
Int. J. Med. Sci. 2024, Vol. 21 
 

 
https://www.medsci.org 

2252 

International Journal of Medical Sciences 
2024; 21(12): 2252-2260. doi: 10.7150/ijms.98421 

Research Paper 

Prediction of Arteriovenous Access Dysfunction by Mel 
Spectrogram-based Deep Learning Model 
Tung-Ling Chung1,2, Yi-Hsueh Liu3,4,5, Pei-Yu Wu4,6,8, Jiun-Chi Huang4,6,8, Yi-Chun Tsai6,7,8, Yu-Chen 
Wang9, Shan-Pin Pan9, Ya-Ling Hsu1, Szu-Chia Chen4,6,8 

1. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. 
2. Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan. 
3. Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. 
4. Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 

Kaohsiung, Taiwan. 
5. Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. 
6. Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. 
7. Division of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. 
8. Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. 
9. Muen Biomedical and Optoelectronics Technologies Inc., Taipei, Taiwan. 

 Corresponding author: Szu-Chia Chen. Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, 
Kaohsiung, Taiwan, 482, Shan-Ming Rd., Hsiao-Kang Dist., 812 Kaohsiung, Taiwan, R.O.C. TEL.: 886-7-8036783-3441, FAX: 886-7-8063346, E-mail: 
scarchenone@yahoo.com.tw.  

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2024.05.14; Accepted: 2024.08.13; Published: 2024.08.19 

Abstract 

Background: The early detection of arteriovenous (AV) access dysfunction is crucial for maintaining the 
patency of vascular access. This study aimed to use deep learning to predict AV access malfunction 
necessitating further vascular management. 
Methods: This prospective cohort study enrolled prevalent hemodialysis (HD) patients with an AV 
fistula or AV graft from a single HD center. Their AV access bruit sounds were recorded weekly using an 
electronic stethoscope from three different sites (arterial needle site, venous needle site, and the 
midpoint between the arterial and venous needle sites) before HD sessions. The audio signals were 
converted to Mel spectrograms using Fourier transformation and utilized to develop deep learning 
models. Three deep learning models, (1) Convolutional Neural Network (CNN), (2) Convolutional 
Recurrent Neural Network (CRNN), and (3) Vision Transformers-Gate Recurrent Unit (ViT-GRU), 
were trained and compared to predict the likelihood of dysfunctional AV access. 
Results: Total 437 audio recordings were obtained from 84 patients. The CNN model outperformed the 
other models in the test set, with an F1 score of 0.7037 and area under the receiver operating 
characteristic curve (AUROC) of 0.7112. The Vit-GRU model had high performance in out-of-fold 
predictions, with an F1 score of 0.7131 and AUROC of 0.7745, but low generalization ability in the test 
set, with an F1 score of 0.5225 and AUROC of 0.5977. 
Conclusions: The CNN model based on Mel spectrograms could predict malfunctioning AV access 
requiring vascular intervention within 10 days. This approach could serve as a useful screening tool for 
high-risk AV access. 

Keywords: arteriovenous access dysfunction; deep learning model; electronic stethoscope; Mel spectrograms 

Introduction 
In patients undergoing hemodialysis (HD), a 

well-functioning arteriovenous (AV) access is 
essential to provide sufficient blood flow for dialysis 
adequacy. Dysfunctional AV access may result in 
reduced or interrupted blood flow during HD 

sessions. Previous studies have shown that AV access 
dysfunction is associated with increased 
hospitalization rates, morbidity, and financial 
burdens on medical care in HD populations [1-3]. 
Monitoring the blood flow of AV access and timely 
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interventions for AV access dysfunction are crucial to 
prevent the loss of the AV access [4].  

The current international guidelines recommend 
regular physical examinations of an AV fistula (AVF) 
or AV graft (AVG) by trained healthcare practitioners 
to identify clinical signs of dysfunctional AV access 
[5]. Notable clinical indicators suggesting AV access 
dysfunction include ipsilateral edema, alterations in 
pulse, abnormal thrill and bruit [5]. Auscultation is a 
clinical monitoring strategy used to detect abnormal 
blood flow in AV access [6], and abnormal bruit (high 
pitched with a systolic component in the area of 
stenosis) may indicate stenosis of AV access [6, 7]. On 
the other hand, Duplex ultrasound and angiography 
provide more reliable methods for assessing blood 
flow in AV access compared to a physical 
examination [8]. However, the accuracy of ultrasound 
depends on the skill of the operator, and angiography 
is an invasive procedure. Therefore, there is a need for 
a reliable, non-invasive, point-of-care tool to evaluate 
the functionality of AV access. 

