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Abstract 

Background: Protein information is often replaced by RNA data in studies to understand cancer-related 
biological processes or molecular functions, and proteins of prognostic significance in Kidney clear cell 
carcinoma (KIRC) remain to be mined.  
Methods: The cancer genome atlas program (TCGA) data was utilized to screen for proteins that are 
prognostically significant in KIRC. Machine learning algorithms were employed to develop protein 
prognostic models. Additionally, immune infiltration abundance, somatic mutation differences, and 
immunotherapeutic responses were analyzed in various protein risk subgroups. Ultimately, the validation 
of protein-coding genes was confirmed by utilizing an online database and implementing quantitative 
real-time PCR (qRT-PCR). 
Results: The patients were divided into two risk categories based on prognostic proteins, and notable 
disparities in both overall survival (OS) and progression free interval (PFI) were observed between the 
two groups. The OS was more unfavorable in the high-risk group, and there was a noteworthy disparity 
in the level of immune infiltration observed between the two groups. In addition, the nomogram showed 
high accuracy in predicting survival in KIRC patients.  
Conclusion: In this research, we elucidated the core proteins associated with prognosis in terms of 
survival prediction, immunotherapeutic response, somatic mutation, and immune microenvironment. 
Additionally, we have developed a reliable prognostic model with excellent predictive capabilities. 
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Introduction 
Renal cancer is the most frequently occurring 

tumor of the urinary system[1], and also has the 
highest mortality rate in urological tumors[2]. Around 
85% of tumors in the kidneys are renal cell 
carcinomas, with about 70% being clear cell 
carcinomas of the kidney. Renal cell carcinoma (RCC) 
makes up around 3.8% of all newly diagnosed 
cancers, typically affecting individuals at a median 

age of 64 years[3]. However, those with distant 
metastases experience a significantly lower 5-year 
survival rate of 0% to 10%[4]. Despite the utilization of 
molecularly targeted treatments like inhibitors of 
tyrosine kinase and rapamycin for advanced renal 
cancer[5, 6], finding a solution to enhance the OS and 
progression-free survival (PFS) of patients remains a 
Gordian knot. Constructing novel prognostic models 
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could weigh better treatment modalities based on 
patient conditions to maximize clinical benefit and 
provide novel insights for precision medicine 
treatment decisions. 

Proteins, as important mediators in biological 
processes and also responsible for the gene coding 
functions of cells, are demonstrated as a nexus with 
tumorigenesis and progression[7]. In most research, 
protein expression data are replaced by RNA 
sequencing data, but often with poor expected 
results[8]. To bridge the gap between genomic data 
and functional proteins, it is necessary to utilize 
proteomics and convert this information[9]. Recently, 
proteomic studies have enhanced insights into the 
biological basis and prognostic assessment of KIRC 
and revealed potential therapeutic targets[10, 11]. 
Therefore, further proteomic studies in KIRC, 
especially biomarker discovery, could provide novel 
prognostic molecular markers and effective treatment 
to win the war against KIRC. 

For this research, we conducted transcriptomic 
and proteomic examinations from the TCGA-KIRC 
data. Comprehensive data analyses revealed different 
proteomic isoforms of KIRC, and a seven-protein- 
based prognostic model was constructed by linking 
the proteomic features of KIRC to clinical outcomes. 
In addition, we analyzed the relationship of protein 
prognostic models with immune infiltration and 
immune microenvironment. These results may 
provide a basis for predicting the outcome and 
therapeutic effects of KIRC. 

Materials and methods 
Data acquisition 

The proteomic data, RNA-seq data, and clinical 
data of KIRC were downloaded from the genomic 
data commons (GDC) website. Missing values in the 
protein expression data were interpolated using the 
"impute" R package, and expression values for the 
same protein were averaged. For RNA-seq data, genes 
with overall low expression were removed and 
expression values for the same genes were averaged. 
For clinical data, patients with missing essential data 
were removed. The clinical characteristics of these 
samples are detailed in Supplementary Table S1. 

