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Abstract 

Coronary microembolization (CME) is defined as atherosclerotic plaque erosion, spontaneous rupture, 
or rupture of the plaque while undergoing interventional therapy resulting in the formation of tiny emboli 
that obstruct the coronary microcirculatory system. For percutaneous coronary intervention, CME is a 
major complication, with a periprocedural incidence of up to 25%. Recent studies have demonstrated 
that regulatory cell death (RCD) exerts a profound influence on CME through its modulation of 
inflammatory responses, oxidative stress, cell death, and angiogenesis. RCD, including apoptosis, 
autophagy, and pyroptosis, is a unique class of genetically highly regulated death patterns pervasive in 
instances of coronary microembolization. The aim of this review is to summarize the currently known 
molecular mechanisms underlying CME. Further investigations of the RCD mechanisms may unravel new 
avenues for the prevention and treatment of CME. 
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Introduction 
According to a 2020 report from the World 

Health Organization, about 17.9 million people died 
from cardiovascular disease in 2019, accounting for 
about 32% of global mortality [1]. Numerous studies 
have shown that cardiovascular diseases, particularly 
acute myocardial infarction, are the leading cause of 
disability and death [2-5]. Currently, primary 
percutaneous coronary intervention is the treatment 
of choice for AMI [6]. The prevalence of coronary 
microembolization (CME) in primary percutaneous 
coronary intervention is about 25%, which 
substantially burdens healthcare resources [7]. This is 
attributed to the rupture of capillaries and bleeding 
caused by myocardial ischemia-reperfusion following 
interventional therapy, which promotes the 
occurrence of CME [8]. Currently, there are no 
effective measures to prevent myocardial 

ischemia-reperfusion injury. The CME refers to the 
formation of microemboli that block the coronary 
microcirculatory system as a result of erosion of 
atherosclerotic plaque, spontaneous rupture, or 
rupture of the plaque while undergoing 
interventional therapy [9, 10]. These microemboli 
have a complex composition, mainly consisting of 
platelet aggregates, fibrin, hyaluronic acid, and 
substances from atherosclerotic plaques, including 
cholesterol [10]. A previous report based on a 
pathological examination of the hearts of 44 patients 
who experienced sudden death due to coronary heart 
disease indicated that 89% of the affected vessel 
calibers from microcirculatory embolism were within 
120 μm [11]. Of this 89%, 46% were in the range of 40 
to 80 μm, while 39% were less than 40 μm [11]. Plaque 
rupture or erosion also leads to the release of soluble 
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pro-thrombotic, vasoconstrictive and pro- 
inflammatory factors [8]. CME induces 
vasoconstriction and inflammation, which may lead 
to myocardial contractile dysfunction and myocardial 
microinfarction, as well as the development of 
arrhythmias [12]. In clinical practice, CME is 
considered one of the main factors contributing to the 
no-reflow or slow-flow phenomenon after 
percutaneous coronary intervention [13]. No-reflow 
or slow-flow is a common complication during 
percutaneous coronary intervention, characterized by 
incomplete restoration of blood flow despite 
successful opening of the coronary vessels, leading to 
persistent myocardial ischemia symptoms [13]. The 
commonly used clinical treatments (thrombolytic 
therapy, inhibition of platelet aggregation, and 
vasodilatation) cannot improve the clinical outcome 
of CME patients [9]. Interestingly, mechanical 
ischaemic conditioning approaches, involving brief 
cycles of ischaemia-reperfusion in the heart or a tissue 
remote from the heart, reduce myocardial infarct size 
and coronary microvascular damage [8]. Although 
percutaneous coronary intervention with manual 
thrombus aspiration demonstrated better ST-segment 
resolution and less distal embolization on 
angiography compared to primary percutaneous 
coronary intervention alone, clinical outcome 
(cardiovascular death, re-infarction, cardiogenic 
shock, or NYHA class IV heart failure) did not show 
significant improvement [10]. Cardiomyocytes in 
adult mammals are non-renewable cells. Therefore, 
the reversal of myocardial damage is crucial for 
restoring cellular function and preventing 
cardiomyocyte death [14]. 