 The Mel Spectrogram is a two-dimensional 
representation of the audio recording and is widely 
used in audio recognition tasks. It can extract features 
from audio signals and applies a frequency-domain 
filter bank to audio signals that are windowed in time. 
By filtering background noise, it enables the deep 
learning to extract physiological and pathological 
features from the audio signals, thereby enhancing 
classification accuracy [9]. Many studies have 
proposed Mel spectrogram-based deep learning 
models for heart sounds classification and have 
demonstrated high performance [10-12]. Regarding 
the application of Mel spectrogram in AV access, 
several studies demonstrated the feasibility of deep 
learning to analyze Mel spectrogram which were 
generated from AV access bruit sound. Ota et al used 
a Convolutional Neural Network (CNN) model to 
classify AV bruit sound to multiple categories [13], 
while Park et al developed deep CNN model to 
predict the presence of significant (≥50%) AVF 
stenosis [14] and 6-month primary patency [15]. These 
studies use CNN to predict AV access dysfunction or 
to classify AV access sounds and show outstanding 
results. However, the performance of different deep 
learning models has not been compared in these two 
studies. On the other hand, Zhou et al. found that a 
vision transformer trained on spectrogram images of 
AVF blood flow sounds can achieve the best 
performance in screening for AVF stenosis, 
comparable to a physical exam by a nephrologist [16].  

In this study, we utilized an electronic 
stethoscope to record bruits in AV access and 
converted the signals to Mel-scaled spectrograms. We 
developed three different deep learning 

methods—Convolutional Neural Network (CNN), 
Convolutional Recurrent Neural Network (CRNN), 
and Vision Transformers-Gate Recurrent Unit 
(ViT-GRU)—to analyze and classify the data from the 
spectrograms and predict the potential need for 
vascular interventions for AV access within 10 days. 
In addition, we compared the performance of these 
three deep learning models to find the most feasible 
model for clinical use. The aim of this study was to 
develop a useful and point-of-care tool for screening 
high-risk AV access in HD patients. 

Materials and Methods 
Study population and study design  

This prospective study was conducted at a single 
HD center from May 2021 to July 2022. Patients were 
included if they were: (1) age > 20 years; (2) with an 
AVF or AVG as vascular access for dialysis; and (3) 
under prevalent HD treatment for at least 90 days. 
The exclusion criteria were: (1) age ≤ 20 years; (2) 
patients with an acute illness; and (3) hospitalized 
patients. Baseline characteristics of the patients were 
obtained from their electronic medical records. The 
study was approved by the Institutional Review 
Board of Kaohsiung Medical University Hospital 
(KMUHIRB-E(l)-20210092). Informed consent was 
obtained from all of the participants.  

The flowchart of this study is shown in Figure 1. 
The patients who received a vascular intervention 
were classified as the “vascular intervention group”, 
and their recordings obtained within 10 days before 
the vascular intervention were extracted and 
classified as “vascular intervention recordings”. The 
patients who did not receive a vascular intervention 
were classified as the “non-vascular intervention 
group”, and all of their recordings were classified as 
“non-vascular intervention recordings”. Eighteen 
randomly selected patients from both the vascular 
intervention and non-vascular intervention groups 
were used for the test set, and the remaining patients 
served as the training set for cross-validation. Table 1 
illustrates the distribution of patients and audio 
recordings between the training and test sets.  

The definition of AV access dysfunction was a 
decrease in blood flow or complete cessation of blood 
flow in the AV access, as detected by physical 
examination or resulting in the disruption of 
hemodialysis therapy. Vascular intervention was 
defined as a dysfunctional AV access that received 
either surgical intervention (such as thrombectomy, 
intraoperative percutaneous transluminal 
angioplasty, and anastomosis revision) or 
endovascular intervention (such as mechanical or 
pharmacological thrombolysis with angioplasty).  
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Table 1. The distribution of Patients and Audio Recordings in 
Training and Test Sets  