Screening and validation of model proteins 
The "caret" R package was used to randomly 

divide 474 patients into training and test groups 
according to 5:5. Proteins that showed a significant 
correlation with prognosis were identified through 
COX regression analysis (p<0.01) in the training 
group. Subsequently, proteins were selected from the 
pool of prognosis-related proteins using least absolute 
shrinkage and selection operator (LASSO) regression. 

In the end, a multivariate COX regression model was 
built and the proteins for the final model were 
obtained through stepwise regression. Risk scores 
were calculated after screening the modeled proteins 
using the following formula: 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ 𝑟𝑟𝑟𝑟 ∗𝑛𝑛

𝑖𝑖=1 𝑋𝑋𝑟𝑟, 
where k and 𝑋𝑋 denote the relative expression level of 
the protein and the regression coefficient. The sample 
was divided into two risk groups using the median of 
the prognostic protein risk score as the cutoff value.  

Construction of nomogram 
To facilitate the clinical application of prognostic 

models, we plotted nomogram using the "rms" and 
"regplot" R packages, along with calibration curves 
and receiver operating characteristic (ROC) curves. 

Consistent cluster analysis of prognostic 
proteins 

The samples were typed according to the 
expression of prognostic proteins using the 
"ConsensusClusterPlus" R package, and the number 
of samples typed was determined according to the 
optimal K-value.  

Immune infiltration analysis, gene set 
enrichment analysis (GSEA), and tumor 
immune iysfunction and ixclusion (TIDE) 

GSEA analysis was performed using the 
"clusterProfiler" R package, and GSEA analysis using 
the “c2.cp.kegg.symbols” gene set downloaded from 
the molecular signatures database (MSigDB) 
database. CIBERSORT was utilized to conduct 
immune infiltration analysis, and a boxplot 
illustrating the variations in immune cell infiltration 
among various subgroups was generated. 
Immunotherapy responses were analyzed using the 
TIDE website. 

Online database to validate expression of 
prognostic proteins and protein-coding genes 

The human protein atlas (HPA) database was 
utilized to confirm the expression of prototype 
proteins in both normal and KIRC tissues. 
Additionally, the tumor immune single-cell hub 
(TISCH) database was employed to observe the 
expression of genes encoding proteins in various cell 
clusters. Furthermore, the cancer single-cell state atlas 
(CancerSEA) database was utilized to examine the 
relationship between the function of cancer cells and 
genes encoding proteins at the individual cell level. 
The BEST website was utilized to analyze the 
differential expression of genes. 

Cell culture 
Human renal cortical proximal tubular epithelial 

cells (HK-2) and human renal cell adenocarcinoma 
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cells (769-P, 786-O, and ACHN) were used for this 
study, both provided by Servicebio, Ltd (Wuhan, 
China). Among them, HK-2 and ACHN were cultured 
in MEM medium containing 10% fetal bovine serum 
(FBS) and 1% penicillin-streptomycin (P/S). 769-P and 
786-O were cultured in RPMI 1640 medium 
containing 10% FBS and 1% P/S in a humidified 
incubator at 37°C with 5% CO2. 

RNA extraction and qRT-PCR 
Total RNA was extracted from cells using 

RNAeasy™ Animal RNA Extraction Kit (RR0026, 
Beyotime, Shanghai, China). cDNA synthesis was 
performed using PrimeScript™ RT reagent Kit with 
gDNA Eraser (RR047A, Takara, Beijing, China), and 
real-time quantitative PCR was performed using TB 
Green® Premix Ex Taq™ II (RR820A, Takara, Beijing, 
China). qPCR primers were synthesized by Sangon 
Biotech, Ltd (Shanghai, China) (Table 1). β-actin was 
used as a standardized internal reference gene. The 
relative gene expression levels were calculated using 
the 2−ΔΔCt method. 

 

Table 1. Primers for qRT-PCR. 