Cell death patterns include accidental cell death 
and regulatory cell death (RCD) [15]. Accidental cell 
death is a non-regulated cell death, usually caused by 
a sudden external injury or stimulus (strong 
chemicals, radioactive radiation, and physical 
damage) that exceeds the normal range of cellular 
response [16]. RCD is characterised by a precise 
molecular mechanism and it is regulated by specific 
signal transduction pathways. Furthermore, RCD can 
undergo pharmacological intervention and is 
regulated by interfering with gene expression and 
gene-mediated signaling pathways [17, 18]. The 
known forms of RCD include apoptosis, autophagy, 
pyroptosis, ferroptosis, cuproptosis, disulfidptosis, 
and necroptosis (Figure 1) [19-25]. RCD is closely 
related to cardiovascular diseases [26]. In addition, 
numerous studies have indicated that RCD plays a 
significant regulatory role in coronary 
microembolization (CME) by mediating various 
signaling pathways involved in its development 
[27-29]. Therefore, precision-targeted therapies can be 

obtained by modulating the expression of 
RCD-associated signature genes or their mediated 
signaling pathways. Although cuproptosis, 
disulfidptosis, and necroptosis exert a significant 
influence on the pathogenesis of human disease, they 
remain understudied in the context of CME. Thus, the 
aim of this review is to summarize the currently 
known molecular mechanisms related to RCD 
(apoptosis, autophagy, pyroptosis, and ferroptosis) in 
the context of CME (Figure 2). 

RCD in CME 
Apoptosis and CME 

Apoptosis is widespread in organisms and is a 
physiological phenomenon mediated by specific 
genes [30]. Apoptosis is characterized by several key 
features, including chromatin condensation, cellular 
shrinkage, DNA fragmentation, formation of 
apoptotic body, and membrane blebbing [31]. 
Previous study found the presence of apoptosis in the 
CME model [32]. Apoptosis-inducing pathways can 
be classified into three main categories: 
mitochondrial, endoplasmic reticulum (ER), and 
death receptor pathways [33].  

The mitochondrial pathway represents a crucial 
endogenous apoptotic pathway, whereby the 
activation of the mitochondria-mediated endogenous 
apoptotic pathway results in a notable reduction in 
mitochondrial membrane potential, thereby leading 
to a considerable enhancement in mitochondrial 
membrane permeability [34]. Liu et al. [35] showed 
that the expression levels of ectin-like oxidized 
low-density lipoprotein receptor-1 (LOX-1), 
cytochrome c and caspase-9 are significantly 
increased in a CME model established in Bama 
miniature pigs. This suggests that CME promotes 
cardiomyocyte apoptosis and exacerbates 
CME-induced myocardial injury, possibly through 
the LOX-1-dependent mitochondrial pathway. A 
study revealed that rosuvastatin inhibits apoptosis 
mediated by the mitochondrial pathway and 
CME-induced cardiac dysfunction in rat CME models 
by up-regulating B-cell lymphoma-2 (BCL-2) 
expression and reducing caspase-3, cytochrome c, and 
BCL-2-associated X protein levels [27]. Furthermore, 
puerarin and resveratrol exhibit comparable efficacy 
in inhibiting apoptosis and mitigating CME-induced 
cardiotoxicity, partly due to the increased expression 
of phosphatidylinositol 3-kinase and protein kinase B 
in the phosphorylated form [36, 37]. MiR-29b-3p 
expression is significantly reduced in rat CME model 
[38]. Further study showed that miR-29b-3p 
overexpression mediates neovascularisation, inhibits 
apoptosis mediated by the mitochondrial pathway, 
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and reduces the area of myocardial microinfarction in 
rat CME [38]. Qin et al. [38] demonstrated that 
miR-29b-3p overexpression mitigates CME-induced 
myocardial injury, possibly due to the suppression of 
glycogen synthase kinase 3 and BCL-2 modifying 
factor (BMF) expression. Moreover, miR-486-5p can 
mediate the activation of the phosphatidylinositol 
3-kinase/protein kinase B axis, thereby attenuating 
CME-induced cardiomyocyte apoptosis [39]. The term 
"death receptor pathway" is employed to delineate the 
process by which a cell binds a specific death receptor 
(Fas or tumour necrosis factor (TNF) receptor) to its 
ligand (Fas ligand or TNF-α), forming a death 
signaling complex [40]. This complex then initiates a 
series of intracellular signaling events that ultimately 
result in apoptosis. Fas-associated death domain 
(FADD) is an adapter molecule that bridges the 
interaction between receptor-interacting protein 1 and 
aspartate-specific caspase-8 [41]. The caspase-8- 
mediated death receptor pathway also played an 
important role in the CME model established in Bama 
minipigs [35]. Notably, TNF-α has been identified as 
an important causative factor for myocardial 
contractile dysfunction in CME [7]. Leukocyte count 
and TNF-α contents were increased in the CME 
posterior myocardium [42]. Pretreatment with 
antibodies to TNF-α appears to prevent contractile 
dysfunction after CME, whereas in the absence of 
CME, intracoronary injection of exogenous TNF-α 
induces contractile dysfunction [42]. In conclusion, 
TNF-α is considered to be an important cause of 