Vascular intervention status Training Set Test set 
Number of Patients 
Non-vascular intervention 43 12 
Vascular intervention† 23 6 
Total 66 18 
Number of Audio Recordings 
Non-vascular intervention 196 83 
Vascular intervention 111 47 
Total 307 130 

†: Patients with a history of vascular intervention were labeled as “vascular 
intervention” patients, and recordings which is in 10 days before were extracted as 
“vascular intervention recordings”. Conversely, patients who had never undergone 
vascular intervention were labeled as “non-vascular intervention” patients 

 

Recording of AV access sounds 
AV access sounds were recorded weekly before 

HD sessions using an electronic stethoscope 
(AccurSound AS101, Heroic Faith Medical Science 
Co., Ltd., Taipei, Taiwan) from three different sites: 
the arterial needle site (A), the venous needle site (V), 
and the midpoint between the arterial and venous 
needle sites (M). The audio signals were converted to 
Mel spectrograms using Fourier transformation with 
Airmod software (Heroic Faith Medical Science Co., 
Ltd., Taipei, Taiwan) and then utilized to develop 
deep learning models. 

Data preprocessing 
The audio recordings were first reduced using a 

spectral gating method which transformed the signals 
to spectrograms and calculated the frequency-varying 
thresholds for each frequency band [17, 18]. The 
thresholds were used to filter noises below the 
frequency-varying thresholds. After noise reduction, 
all recordings were fixed to a length of 75000 samples 
(18.75 seconds at a sampling rate of 4000 Hz). This 
length was chosen as it was the maximum length of all 
recordings in the dataset. Recordings with a length 
below 75000 were padded with 0 from the recording 
end. Mel-scaled spectrograms were computed after 
padding, with the number of Mel-frequency cepstral 
coefficients set at 40. The Mel spectrograms were 
normalized based on local cepstral mean and variance 
calculated in sliding windows [19]. 

Development of deep learning models 
Deep learning models were developed using a 

3-fold cross-validation procedure. Out-of-fold 
predictions and an additional test set were used to 
evaluate model performance. The predicted results of 
the test set were obtained by averaging the output 
from each model. 

Three deep learning models with different 
architectures were developed and compared: (1) 
CNN, (2) CRNN, and (3) ViT-GRU. The shape of the 
Mel spectrograms was 40 x 369, where 40 is the 

number of Mel-frequency cepstral coefficients, and 
369 is the number of time series. Three channels of the 
Mel spectrograms which were processed from A 
(arterial needle site), V (venous needle site) and M 
(midpoint between the A and V) positions were then 
concatenated and input into the deep learning 
models. When training the models, an Adam 
optimizer [19] with a learning rate of 3×10^(-4) was 
used, and the loss function was binary cross-entropy. 
The batch size was set to 32, and the number of 
training epochs was 300. 

The first proposed model was a CNN model, 
which was composed of a convolutional layer, a 
pooling layer, and a fully connected layer. The 
convolutional layer was used to extract feature maps 
from the Mel spectrograms, and the pooling layer 
decreased the spatial size of the feature maps. The 
feature maps were then flattened and passed through 
the fully connected layer, and a sigmoid activation 
function was used to obtain the probabilities as the 
final output. Table 2 shows the architecture of the 
CNN model. 

 

Table 2. The architecture of the proposed CNN model. 

Layer Description Kernel Size Shape Channel 
Input - 40x369 3 
Conv2D  8x20 33x350 64 
ReLU Activation - 33x350 64 
MaxPool2D 2x2 16x175 64 
Conv2D  4x10 13x166 64 
ReLU activation - 13x166 64 
MaxPool2D 2x2 6x83 64 
Flatten - 31872 - 
Fully connected - 1 - 
Sigmoid activation - 1 - 

Abbreviation: Conv2D, 2-dimentional convolution; ReLU, Rectified Linear Unit; 
MaxPool2D, 2-dimentional max pooling 

 
 The proposed CRNN model combined the CNN 

model with a recurrent neural network (RNN). RNN 
models can help extract temporal features from time 
series data by retaining the information of the 
previous time step. In this CRNN model, a 
bidirectional gated recurrent unit (GRU) [20, 21] with 
128 units was combined with the CNN model. In the 
bidirectional architecture [20], the output of two RNN 
layers was concatenated. One RNN layer operated in 
a forward direction, and the other RNN layer 
operated in a backward direction. With this 
bidirectional architecture, the model could obtain 
information from the previous and next time steps 
simultaneously. In a GRU unit [21] there are two 
gates: an update gate and a reset gate. The reset gate 
decides the amount of information to retain from the 
previous step. The update gate controls the 
proportion of information taken from the previous 
and current steps and passes it to the next step. Table 
3 summarizes the architecture of the CRNN model. 
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Table 3. The architecture of the proposed CRNN model. 