Gene Forward Primer Sequence (5' to 3’) Reverse Primer Sequence (5' to 3’) 
ERRFI1 GGGCAGGGTATCCATTCT TCCCTCAACAAGACGCA 
RPS6KB1 ATATTTGCCATGAAGGTGCT CGATGAAGGGATGCTTTACT 
CDKN1A CTGGCCCCTCAAATCGT CCGCTGCTAATCAAAGTGC 
ACACA GAAGGGGTTTTCACTGTCC GAGGATCGTATGGGGTCTT 
BRAF CAAATTCTCACCAGTCCGT GGTCTCGTTGCCCAAAT 
ACTB TCTCCCAAGTCCACACAGG GGCACGAAGGCTCATCA 
PEA15 TGAGGAGGATGAGCTGGA GGGAGTGGTCTGATGAAGG 
DIABLO CCTACCTGCGTGAGGATTG GGATCTGCCGCCTCTTC 

 

Statistical analysis 
The prognostic significance was evaluated 

through Kaplan-Meier (K-M) analysis and COX 
analysis, comparing groups using the Wilcoxon test 
for numerical variables and the chi-square test for 
categorical variables. R4.3.2 was utilized for statistical 
analyses, with significance defined as p<0.05 unless 
stated otherwise. 

Results 
KIRC prognosis-related protein screening 

Firstly, we analyzed the proteomics data of 
TCGA-KIRC, and after screening, we finally obtained 
474 valid samples and 36 prognostic proteins that 
were significantly correlated out of survival (p<0.01) 
and visualized the results on volcano and forest plots 
(Figure 1A-B). Subsequently, the LASSO and COX 
regression model was constructed to further screen 
prognostic proteins, and the final model identified the 
best performance when 7 proteins (ACC1, P21, 

P70S6K_pT389, SMAC, BRAF_pS445, MIG6, PEA15) 
were identified (Figure 1C-D). Patients were 
categorized into two groups based on the calculated 
risk score for each patient using regression 
coefficients, with the median risk score serving as the 
cutoff value. Principal component analysis (PCA) 
found that risk score could cluster samples well 
(Figure 1E-F). 

Prognostic protein model validation 
To verify the precision of the model, we also 

computed the risk scores for the validation group. 
Next, we conducted a survival analysis on the two 
groups and illustrated the disparities in survival 
using K-M curves. To assess the precision of the 
model, the corresponding ROC graphs were 
generated. In all cohorts, it was discovered that the 
high-risk score group had a considerably worse 
prognosis (Figure 2A-C, G-I). According to the ROC 
curves, the prognostic protein model exhibited a 
positive predictive performance for OS and PFI (OS-5 
Year: Train Cohort: 0.810, Test Cohort: 0.775, TCGA 
whole Cohort: 0.788, PFI-5 Year: Train Cohort: 0.784, 
Test Cohort: 0.721, TCGA Whole Cohort: 0.743, Figure 
2D-F, Figure 3A-C). Moreover, we plotted the sample 
distribution of risk scores for the three cohorts 
according to subgroups, and the expression of the 
modeled proteins is shown in the heatmap (Figure 
3D-F). Finally, we examined the variations in survival 
rates among different risk subgroups based on clinical 
factors. The findings indicated that high-risk patients 
had unfavorable survival outcomes in subgroups 
categorized by age (≤ 65 and > 65), gender, tissue 
Grade levels, clinical stages, and TNM stages 
(p<0.001, Figure S1A-E). However, the survival 
differences were not statistically significant in the N1 
stage (p=0.082, Figure S1F) and M1 stage (p=0.057, 
Figure S1G). 

