1	Supplementary Materials
2	
3	Supplementary Methods
4	Cancer cell lines and cell spiking experiments
5	Based on expression level and tumor histology, we selected the metastatic (PC3, DU145,
6	LNCaP) and local (22Rv1) PCa cell lines. These 4 PCa cell lines were spiked in 5 ml
7	of blood obtained from healthy donors in a series of dilutions (10, 50, and 100 cells/ 5
8	mL). The spiked blood samples were processed using the CanPatrol TM platform
9	(SurExam, China). As described previously, the cutoff values were defined as the lowest
10	rates of NE ⁺ CTCs among the cell lines[1].
11	
12	CTCs isolation and classification
13	As described in the prior report, the CanPatrol TM platform was used to isolate CTCs
14	from 5 mL blood in PCa patients[1]. Cell nuclei were stained with 4',6-diamidino-2-
15	phenylindole, and the leukocytes were identified by CD45 expression using fluorescent
16	microscopy.
17	We conducted the CTCs classification with the following capture probes, which are
18	specific for epithelial markers EpCAM (R&D, Minneapolis, USA) and CK8/18/19
19	(R&D, Minneapolis, USA), mesenchymal markers vimentin and twist (BD Bioscience,
20	San Jose, USA), and the leukocyte marker CD45 (Surexam, Guangzhou, China). The
21	non-epithelial (NE ⁺) CTCs included hybrid and mesenchymal types.
22	Prior studies have shown the feasibility of detecting EMT-related markers in CTCs via
23	RNA-ISH and the capture probe sequences for the EpCAM, CK8/18/19, vimentin, twist,
24	and CD45 genes [1, 2].
25	
26	Data source

The PCa dataset from TCGA is comprised of 489 PCa and 51 non-cancerous prostate samples. For the convenience of downstream analysis, all probe identifiers were converted to Ensembl gene IDs using the human genome sequence (GRCh38/hg38)2 and annotation GTF file (GENCODE version 26). Annotation probes were not removed;
gene expression analysis was performed only on genes exceeding an average of >1
count per million (CPM). Finally, the genes with read per kilobase million (RPKM)
values were utilized for further analysis after filtering.

5 The HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION gene set, 6 contributed by Liberzon A et al., contains 200 EMT-related genes. These genes were 7 related to epithelial-mesenchymal transition, as in wound healing, fibrosis, and 8 metastasis.

9 The details of datasets from GEO are listed in **Table S1**.

10

11 UALCAN and GEPIA2

UALCAN (http://ualcan.path.uab.edu/) is a reliable, comprehensive, and interactive cancer omics data analysis network resource[3]. We used the TCGA analysis module UALCAN and chose the prostate cancer analysis module to investigate the relationship between COL1A1 expression and various Gleason scores across, as well as in different tumor subsets stratified by lymph node stages.

Gene Expression Profiling Interacting Analysis 2 (GEPIA2; http://gepia2.cancerpku.cn/) is an upgraded version of GEPIA developed by a Peking University project team[4]. Our research used the "Survival Analysis" module of GEPIA2 to generate a Kaplan-Meier curve based on the COL1A1 expression.

21

22 **Tumor tissue immunohistochemistry (IHC) evaluations**

Formalin-fixed, paraffin-embedded tissue specimens were cut into 4 µm sections.
Antigen retrieval was conducted in citrate buffer (10 mmol/L, pH 6.0) at 100 °C for 15
minutes, followed by endogenous peroxidase blocking. After primary and secondary
antibodies were incubated, sections were treated with 3, 3'-diaminobenzidine (DAB)
and counterstained with hematoxylin. Immunostaining was carried out with an antibody
for COL1A1. The method for obtaining tissue specimens and immunostaining analysis
were conducted as previously described[5]. Briefly, the COL1A1 immunostaining

score was calculated according to the staining intensity and the percentage of positively 1 2 stained tumor cells. The staining intensity scores ranged from 0 to 3, with 0 for no staining, 1 for weakly stained, 2 for moderately stained, and 3 for strongly stained. The 3 percentage positivity was graded from 0 to 3, with 0 for < 10%, 1 for 10 - 30\%, 2 for 4 31 - 50%, and 3 for > 50%. The total score for COL1A1 expression was calculated as 5 the staining intensity score \times the percentage positivity score, which ranged from 0 to 9. 6 COL1A1 expression was classified as "negative" (score 0), "weak" (score 1-4), and 7 "strong" (score 5-9). The staining of each tissue was evaluated by 2 experienced 8 9 pathologists.