progressive myocardial contractile dysfunction after 
CME [42]. Zhou et al. [43] observed that TNF-α can 
trigger apoptosis mediated by receptor-interacting 
protein 1 (RIP1)/FADD/caspase-8 in astrocytes. 
Furthermore, Su et al. [44] indicated that the level of 
TNF-α is markedly increased in the CME model 
constructed using Bama miniature pigs. The 
disruption of the RIP1-FADD complex has been 
shown to exacerbate myocardial damage [45]. 
However, the effect of TNF-α triggering the 
RIP1/FADD/caspase-8 signaling pathway on the 
cardiac in the CME model requires further 
experimental support. In addition, apoptosis is 
associated with ER stress, a cellular stress response to 
the accumulation of unfolded or misfolded proteins in 
the endoplasmic reticulum lumen [46]. The 
ER-mediated apoptotic pathway has been 
demonstrated to be an important mechanism of 
hypoxic injury in cardiomyocytes [47]. AMP-activated 
protein kinase (AMPK) is a key regulatory enzyme 
involved in energy homeostasis during hypoxia [47]. 
Hypoxia induces activation of the ER-mediated 
apoptotic pathway in cardiomyocytes, and 
endogenous activation of AMPK partially reverses 
these effects [47]. In the CME model, targeting the 
JNK/p38 MAPK pathway was observed to activate 
the ER stress pathway and induce cardiomyocyte 
apoptosis, which may be associated with 
hyperphosphorylation of JNK and p38 [48]. In 
conclusion, apoptosis mediates multiple signaling 
pathways involved in the process of CME. 

 

 
Figure 1. Classification of regulatory cell death. 
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Figure 2. The mechanism of regulatory cell death in coronary microembolization. AKT: protein kinase B; BIM: Bcl-2-like protein 11; BMF: Bcl-2 modifying factor; GPX4: 
glutathione peroxidase 4; GSK-3β: glycogen synthase kinase 3; PI3K: phosphoinositide 3-kinase; POP1: pyrin only protein 1; SIRT1: sirtuin1. 

 