Somatic mutation profile of tumor samples 
To uncover genetic changes in the subgroups 

with high and low risks, and understand the 
connection between genetic mutations and patient 
survival, we conducted a waterfall plot analysis using 
copy number variation (CNV) data for TCGA-KIRC 
(Figure 4A-B). The findings indicated that both 
subgroups with high and low risk demonstrated 
elevated rates of mutation. After classifying patients 
based on the median tumor mutational load (TMB), 
we observed that the high TMB group exhibited a 
more unfavorable prognosis compared to the low 
TMB group (Figure 4C). The final combined survival 
analysis of TMB grouping and risk score grouping 
showed that the high TMB and high-risk score group 
had the most unfavorable prognosis (Figure 4D). 
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Figure 1. KIRC prognosis-related protein screening. A: COX regression analysis of protein prognostic volcano plots. B: Forest plot of prognostic-related proteins. C-D: Results 
of LASSO regression analysis and cross-validation. E-F: PCA analysis of risk scores. (***p<0.001). 
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Figure 2. KIRC prognosis-related protein survival analysis. A-C: K-M survival curves for OS between the two groups in the training, test, and overall groups. D-F: ROC curves 
predicting OS in the training, test, and overall groups. G-I: K-M survival curves for PFI between the two groups in the training, test, and overall groups.  

 

Clinical correlation of prognostic proteins 
To further investigate the correlation between 

the 7 model proteins and the prognosis of KIRC, 
survival analyses were further performed. The results 
showed that high expression of SMAC, P21, PEA15, 
and ACC1 showed a more inferior prognosis (Figure 
5B). In contrast, high expression of MIG6, 
P70S6K_pT389, and BRAF_pS445 showed a favorable 
prognosis (Figure 5A). This further demonstrated the 
feasibility of these seven proteins as prognostic 
markers. Clinical correlation analysis between the two 
risk subgroups showed that Grade, Stage, T, and M 
were significantly different between the two 
subgroups (Figure 5C). Co-expression analysis of the 
7 predictive proteins revealed a total of 39 proteins 
that were significantly co-expressed (r>0.5 and 
p<0.001) (Figure S2A). The correlation analysis of the 7 
prognostic proteins is visualized in the ring diagram 
(Figure S2B). 

Construction of nomogram 
To better predict the prognosis of patients with 

KIRC, we performed uni- and multivariate Cox 
regression analysis, and the results showed that risk 
score, Age, Grade, and Stage were significantly 
correlated with the prognosis (Figure 6A). 
Subsequently, we utilized these clinical characteristics 
and risk scores to construct a nomogram. Calculating 
the total score from the scores of each independent 
factor in the nomogram could accurately predict the 
survival of patients (Figure 6B). The nomogram 
exhibits a promising predictive performance, as 
indicated by the calibration curves and ROC curves 
(Figure 6C, D). 

Evaluation of prognostically relevant protein 
subgroups 

We performed a consistent clustering analysis 
based on the expression of model proteins to further 
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identify the subgroups of model proteins. We found 
that the intra-group correlation was the most obvious 
and the inter-group correlation was lower when k=2 
(Figure 7A-C). Afterward, an analysis of survival was 
conducted on the two subgroups of prognostic 
proteins. The results showed that the C1 group had a 
considerably more favorable prognosis (Figure 7D). 
Heatmaps illustrate the expression of model proteins 
and protein-coding genes across various subgroups. 
(Figure 7E-F). 

Immune cell infiltration and immune 
checkpoint analysis 

The examination of the distribution of immune 
subtypes in prognostic protein groupings, which were 
categorized into six subtypes in previous studies, 
revealed that the high-risk group had a higher 
prevalence of C1 (healing of wounds), C2 (dominated 
by IFN-g), C4 (depleted of lymphocytes), and C6 
(dominated by TGF-b). Additionally, the low-risk 
group had a higher percentage of C3 (inflammatory) 
(Fig. 8A). Similar differences were found between 
prognostic protein C1 and C2 subgroups (Figure 8B). 

Immune infiltration analysis of transcriptomic data 
using CIBERSORT and MCPcounter showed 
significant differences in both risk subgroups and 
protein subgroups (p<0.05, Figure 7C-F). According to 
the tumor micro-environment (TME) analysis, the 
high-risk group exhibited considerably elevated 
immune scores (p < 0.05, Figure 8C). Additionally, the 
stromal scores of the C1 subgroup were significantly 
higher than those of the C2 subgroup (p<0.001, Figure 
8D). TIDE analysis showed a high percentage of 
immunotherapy nonresponse in high-risk patients 
and the C2 subgroup (Figure S1H). 

