 0.001), and PAAD (HR 
= 1.709, 95% CI: 1.048 - 2.788, p = 0.032) (Fig. 8e). 
Finally, to validate the robustness of the RPBI score as 
a prognostic model, three independent cohorts were 
used to assess its predictive efficacy. The RPBI score 

demonstrated significant prognostic performance in 
the FUSCC TNBC cohort (p = 0.0068), METABRIC (p 
= 0.004), and GSE3021922(p = 0.0015) (Fig. 8f-h). 
Overall, the prognostic model based on RAC1 and B 
cell infiltration demonstrates significant prognostic 
value at the pan-cancer level, indicating that patients 
with a high RPBI score have poorer prognosis. 

 

 
Figure 7. Spatial transcriptomics analysis reveals the spatial localization relationship between B cells and RAC1 epithelial cells. (a) Spatial maps of BRCA 
samples (P1 and P2) displaying the distribution of EPACM (green), RAC1 (blue), and B cell signatures (red). (c) Same spatial maps of LUAD samples (P1 and P2). (e) Same spatial 
maps of PAAD samples. The co-localization panel shows regions where B cells and low RAC1 expressed epithelial cells overlap (highlighted with black circles) in BRCA (b), LUAD 
(d) and PAAD (f). 
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Figure 8. Construction of prognostic signature based on RAC1 expression and B cell infraction in pan-cancer cohorts. (a-b) Kaplan-Meier survival curves 
comparing over survival between high-risk and low-risk score groups in the TCGA training cohort (a) and TCGA test cohort (b). Patients with high-risk scores show significantly 
poorer survival rates (p < 0.0001). (c) Violin plots depicting the distribution of risk scores across different cancer stages (I-IV). Higher stages are associated with higher risk scores 
(* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; ns: not significant). (d) Pie charts indicating the proportion of high-risk (red) and low-risk (blue) patients in BLCA, BRCA, 
LUAD, and PAAD cohorts. (e) Forest plot of hazard ratios (HR) and p-values for the prognostic signature across various cancer types, highlighting significant associations in GBM, 
LGG, LIHC, and PAAD (p < 0.05). (f-h) Kaplan-Meier survival curves for independent validation cohorts: FUSCC BRCA (f), Metabric BRCA (g), and GSE30219 LUAD (h). Patients 
with high-risk scores consistently show poorer survival outcomes (FUSCC BRCA: p = 0.0068; Metabric BRCA: p = 0.004; GSE30219 LUAD: p = 0.0015). 
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Discussion 
This study conducted a comprehensive analysis 

of the expression patterns of RAC1 at the pan-cancer 
level and its relationship with cancer progression, 
prognosis, immune microenvironment. Our findings 
echo previous studies that have revealed the 
important role of RAC1 in various cancers5,39-41. 
Furthermore, our research enhances the under-
standing of RAC1 as a prognostic biomarker and a 
driver of tumor progression and malignancy. 
Genomic alterations are a hallmark of tumor 
evolution42. In this study, we found that CNV 
amplification significantly increases RAC1 
expression, suggesting its potential role as a driver 
gene in tumor progression and malignant pheno-
types. This provides a foundation for investigating its 
functional mechanisms in promoting cell 
proliferation, migration, and invasion. Additionally, 
within the immune microenvironment, our findings 
suggest that elevated RAC1 expression may modulate 
B cell infiltration. Spatial transcriptomics analysis 
suggests that RAC1 expression regions exhibit a 
certain mutually exclusive co-localization with B cell 
infiltration regions. Then, we constructed a prognostic 
model incorporating both RAC1 expression and B cell 
infiltration. The validity of this model was verified at 
the pan-cancer level. 

While cancer therapies like PD-L1 and CTLA-4 
inhibitors have advanced immunotherapy, their 
effectiveness remains limited43,44. Few studies have 
explored RAC1’s role in the tumor immune 
microenvironment, although some indicate RAC1 
mutations can upregulate the PD-L1 expression in 
melanoma12 and regulate the function of Th17 cells in 
autoimmune diseases45. Our study identified a 
significant negative correlation between RAC1 
expression and B cell infiltration across cancer types, 
suggesting that RAC1 may act as a regulator of B cell 
activity. This is important, as B cells contribute to 
anti-tumor immunity through antibody production, 
antigen presentation, and cytokine release46-48. Studies 
have shown that higher B cell infiltration49 and the 
existence of B cell-enriched tertiary lymphoid 
structures50, serve as harbingers of favorable out-
comes in cancer paitents. Through the application of 
multiple immune infiltration algorithms, we observed 
a significant negative correlation between RAC1 
expression and B lymphocyte score across various 
cancer types. Furthermore, spatial transcriptomics 
data from BRCA, LUAD, and PAAD indicated a 
mutually exclusive co-localization between regions of 
high RAC1 epithelial expression and areas of B cell 
infiltration. These findings suggest that RAC1 may 
serve as a key regulatory factor influencing B cell 

infiltration within the tumor microenvironment. 
Then, we constructed the RPBI prognostic model 

based on RAC1 and immune scores of three B cell 
subtypes (B cells naïve score, B cells memory score, 
and Plasma cells score) calculated by CIBERSORT. 
The RPBI risk score demonstrated significant 
predictive performance in the TCGA training and test 
cohorts, as well as in independent validation cohorts 
of BRCA and LUAD. Thus, as a multifaceted 
prognostic model, the RPBI score may reflect the 
immune status of tumors and provide comprehensive 
and reliable prognostic information, potentially 
offering new perspectives for cancer treatment. 

However, this study has limitations. One 
limitation of this study is its primary reliance on 
bioinformatics analysis, resulting in a lack of 
exploration and experimental validation regarding 
the potential interactions between RAC1 and B cells. 
The study does not thoroughly investigate the 
relationship between RAC1 and B cell immune 
subsets, thereby overlooking the complexity and dual 
nature of these subsets—where different B cell subsets 
can exhibit both pro-tumor and anti-tumor 
functions51. This aspect is an important avenue for 
further in-depth investigation. Moreover, the RPBI 
model’s clinical applicability requires further 
validation with independent cohorts and deeper 
mechanistic investigations. 

Conclusion 
This study comprehensively analyzed RAC1 

expression across various cancers, revealing 
significant upregulation in many cancer types. RAC1 
demonstrated strong diagnostic potential and was 
associated with advancing clinical stages and poor 
prognosis. RAC1 expression was linked to genomic 
alterations, immune checkpoint activity, and reduced 
B cell infiltration, suggesting its role in shaping the 
tumor microenvironment. Spatial transcriptomics 
confirmed a mutually exclusive localization between 
RAC1 and B cell regions. We developed the RPBI 
(RAC1 plus B cell Infiltration) prognostic model, 
which showed strong predictive efficacy across 
multiple cohorts. Functional experiments supported 
the oncogenic role of RAC1, highlighting its potential 
as a prognostic biomarker and therapeutic target. 
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