Layer Description Kernel Size Shape Channel 
Input - 40x369 3 
Conv2D 8x20 33x350 64 
ReLU Activation - - - 
MaxPool2D 2x2 16x175 64 
Conv2D  4x10 13x166 64 
ReLU activation - - - 
MaxPool2D 2x2 6x83 64 
Permute & Flatten - 83x384 - 
Bi-GRU(128 units) - 83x256 - 
Flatten - 21248 - 
Fully connected - 1 - 
Sigmoid activation - 1 - 

Abbreviation: Conv2D, 2-dimentional convolution; ReLU, Rectified Linear Unit; 
MaxPool2D, 2-dimentional max pooling; Bi-GRU, bidirectional gate recurrent unit 

 

Table 4. The architecture of the proposed ViT-GRU model. 

Layer Description Operation Details Shape Repeat Block 
Input - 40x369x3  
Extract Patches† - 366x192  
Patch Embedding - 366x128  
LN - 366x128 Repeat the block 2 

times MSA (8 heads) 0.1 dropout rate 366x128 
Residual connect  366x128 
LN - 366x128 
MLP (2 layers) GELU activation 366x128 
Residual connect  366x128 
LN - 366x128  
Bi-GRU  128 units 366x256  
Flatten  93696  
Dropout 0.5 dropout rate 93696  
Fully connected GELU activation 128  
Fully connected Sigmoid activation 1  

Abbreviation: LN, layer normalization; MSA (8 heads), multi-headed self-attention 
with 8 heads; MLP (2 layers), multi-layer perceptron with 2 layers; GELU, gaussian 
error linear units; Bi-GRU, bidirectional gate recurrent unit 
†: Patches were extracted with the size of 8 and the stride of 6. The size of the input 
data was 40 × 369 × 3. Each patch has the size of 8 × 8, and the patches extracted 
from the 3 channels are concatenated and flattened. This results in the size of 192 of 
each patch, which can be calculated as: 8 × 8 × 3. Totally, 366 patches were 
obtained, which can be calculated as: ⌊(40 ÷ 6)⌋ × ⌊(369 ÷ 6)⌋. 

 
The final proposed mode was the ViT-GRU 

model [21, 22], which combined a vision transformer 
(ViT) model and a bidirectional GRU model. A ViT 
model [22] applies a transformer, a self-attention 
architecture, to 2-dimentional data. It can split 
2-dimentional data into several patches and applies 
linear projection in order to embed patches. The 
embedded patches are then provided as a sequence to 
transformer encoders. The ViT part of the proposed 
ViT-GRU model had two layers of transformer 
encoders, including a multi-headed self-attention 
(MSA) [23] block and a multi-layer perceptron (MLP) 
[24] block. Layer normalization [25] was applied 
before each block, and the residual connections were 
used to add the input and output of each block. In the 
MSA block [23], eight self-attention heads were run in 
parallel, and their output was linearly combined. Each 
attention mechanism (head) comprised three 
components: the queries, keys, and values. These 
three components were all obtained from the linear 
transformations of the input. First, the self-attention 

scores were computed by multiplying (dot product) 
the queries with the keys; this represented the concept 
of self-attention, because both the queries and keys 
were the linear transformations of the input. 
Self-attention scores were then passed through a 
Softmax function to generate the attention weights. 
These weights were used to modify the values, so the 
input data were modified with the attention weights. 
The MLP block [24] included two layers of fully 
connected layers with a Gaussian error linear unit 
(GELU) [26] activation function. The GRU part of the 
ViT-GRU model functioned the same way as in the 
CRNN model. A dropout layer and two fully 
connected layers were added at the end of the model, 
and a sigmoid activation function was used to obtain 
the probabilities. Table 4 outlines the architecture of 
the ViT-GRU model. 