Meanwhile, notable variations in immune 
checkpoint manifestation were observed among the 
two risk groups as well as the protein subgroups 
(p<0.05, Figure 8G, H). In the high-risk group, GSEA 
revealed enrichment of complement and coagulation 
cascades, cytokine receptor interaction, ECM receptor 
interaction, hematopoietic cell lineage, and p53 
signaling pathway (Figure 9A). In addition, fatty acid 
metabolism, neurotrophic protein signaling 
pathways, propionic acid metabolism, type II 
diabetes, and valine, leucine, and isoleucine 

 
Figure 3. Distribution of risk score. A-C: Predicted ROC curves for PFI in the training, test, and overall groups. D-F: Distribution of risk scores across cohorts. 
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degradation pathways were enriched in the low-risk 
group (Figure 9B). Figure 9C shows that the 
prognostic protein C1 subgroup had enriched 
pathways including focal adhesion, interaction of 
neuroactive ligands and receptors, neurotrophin 
signaling pathway, pathways related to cancer, and 
contraction of vascular smooth muscle. In Figure 9D, 
the complement and coagulation cascades, oxidative 
phosphorylation, steroid hormone biosynthesis, and 
vibrio cholerae infection pathways were found to be 
more abundant in the C2 subgroup. 

 

The relationship between the expression of 
prognostic protein-coding genes and prognosis 

We performed a survival analysis of these seven 
genes, which showed that all seven genes were 
significantly associated with prognosis, with high 
expression of DIABLO (encodes the SMAC protein) 
and ACACA (encodes the ACC1 protein) showing 
worse prognosis, while low expression of PEA15 
(encodes the PEA15 protein), CDKN1A (encodes P21 
protein), ERRFI1 (which encodes MIG6 protein), 
RPS6KB1 (encodes the P70S6K_pT389 protein) and 
BRAF (encodes the BRAF_pS445 protein), showed 

 
Figure 4. Somatic mutation analysis and survival analysis of model proteins in two risk subgroups. A-B: Gene mutations in the two risk subgroups. C: K-M survival curves for OS 
between high and low TMB groups. D: K-M survival curves for OS between the two TMB groups and the two risk groups. 
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worse prognosis (p<0.05, Figure 10A-B). To examine 
the predictive effect of the seven protein-coding genes 
on prognosis, we constructed the Cox proportional 
hazards model using these seven genes. The survival 
analysis indicated that the model built using these 
seven genes exhibited outstanding predictive ability. 
K-M survival analysis showed worse prognostic 
performance in the high-risk score group (p<0.05, 
Figure 10C-D). Analysis of 47 immune checkpoints 
revealed that 32 of these immune checkpoint genes 
exhibited distinct expression patterns (p<0.05, Figure 
10E). The analysis of ESTIMATE showed that the 
immune score and stromal score were higher in the 
high-risk group (p<0.05, Figure 10F). 

Analysis of prognostic protein-coding genes 
using online databases 

We examined the HPA database to analyze the 
expression of protein-coding genes. The results 
indicated that ACACA exhibited low expression in 
KIRC tissues, while BRAF, CDKN1A, DIABLO, 

PEA15, and RPS6KB1 showed high expression in 
KIRC tissues (Figure 11). To examine the variations in 
gene expression across various cell profiles, we 
utilized the TISCH database's KIRC_GSE111360 and 
KIRC_GSE159115 datasets to detect the expression 
levels of protein-coding genes (Figure 12A-B). The 
correlation between protein-coding genes and the 
functional status of tumor cells was analyzed using 
the CancerSEA database. The results revealed that 
ACACA was negatively correlated with the cell cycle 
(r=-0.35, p<0.05, Figure 12C), CDKN1A was positively 
associated with metastasis (r=0.33, p<0.01, Figure 
12D), RPS6KB1 was negatively related to invasion 
(r=-0.38, p<0.001, Figure 12E), BRAF was positively 
linked to Stemness (r =0.39, p<0.001, Figure 12F), 
ERRFI1 was positively connected to epithelial- 
mesenchymal transition (EMT) (r=0.51, p<0.01, Figure 
12G), and PEA15 was positively correlated with 
Quiescence (r=0.43, p< 0.01, Figure 12H). 