Autophagy and CME 
Autophagy is a biological process whereby an 

organism eliminates aberrant proteins or cellular 
components through the activation of specific genes 
and their associated signaling pathways, and mainly 
includes macroautophagy, microautophagy, and 
chaperone-mediated autophagy [49]. Notably, the 
three forms of autophagy eliminate aberrant cellular 
components and macromolecules, including proteins, 
through lysosomes [50]. Microautophagy represents a 
process whereby cytoplasmic carriers are directly 
phagocytosed through lysosomal membrane 
invaginations, without the formation of autophago-
somes [51]. Chaperone-mediated autophagy is the 
selective degradation of proteins with KFERQ 
sequences in the cytoplasm via the lysosomal 
pathway and does not require autophagosome 
formation [51]. A recent study has demonstrated that 
the activation of chaperone-mediated autophagy 
provides protection for cardiomyocytes against 
hypoxic cell death [52]. Although microautophagy 
and chaperone-mediated autophagy have been shown 
to have important roles in a variety of diseases, their 
impact in the CME has yet to be extensively studied. 
Currently, macroautophagy (later referred to as 
“autophagy” if not otherwise stated) is considered to 
be the main autophagic branch regulating 

physiological and pathological mechanisms in the 
cardiovascular system [53]. 

Beclin 1, microtubule-associated protein II light 
chain 3 (LC3-II), and sequestosome 1 are widely 
employed as indicators to assess autophagy status. 
Specifically, autophagy activation increases the 
expression levels of Beclin 1 and LC3-II, while 
decreasing the levels of sequestosome 1 protein 
[54-56]. Notably, miR-30e-3p expression is elevated 
under autophagy activation [57]. Besides, miR-30e-3p 
levels are negatively correlated with sequestosome 1 
levels in the rat CME model [57]. These findings 
suggest that targeting miR-30e-3p is a promising 
approach for CME treatment. Moreover, miR-30e-3p 
directly targets the 3'-UTR of BCL-2-like protein 11 
(BIM), decreasing BIM expression, thus activating 
autophagy and preserving the functional integrity of 
human-induced pluripotent stem cell-derived 
cardiomyocytes while mitigating CME-induced 
cardiac impairment [58]. Similarly, miRNA-19a 
regulates autophagic flux and maintains 
cardiomyocyte integrity by inhibiting the expression 
of the pro-apoptotic protein BIM [59]. Reduced 
expression of early growth response factor 1 in the rat 
model of CME further inhibits BIM expression and 
up-regulates the level of beclin 1, modulating 
autophagic flux, thus alleviating CME-induced 
cardiac impairment [60]. Lysosome-associated 
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membrane protein 2a (LAMP2a) protein levels were 
used as both a primary indicator and driver of CMA 
function [52]. Increased levels of LAMP2a protein 
were observed in hypoxia-treated cardiomyocytes 
and in the serum of patients with heart failure [52]. In 
fact, increased levels of LAMP2a protein were 
thought to be a stress response in cardiomyocytes 
[52]. Furthermore, Ghosh et al. showed a significant 
enhancement of both macroautophagy and 
chaperone-mediated autophagy activity by increasing 
LAMP2a protein levels [52]. However, the overall 
effect of the above mechanisms on CME-induced 
myocardium requires extensive experimental 
validation. Furthermore, autophagy exerts a dual 
influence on the regulation of the organism [61]. 
Moderate autophagy is beneficial to the stability of the 
intracellular environment, while excessive autophagy 
may lead to cell death, possibly due to basal 
autophagy in normal cellular activities and induced 
autophagy under various adverse stimuli [61, 62]. 
Overall, the effects of moderate activation or 
inhibition of autophagy on the organism should be 
explored in depth due to the dual effects of autophagy 
and the complexity of the disease.  

Pyroptosis and CME 
The inflammasome is a multi-protein complex 

essential for regulating the innate immune 
inflammatory response. NOD-like receptor thermal 
protein domain associated protein 3 (NLRP3), a 
member of the NOD-like receptor family, has been 
extensively studied [63]. Pyroptosis is mainly induced 
by the inflammasome and mediated by gasdermin 
family proteins [64, 65]. Pyroptosis can be divided 
into classical (caspase-1 mediated) and non-classical 
(caspase-4, caspase-5, and caspase-11 mediated) 
pathways [64]. In the classical pathway, the 
inflammasome induces the activation of caspase-1, 
which specifically cleaves the N-terminal structural 
domain of gasdermin-D and induces its 
oligomerization, leading to the disruption of the cell 
membrane [66]. This causes the release of its contents 
and inflammatory factors (IL-1β, IL-18), ultimately 
triggering pyroptosis [66]. In concrete terms, the 
NLRP3 inflammasome activates caspase-1, cleaving 
pro-IL-1β and pro-IL-18 into their active forms, IL-1β 
and IL-18 [67]. This triggers pyroptosis and 
exacerbates the inflammatory response, leading to 
cardio-depressive effects and cardiac remodeling [68]. 
The non-classical pathway does not require the 
involvement of inflammatory vesicles but directly 
activates gasdermin-D via caspase-4/caspase-5/ 
caspase-11, leading to cell membrane rupture and 
pyroptosis [69]. 