Results 
The characteristics of study population  

A total of 84 hemodialysis patients with 437 
audio recordings were collected. The median age of 
these patients is 64.0 years, with 42 males and 42 
females. Among all the patients, 75 patients were 
using an AVF (89.3%), while 9 patients were using an 
AVG (10.7%). During the follow-up period, AV access 
dysfunction occurred in 29 patients (34.5%), with 23 
using AVF (79.3%) and 6 using AVG (20.7%). 

Performance of the deep learning models 
The three developed deep learning models 

(CNN, CRNN, and ViT-GRU) were used to predict 
AV access dysfunction. The results of out-of-fold 
predictions of these three models are listed in Table 5, 
and the performance in the test set is shown in Table 
6. The confusion matrixes of the three models in the 
test set are illustrated in Figure 2. The areas under the 
receiver operating characteristic curves (AUROCs) for 
the CNN, CRNN, and ViT-GRU models on the test set 
were 0.7112, 0.6381, and 0.5977, respectively, as 
shown in Table 6 and Figure 3. 

 

Table 5. The results of the deep learning models based on 
out-of-fold predictions. 

Metrics CNN CRNN ViT-GRU 
Accuracy 0.7362 0.7459 0.7720 
Sensitivity 0.7928 0.7568 0.7838 
Precision 0.6027 0.6222 0.6541 
F1 Score 0.6848 0.6829 0.7131 
AUC 0.7484 0.6723 0.7745 

Abbreviation: CNN, Convolutional Neural Network; CRNN, Convolutional 
recurrent neural network; ViT-GRU, Vision Transformer and Gate Recurrent Unit; 
AUC, Area Under the receiver operating characteristic Curve 

 
In out-of-fold predictions, the ViT-GRU model 

achieved the highest performance with an F1 score of 
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0.7131 and AUROC of 0.7745. However, when 
evaluating the model performance using an 
additional test set, the ViT-GRU model had the worst 
performance with an F1 score of 0.5225 and AUROC 
of 0.5977 (Table 6). This showed the low 
generalization ability of our ViT-GRU model. On the 
other hand, the CNN model showed more stable 
performance, with an AUROC > 0.7 in both 
out-of-fold predictions and in the test set. 

 

Table 6. The results of the deep learning models in the test set. 

Metrics CNN CRNN ViT-GRU 
Accuracy 0.7538 0.7000 0.5923 
Sensitivity 0.8085 0.7021 0.6170 
Precision 0.6230 0.5690 0.4531 
F1 Score 0.7037 0.6286 0.5225 
AUC 0.7112 0.6381 0.5977 

Abbreviation: CNN, Convolutional Neural Network; CRNN, Convolutional 
recurrent neural network; ViT-GRU, Vision Transformer and Gate Recurrent Unit; 
AUC, Area Under the receiver operating characteristic Curve 

 

Discussion 
In this study, we developed three different deep 

learnings models to analyze Mel-scaled spectrograms 
of AV access sounds from HD patients and then 
compared their performance on predicting AV access 
dysfunction that would necessitate a vascular 
intervention within 10 days. Among these three 
distinct deep learning models, the CNN model 
exhibited the most consistent diagnostic performance 
in the test set. Our results suggest that a deep learning 
model is a feasible method for analyzing AV access 
sounds.  

Given that stenosis can occur at any site within 
the AV access, we recorded AV access sounds using 

an electronic stethoscope from three different sites 
(arterial needle site, venous needle site, and the 
midpoint between the two sites) instead of a single 
site, aiming to generate a more comprehensive audio 
dataset. Following conversion of the audio files into 
visual images, the deep learning models could extract 
features, classify patterns, and subsequently interpret 
the results of the Mel spectrograms from 
malfunctioning AV accesses. In this study, we 
compared the performance of three distinct deep 
learning models: CNN, CRNN, and ViT-GRU. These 
models represent the state-of-the-art in time-series 
image classification [27, 28]. CNNs are one of the most 
popular deep learning networks [28] and are widely 
used in medical image classification due to their 
self-learning ability to recognize lesion areas from 
pixel-level features. For example, CNNs have been 
used for automatic lung pattern classification to 
diagnose interstitial lung diseases from computed 
tomography scans [29], detect melanoma by 
analyzing clinical images [30], and detect 
mammography masses and classify them into benign 
and malignant lesions [31]. On the other hand, RNNs 
are specialized in processing sequential data such as 
speech recognition and image captioning [32]. CRNNs 
combine the features of CNNs and RNNs and have 
been shown to be useful for assessing medical images 
by extracting spatial and temporal features from 
time-series medical imaging or image sequences [33]. 
CRNNs have been used to differentiate between 
Parkinson’s disease and healthy controls in 
multi-channel EEG signals [34] and to automatically 
diagnose Alzheimer's disease-related brain diseases 
from resting-state functional magnetic resonance 