 

 
Figure 5. Survival analysis and interaction analysis of seven prognosis-related proteins. A: K-M survival curves between SMAC, P21, PEA15, and ACC1 expression and OS. B: 
K-M survival curves between MIG6, P70S6K_pT389, and BRAF_pS445 expression and OS. C: Correlation between the two risk score groups and clinical factors.  



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

2223 

 
Figure 6. Nomogram construction and performance tests. A: Uni-variate and multi-variate COX regression analysis of clinical factors and risk score. B: Nomogram for 
predicting patient survival. C: Calibration curves for nomogram. D: Nomogram of ROC curves for OS prediction. 

 

Verification of protein-coding genes by 
qRT-PCR 

We analyzed the differences in expression of 
seven protein-coding genes between tumor and 
normal samples at the BEST website (Figure 13A-B). 
To further investigate the manifestation of these 
seven protein-encoding genes in cellular models, 
we analyzed their presence in four different cell 

lines, namely HK-2, ACHN, 786-O, and 769-P, 
through the utilization of qRT-PCR. The results 
show that BRAF, CDKN1A, DIABLO, PEA15, 
ERRFI1, and RPS6KB1 are highly expressed in 
tumor cell lines, which is the same as in the TCGA 
database. Nevertheless, the cellular expression of 
ACACA varied from that observed in TCGA, 
potentially due to the disparity in sample size 
(Figure 13C). 
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Figure 7. Consistency clustering analysis of prognostic proteins. A: Consistency clustering analysis cumulative distribution function (CDF) curve. B: K-means algorithm. C: 
Unsupervised clustering of seven model proteins and optimal consensus matrix with k = 2. D: Survival analysis of two prognostic protein subgroups. E-F: Heatmaps depicting the 
expression patterns of seven model proteins and protein-coding genes in two prognostic protein subgroups. 



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

2225 

 
Figure 8. Immune infiltrates and subtypes of prognostic protein subgroups. A: Distribution of immune subtypes in risk subgroups. B: Immunosubtype distribution of prognostic 
protein subgroups C1 and C2. C: Divergences in the ratio of CIBERSORT immune cell infiltrations and TME scores among risk subgroups. D: Differences in proportions of 
CIBERSORT immune cell infiltration and TME scores for prognostic protein C1 and C2 subgroups. E: Divergences in the ratio of MCPcounter immune cell penetration among 
risk subgroups. F: The difference in the proportion of MCPcounter immune cell infiltration between prognostic protein C1 and C2 subgroups. G: Variations in the expression of 
immune checkpoint molecules among risk subgroups. H: Differences in immune checkpoint expression between prognostic protein C1 and C2 subgroups. (*p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001). 
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Figure 9. GSEA analysis of prognostic protein groupings. A-B: GSEA analysis of risk subgroups. C-D: GSEA analysis of protein subgroups.  

 

Discussion 
KIRC has an insidious onset, is heterogeneous, 

and is insensitive to conventional radiotherapy[12, 
13]. Partial or radical nephrectomy is the primary 
approach for treating non-metastatic KIRC. After 
undergoing surgical treatment, around 25%~50% of 
patients still experience either local recurrence or 
distant metastasis[14-16]. At present, focused 
immunotherapies are employed for advanced renal 
cancer that has spread to distant areas[17], although 
the effectiveness of these treatments for KIRC 
patients remains restricted[18]. In this particular 
situation, healthcare professionals require more 
accurate biological indicators to establish risk 
categorization for anticipating patient prognosis 
and response to immunotherapy, as well as to offer 
direction for clinical diagnosis and treatment. 