10

11

1 **References**

- Wu S, Liu S, Liu Z, Huang J, Pu X, Li J, et al. Classification of Circulating Tumor Cells by
 Epithelial-Mesenchymal Transition Markers. PLoS One. 2015; 10: e0123976.
- 4 2. Cheng B, Tong G, Wu X, Cai W, Li Z, Tong Z, et al. Enumeration And Characterization Of
- 5 Circulating Tumor Cells And Its Application In Advanced Gastric Cancer. Onco Targets Ther. 2019; 12:
- 6 7887-96.
- 7 3. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I,
- 8 Chakravarthi B, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and
- 9 Survival Analyses. Neoplasia. 2017; 19: 649-58.
- 10 4. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for large-scale
- 11 expression profiling and interactive analysis. Nucleic Acids Res. 2019; 47: W556-w60.
- Gu Y, Wang Q, Guo K, Qin W, Liao W, Wang S, et al. TUSC3 promotes colorectal cancer
 progression and epithelial-mesenchymal transition (EMT) through WNT/β-catenin and MAPK
 signalling. J Pathol. 2016; 239: 60-71.
- 15

16

Dataset	Contributors	Platforms	Overall design					
GSE60329	Chiorino et al.	GPL14550 Agilent-028004 SurePrint G3 Human	54 PCa samples versus 14					
		GE 8x60K Microarray	normal prostate samples					
GSE32269	Cai et al.	GPL96 [HG-U133A] Affymetrix Human Genome	22 primary Pca (hormone-					
		U133A Array	dependent) versus 29					
			metastatic Pca (CRPC)					
GSE38241	Aryee et al.	GPL4133 Agilent-014850 Whole Human Genome	18 multiple anatomically					
		Microarray 4x44K G4112F	distinct metastases versus 21					
			normal prostate samples					
2								
3 Table S2. Primer sequences used for qRT-PCR in this study.								
Gene Name	Forward Primer	Reverse Primer						
COL1A1	5'- GATGGATTCCAG	GTTCGAGTATG -3' 5'- TGTTCTTGCAGTC	GGTAGGTGATG -3'					
GAPDH	5'- GGAGCGAGATCCCTCCAAAAT -3' 5'- GGCTGTTGTCA		ACTTCTCATGG -3'					
4								
5 Table S3. The oligonucleotides used in this study.								
6	Gene Name	Target Sequence						
7	si- COL1A1-1	5'-TTG GTG TTG TGC GAT GAC GTG-3'						
8	si- COL1A1-2	5'-CCA UCA AAG UCU UCU GCA ATT-3'						
9								
10								

Table S1. Information of GEO datasets in this study.

1 Table S4. Univariate and multivariable analysis for postoperative progression in

V	Univariable analysis		Multivariable analysis	
variable	HR (95% CI)	Р	HR (95% CI)	Р
Age (y)	1.05 (0.629–1.766)	0.841	-	-
PSA (ng/ml)	1.49 (0.899–2.470)	0.122	-	-
pGS	3.14 (1.967–5.011)	< 0.001*	1.95 (1.165–3.253)	0.011*
pT stage	3.01 (1.883-4.799)	< 0.001*	1.93 (1.155–3.216)	0.012*
pN stage	3.67 (2.419–5.563)	< 0.001*	2.04 (1.300-3.210)	0.002*
Total CTCs count	1.56 (1.023–2.363)	0.039*	-	-
NE ⁺ CTCs percentage	4.60 (2.008–10.536)	< 0.001*	2.62 (1.119-6.138)	0.027*
Surgical margins	2.33 (1.465-3.693)	< 0.001*	-	-
COL1A1	2.48 (1.608–3.812)	< 0.001*	2.17 (1.398–3.377)	0.001*

2 high-risk prostate cancer patients (COL1A1 included).

3 Abbreviation: HR, hazard ratio; CI, confidence interval; PSA, prostate-specific antigen; pGS,

4 pathological Gleason score; pT stage, pathological tumor stage; pN stage, pathological lymph node stage;

5 NE, non-epithelial.

6 * Significant.

7

8

- 1 Figure S1. Bioinformatic analysis of epithelial-mesenchymal transition (EMT)-
- 2 related genes in prostate cancer (PCa). A-D) Volcano plots of differentially expressed
- 3 genes (DEGs) in TCGA-PRAD, GSE32269, GSE38241, and GSE60329 datasets. E)
- 4 Overall survival (OS) by COL1A1 expression. Data are represented as mean ± standard
- 5 deviation (SD). The *P*-value was estimated by Student's *t*-test.