 

 
Figure 1. Study flow chart.    
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imaging data [35]. In addition, ViT-GRUs integrate 
the strengths of ViT and GRU, and can capture 
dynamic changes across images in longer time series, 

allowing for a better understanding of long-range 
temporal information [36, 37].  

 

 

 
Figure 2. The confusion matrixes of the deep learning models. The confusion matrixes of (A)CNN, (B)CRNN, and (C)ViT-GRU models in the test set. The x-axis and 
y-axis in the confusion matrixes represent the predicted labels and the true labels, respectively.  
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Figure 3. The ROC curves of the deep learning models in test set. The ROC curves of (A)CNN, (B)CRNN, and (C) ViT-GRU models in the test set. The orange line 
showing the ROC curve of the model, and the blue line is a diagonal line. 
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Previous studies have used machine learning 
models to analyze AV access sounds and predict AV 
access dysfunction. Grochowina et al. [38] introduced 
a prototype device for monitoring AVF using a 
supervised machine learning technique. 
Phono-angiograms were collected from 38 patients 
undergoing chronic HD, and features were extracted 
to create vectors for a decision-making algorithm. The 
results demonstrated a commendable accuracy of 81% 
for classifying acoustic signals into correct categories, 
which was confirmed by medical professionals at the 
dialysis center. In addition, Ota et al. [13] collected 
AVF sounds from 20 patients, converted them into 
spectrograms, and subsequently classified them into 
five distinct sound types using a CNN learning 
model. The accuracy ranged from 0.70 to 0.93, and the 
AUROC values ranged from 0.75 to 0.92. Despite the 
lack of direct correlation between sound type 
classification and AV access dysfunction, their results 
illustrated the potential of using a deep learning 
model to create an objective tool for the analysis of AV 
access sounds. Furthermore, Park et al. [14] 
demonstrated the feasibility of using deep 
learning-based analysis to predict significant AVF 
stenosis. They recruited 40 patients with 
dysfunctional AVF and recorded their AVF sounds 
before and after percutaneous transluminal 
angiography. The deep convolutional neural network 
models based on Mel spectrograms, especially 
ResNet50, demonstrated exceptional performance in 
predicting AVF stenosis of ≥ 50%, achieving AUROC 
values ranging from 0.70 to 0.99. However, the test 
data in that study were generated using synthetic 
techniques, and the models' generalizability to new 
patients was not assessed. In our study, we evaluated 
our models using distinct patients who had not been 
previously encountered by the model, providing a 
more accurate simulation of real-world clinical 
application. 

This study has some limitations. First, we could 
not ascertain whether the individuals who did not 
undergo vascular intervention procedures had AV 
access stenosis, despite their AV access function being 
clinically adequate for HD. In addition, other 
associated causes of AV access dysfunction, such as 
central vein stenosis, may not be discriminated by the 
audio recordings, given that auscultation is difficult 
for detecting the presence of central vein stenosis. 
Second, the deep learning models could not 
differentiate the specific site of stenosis requiring a 
vascular intervention, such as an arterial site or 
venous site. Third, the study was limited to a single 
dialysis center, resulting in a relatively small sample 
size. Fourth, we did not collect audio recordings after 
vascular intervention as data for non-dysfunctional 

AV access when building the deep learning mode. 
Including this data could potentially enhance the 
model's performance. Lastly, although efforts were 
made to reduce noise by applying 
frequency-dependent filtering and trimming the 
initial and final 2 seconds of audio recordings, 
complete elimination of background noise during the 
recordings could not be achieved.  

In conclusion, the CNN model based on Mel 
spectrograms outperformed the CRNN and ViT-GRU 
models in predicting malfunctioning AV access 
requiring vascular intervention within 10 days. This 
diagnostic approach holds promise as a non-invasive 
point-of-care tool for screening high-risk AV access in 
patients with HD. 
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