Recently, NLRP3 inflammasome was proposed 

as a new biomarker of cardiovascular diseases and 
predictor of hospitalization and death for myocardial 
injurie [70]. Pyrin domain-containing 1 inhibits 
excessive NLRP3 inflammasome activity and thereby 
ameliorates auto-inflammatory disease [71]. Pyrin 
domain-containing 1 regulates the innate immune 
response by inhibiting nuclear factor-kappa B (NF-κB) 
transcription factor activity and pro-caspase-1 
activation [72]. Cai et al. [29] demonstrated that 
miR-136-5p overexpression can increase the level of 
pyrin domain-containing 1, which inhibits pyroptosis 
and alleviates CME-induced myocardial injury. 
Furthermore, miR-30e-3p overexpression reduces the 
expression of caspase-1 and NLRP3 in the CME rat 
model [73]. Further research showed that miR-30e-3p 
alleviates CME-induced pyroptosis and inflammatory 
responses by targeting and inhibiting the expression 
of histone deacetylase (HDAC) 2, partly due to the 
reduction of HDAC2 levels, which attenuates the 
inhibition of mothers against decapentaplegic 
homolog 7 expression [73]. Additionally, miR-142-3p 
overexpression can target the ataxin 1/HDAC3 axis, 
promoting the deacetylation modification of histone 
H3 and inhibiting CME-induced myocardial 
pyroptosis in rats [74]. Zhou et al. [75] found that 
overexpression of lncRNA-taurine up-regulated gene 
1 can target the miR-186-5p/x-linked inhibitor of 
apoptosis protein axis in rat CME models, thus 
inhibiting NLRP3-mediated pyroptosis and exerting a 
cardioprotective effect. MiR-200a-3p can also alleviate 
cardiac dysfunction caused by CME by inhibiting 
NLRP3-mediated pyroptosis [76]. Besides 
microRNAs, lncRNAs participate in the development 
of CME-related pyroptosis. LncRNA-Sox2OT can act 
as a molecular sponge for miR-23b. Also, 
lncRNA-Sox2OT silencing promotes the binding of 
miR-23b to the 3'UTR of TLR4 mRNA, thereby 
inhibiting its downstream NF-κB-mediated signaling 
pathways, thus alleviating CME-induced 
cardiomyocyte pyroptosis [77]. Besides microRNAs, 
lncRNAs participate in the development of 
CME-related pyroptosis. LncRNA-Sox2OT can act as 
a molecular sponge for miR-23b. Also, 
lncRNA-Sox2OT silencing promotes the binding of 
miR-23b to the 3'UTR of TLR4 mRNA, thereby 
inhibiting its downstream NF-κB-mediated signaling 
pathways, thus alleviating CME-induced 
cardiomyocyte pyroptosis [78, 79]. Liu et al. [80] 
showed that nicorandil can reduce the expression of 
thioredoxin-interacting protein and inhibit 
NLRP3-mediated pyroptosis, thus maintaining the 
function of rat cardiomyocytes. Additionally, Li et al. 
[81] showed that colchicine can promote the 
expression of silent information regulator 1 and 
inhibit NLRP3-mediated cardiomyocyte pyroptosis in 
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rat CME models. Therefore, targeting pyroptosis and 
related signaling pathways is a potential strategy for 
CME treatment. 

Ferroptosis and CME 
Ferroptosis was first identified by Dixon et al. 