By conducting survival analysis and LASSO 
on the training cohort, we developed a prognostic 

model that consists of seven proteins. The model's 
predictive performance was validated in the test 
cohort, showcasing its exceptional accuracy. 
Furthermore, the nomogram was developed to 
forecast survival by amalgamating the risk scores of 
the prognostic proteins with clinical factors 
including age, gender, tumor stage, and grading. 

Earlier studies on the proteomic 
characterization of KIRC have demonstrated a 
strong association between proteomics and the 
tumor immune microenvironment. These studies 
have also revealed that distinct immune subtypes 
exhibit diverse clinical characteristics, prognoses, 
and responses to treatment[10]. Hence, we 
conducted analyses on immune cell infiltration and 
immune checkpoint expression in various risk 
groups and subtype subgroups, revealing 
noteworthy disparities among the different 
subgroups. Analysis of prognostic protein subtypes 
also indicated that the C1 cluster exhibited a 
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significantly more favorable prognosis compared to 
the C2 cluster. There are also studies showing that 
the Pearson correlation between protein and mRNA 
data was higher than 0.75 in immune and 
stromal-derived features[19]. Hence, we addition-

ally conducted a survival assessment on predictive 
protein-coding genes and developed a reliable 
prognostic model using them, demonstrating strong 
predictive accuracy. 

 
 

 
Figure 10. Survival analysis of TCGA-KIRC prognostic protein-encoding genes. A-B: K-M survival curves of prognostic protein-encoding genes for survival analysis. C: K-M 
survival curves and ROC curves for OS survival analysis for protein-coding genes. D: K-M survival curves and ROC curves for PFI survival analysis for protein-coding genes. E: 
Differential evaluation of immune checkpoint expression for risk subgroups of protein-coding genes. F: Analysis of immune infiltration in risk subgroups of protein-coding genes. 
(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 



Int. J. Med. Sci. 2024, Vol. 21 

 
https://www.medsci.org 

2228 

 
Figure 11. Expression of prognostic protein-encoding genes in tumor tissues and normal tissues in the HPA database. A: ACACA. B: BRAF. C: CDKN1A. D: DIABLO. E: PEA15. 
F: RPS6KB1. 

 
There are often intrinsic mechanisms underlying 

the prognostic differences between risk groups[20], 
and our GSEA results showed significant enrichment 
of complement and coagulation cascades, cytokine 
receptor interactions, ECM receptor interactions, 
hematopoietic cell lineage, and p53 signaling pathway 
in the high-risk group. Activation of the complement 
system and coagulation cascade in the tumor 
microenvironment promotes inflammatory response 
and tumor progression[21, 22]. Cytokine receptor 
interactions regulate immune responses and 
inflammatory processes[23], while ECM receptor 
interactions play a key role in tumor growth and 
metastasis[24], and finally, p53 is an important tumor 
suppressor gene[25], which suggests that dysfunction 
of p53 may be present in the high-risk group, and that 
the above results may be associated with a poorer 
prognosis in the high-risk group. In contrast, the 
low-risk group was significantly enriched in 
metabolism-related signaling pathways, suggesting 
that the metabolic status of patients in the low-risk 
group may be associated with their better 
prognosis[26]. We suggest further studies to 
determine whether these pathways may serve as new 
therapeutic targets or biomarkers. 

Among the prognostic protein-coding genes, 
ACACA played a crucial role in lipid metabolism as a 
significant enzyme and as a key enzyme in regulating 
the initial production of fatty acids [27]. Bioactive 
lipids could promote or inhibit the development and 
metastasis of renal cancer by regulating the stability 
and transcriptional activity of HIF-2α, thus affecting 
the proliferation, migration, angiogenesis, immune 
escape, and other processes of renal cancer cells[28, 
29]. It has been shown that ACACA-induced lipid 

synthesis and lipid accumulation led to hepatocellular 
carcinoma progression[30], whereas inhibition of 
ACACA similarly inhibited hepatocellular carcinoma 
progression[31]. The research focused on ACACA and 
kidney cancer has not made significant 
advancements. However, compounds that inhibit 
lipid absorption or transportation have demonstrated 
anti-cancer effects in laboratory and animal studies. 
Furthermore, a number of these medications have 
progressed to clinical trials [32]. The p21 protein, 
encoded by the gene CDKN1A, interacted with a 
variety of proteins involved in cell cycle inhibition, as 
well as cell differentiation, and migration, thereby 
acting as an oncogenic or pro-oncogenic agent[33, 34]. 
Up-regulation of P21 signaling or p21 mRNA stability 
was found to inhibit the growth of KIRC [35, 36]. 
Immunohistochemical analysis of tissue microarrays 
from 366 KIRC patients showed that p21 might 
contribute to prognosis and play different biological 
functions in limited and metastatic renal cell 
carcinoma[37]. The RPS6KB1 gene encodes ribosomal 
protein S6 kinase (p70S6K), which is used to control 
cell survival, proliferation, and metabolism through 
the PI3K/mTOR signaling pathway[38]. Several 
studies have shown that p70S6K is associated with the 
pathophysiology of various tumors such as prostate 
and colorectal cancers[39-41]. Smac was a pro- 
apoptotic mitochondrial protein, and phospholipid 
metabolism and phosphatidylethanolamine synthesis 
regulated by Smac and phosphatidylethanolamine 
interactions were critical for cancer cell 
proliferation[42, 43]. Studies have demonstrated that 
patients with RCC who exhibited low levels of Smac 
expression had a fourfold increase in the risk of death 
compared to patients with high expression[44].  
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Figure 12. TISCH database and CancerSEA database analysis of protein-coding genes. A: Gene expression from the KIRC-GSE111360 dataset in the TISCH database. B: Gene 
expression from the KIRC-GSE159115 dataset in the TISCH database. C-H: Correlation of prognostic protein-encoding genes with cancer cell functional status at the single-cell 
level. 
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Figure 13. qRT-PCR of seven protein-coding genes. A: Gene expression from the TCGA-KIRC dataset in the BEST website. B: Gene expression from the GSE167573 dataset 
in the BEST website. C: Expression of seven protein-coding genes in cell lines examined by qRT-PCR. 

 
BRAF functioned as a serine/threonine kinase 

that played a role in controlling the MAPK signaling 
pathway. BRAF was mutated in a variety of cancers, 
leading to aberrant activation of the signaling 
pathway. Currently, the FDA has approved small 
molecule inhibitors that target BRAF for the treatment 
of advanced melanoma and non-small cell lung 
cancer[45, 46]. ERRFI1 acts as a suppressor of EGFR 
by directly attaching to EGFR, restraining the 
enzymatic function of EGFR, and facilitating the 
degradation of EGFR in lysosomes[47]. Research has 
indicated that ERRFI1 is significant in the 
development of lung cancer, endometrial cancer, and 
breast cancer[48]. PEA15 was widely expressed in 

breast cancer, and studies have shown that PEA15 
dephosphorylation might be associated with breast 
cancer progression and drug resistance[49, 50]. 

Although our model exhibits excellent predictive 
performance, there are still certain constraints in our 
research. Our study was based on the analysis and 
validation of data collected through public databases, 
the inclusion of corresponding external validation 
data may give better results, and prospective studies 
are needed to further evaluate the model. Moreover, it 
is crucial to conduct thorough functional experiments 
to clarify the interrelated mechanisms of the seven 
prognostic proteins. 
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Conclusion  
In general, we created a proteomics-driven 

framework that can forecast the outlook, immune 
surroundings, and medication reactions of patients 
with KIRC. The model relies on 7 prognostic proteins 
and clinical factors. The model's potential for reliable 
prognostic prediction in KIRC was demonstrated 
through validation against the HPA database and 
qRT-PCR experiments. 
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