[22] in 2012. Ferroptosis is an iron-dependent cell 
death that is morphologically and genetically distinct 
from other RCDs [22]. Iron is an essential trace 
element that mediates various biological processes 
and maintains the normal life activities of the 
organism [82]. However, excessive accumulation of 
intracellular Fe2+ can contribute to the generation of 
lipid reactive oxygen radicals and the accumulation of 
lipid peroxides, which induces ferroptosis [83, 84].  

Ferroptosis status is widely detected by 
measuring intracellular Fe2+ concentration, 
malondialdehyde levels, and the ratio of reduced 
glutathione/oxidised glutathione [85]. Liu et al. [86] 
reported reduced levels of glutathione peroxidase 
(GPX) 4 and elevated levels of prostaglandin 
endoperoxide synthase 2, malondialdehyde, and Fe2+ 
by constructing a rat model of CME, suggesting that 
CME induces the ferroptosis. Further pretreatment of 
the CME model using desferrioxamine (an inhibitor of 
ferroptosis) and atorvastatin increased GPX4 
expression levels, decreased peroxisomal synthase 2 
levels, decreased malondialdehyde and Fe2+ levels 
within the prostaglandins, reduced inflammatory 
response in the lesion area and significantly improved 
cardiac function of the rats. Gao et al. [87] indicated 
that miR-706 is a molecular sponge of 
lncRNA-Gm47283. Furthermore, they showed that 
knockdown of lncRNA-Gm47283 in the rat 
myocardial infarction model up-regulates miR-706 
levels while decreasing the expression of 
prostaglandin endoperoxide synthase 2, arachidonic 
acid 15-lipoxygenase, and GPX4 [87]. This suggests 
that lncRNA-Gm47283 knockdown can inhibit 
ferroptosis and protect cardiac function by targeting 
miR-706. In addition, resveratrol pretreatment can 
increase the expression of lysine acetyltransferase 5 
and GPX4 in rat myocardial infarction model, 
suggesting that resveratrol can inhibit cardiomyocyte 
ferroptosis and alleviate cardiac dysfunction caused 
by myocardial infarction [88]. However, further 
studies should assess whether lncRNA-Gm47283 and 
resveratrol exert the same effect of antagonising 
ferroptosis in the CME model. Ischemia-reperfusion 
injury is considered a significant cause of CME. 
Research has confirmed that galangin suppressed 
ferroptosis through nuclearfactor erythroidderived 
2-like 2/ GPX4 signaling pathway activation [89]. This 
suggests that the aforementioned effects may be 
present in CME. Epidemiological results show that 

severity of heart disease is related to degree of 
environmental contamination [90]. Di(2-ethylhexyl) 
phthalate, an environmental pollutant, causes lipid 
peroxidation and elevated Fe2+ levels in 
cardiomyocytes [90]. Further study showed that 
di(2-ethylhexyl) phthalate induced the onset of 
ferroptosis in cardiomyocytes by upregulating 
heme-oxygense-1 [90]. Obviously, ferroptosis is 
closely related to the integrity of cardiac function and 
requires in-depth study in the context of CME. 

Summary and Future Perspectives 
In conclusion, RCD is triggered by specific 

signals that elicit distinct death patterns associated 
with CME progression. However, the related research 
has mainly focused on apoptosis, autophagy, 
pyroptosis and ferroptosis, ignoring other RCD forms, 
such as cuproptosis, disulfidptosis, and necroptosis. 
The mechanisms of RCD are multifactorial and 
complex. Different forms of RCD are associated with 
distinct characteristic genes and signaling pathways. 
Furthermore, certain molecular crosstalk occurs 
between various forms of RCD, which further limits 
the research. Therefore, a more comprehensive 
understanding of RCD and CME may facilitate the 
clinical translation of existing findings. Nonetheless, 
further studies should comprehensively assess the 
potential regulatory mechanisms of RCD in CME to 
provide a definitive reference for the treatment of 
cardiovascular diseases, including CME. 
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