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Abstract 

Background: Identification of the unknown pathogenic factor driving atherosclerosis not only enhances the 
development of disease biomarkers but also facilitates the discovery of new therapeutic targets, thus 
contributing to the improved management of coronary artery disease (CAD). We aimed to identify causative 
protein biomarkers in CAD etiology based on proteomics and 2-sample Mendelian randomization (MR) design. 
Methods: Serum samples from 33 first-onset CAD patients and 31 non-CAD controls were collected and 
detected using protein array. Differentially expressed analyses were used to identify candidate proteins for 
causal inference. We used 2-sample MR to detect the causal associations between the candidate proteins and 
CAD. Network MR was performed to explore whether metabolic risk factors for CAD mediated the risk of 
identified protein. Vascular expression of candidate protein in situ was also detected.  
Results: Among the differentially expressed proteins identified utilizing proteomics, we found that circulating 
Golgi protein 73 (GP73) was causally associated with incident CAD and other atherosclerotic events sharing 
similar etiology. Network MR approach showed low-density lipoprotein cholesterol and glycated hemoglobin 
serve as mediators in the causal pathway, transmitting 42.1% and 8.7% effects from GP73 to CAD, respectively. 
Apart from the circulating form of GP73, both mouse model and human specimens imply that vascular GP73 
expression was also upregulated in atherosclerotic lesions and concomitant with markers of macrophage and 
phenotypic switching of vascular smooth muscle cells (VSMCs). 
Conclusions: Our study supported GP73 as a biomarker and causative for CAD. GP73 may involve in CAD 
pathogenesis mainly via dyslipidemia and hyperglycemia, which may enrich the etiological information and 
suggest future research direction on CAD. 

Keywords: Coronary artery disease, Golgi protein 73, Mendelian randomization 

Introduction 
Coronary artery disease (CAD) is the most 

common cardiovascular disease globally, contributing 
to over 9.5 million deaths annually and posing a 

significant burden on public health [1]. The 
nationwide longitudinal Swedish SWEDEHEART 
registry presented a substantial reduction in 1-year 
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mortality of myocardial infarction (MI) from 1995 to 
2014, with the gradual widespread implementation of 
new evidence-based treatment strategies including 
reperfusion, primary percutaneous coronary 
intervention, dual antiplatelet therapy, statins, 
beta-blockers, and angiotensin-converting-enzyme/ 
angiotensin-2-receptor inhibitors [2, 3]. However, the 
improvement effects appear to reach a plateau, and no 
notable improvement has been observed over the last 
decade [4]. Such a dilemma indicated residual risk in 
CAD onset and a limited understanding of the 
pathogenic mechanisms driving atherosclerosis [4]. 
Although traditional risk factors for CAD were 
well-established, the underlying mechanism behind 
these risk factors or whether additional pathways 
bypassing known risk factors remains incompletely 
understood [5, 6]. Hence, further elucidation of the 
molecular mechanism may guide more effective 
strategies for interfering with the initiation and 
progression of atherosclerosis. 

Serum proteins serve critical roles in numerous 
disease processes and provide an essential source of 
therapeutic targets [7, 8]. The advent of 
high-throughput proteomic technology enables the 
comprehensive monitoring of each individual's 
proteomic landscapes, thus discovering novel disease 
biomarkers and understanding the pathophysio-
logical network underlying the disease, thereby 
providing new therapeutic candidate targets [9]. 
However, given the nature of the observational study, 
bioinformatics analysis based on protein arrays is 
inadequate to infer causality due to multiple 
limitations, such as selection bias, potential 
confounding, and reverse causation [10]. Mendelian 
Randomization (MR), an emerging epidemiological 
methodology in causal inference, provides alternative 
opportunities to assess the causality of biomarkers in 
disease onset. Essentially, the MR approach use 
randomly allocated genetic variants as instruments, 
which were built preceding the onset of disease thus 
avoiding the confounders theoretically, to evaluate 
the causal association from exposure factors to 
outcome unbiasedly [11].  

In recent years, large-scale genome-wide 
association studies (GWAS) have mapped the genetic 
variations associated with circulating protein profiles, 
greatly facilitating the causality assessment of 
proteome in disease etiology using the MR approach 
[12, 13]. Here, by leveraging proteomics data from a 
real-world cohort and large-scale GWAS on the 
circulating proteome, we aimed to comprehensively 
screen the differentially expressed proteins (DEPs) in 
CAD patients using protein array and identify causal 
biomarkers in CAD etiology based on a 2-sample MR 
study. For the identified circulating protein, we also 

investigated the association of its vascular expression 
in situ with atherosclerosis.  

Methods 
Study Design 

The study consisted of seven steps (Figure S1): 
(1) Measurements of 640 proteins using proteomic 
technology in 33 CAD patients and 31 controls; (2) 
Screening for DEPs between CAD and control 
individuals; (3) Exploring the causal association 
between candidate proteins with CAD using 2-sample 
MR; (4) Sensitivity analyses to validate the association 
between the identified protein with CAD; (5) 
Exploring the causal association between the 
identified protein with other atherosclerosis diseases 
sharing the same etiology; (6) Exploring the mediating 
role of metabolic risk factors in the pathogenic 
pathway from GP73 to CAD using network MR; (7) 
Investigating the association between vascular 
expression of the identified protein in situ with 
atherosclerosis. 

Study population 
The participants were enrolled from the 

REal-world Data of CARdiometabolic ProtEcTion 
(RED-CARPET, ChiCTR2000039901) study at the First 
Affiliated Hospital of Sun Yat‐Sen University (Detail 
in Text S1). Studies on human specimens followed the 
Declaration of Helsinki guidelines. We recruited 64 
individuals (aged 34 to 80 years) who were admitted 
due to chest distress or pain and received coronary 
angiography examinations from January 2017 to 
February 2018. Demographics, lifestyle factors, 
physical measurements, clinical history, and 
laboratory data of participants were collected by 
trained staff (Detail in Text S1). Gensini score system 
was used to evaluate the severity of coronary artery 
stenosis [14]. CAD was defined as Gensini score > 0 
with greater than 50% stenosis in any coronary 
arteries. Those with self-reported chest distress or 
pain without any coronary stenosis proven by 
coronary angiography were included in control 
group. 

Blood sampling and proteomics 
measurements 

Blood samples for proteomics were drawn in the 
morning after fasting for at least 10 hours. The blood 
samples were centrifuged at 4,000 rpm/min for 10 
minutes after resting for 45 minutes. Serum samples 
were aliquot and stored at -80 °C until assays for 
proteomics. Relative expression levels of 640 human 
cytokines were measured using G-Series Human 
Cytokine Array 640 Kit. (RayBiotech, Inc.) according 
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to the manufacturer’s protocol (Text S2). Based on 
sandwich-based ELISA, the signals of the 
cytokine-antibody-biotin complex were then detected 
by an Axon GenePix laser scanner. RayBio Q 
Analyzer tool was used to analyze the data. 

Publicly available GWAS summary data for 
2-sample MR analyses 

We obtained association summary statistics for 
candidate proteins from the published GWAS, the 
Age, Gene/Environment Susceptibility (AGES)- 
Reykjavik study [13, 15]. The AGES study measured 
4,782 serum protein concentrations based on the 
SOMAscan platform and detected 54,469 genetic 
variants from the HumanExome BeadChip exome 
array in 5,343 participants. A total of 2,019 protein 
quantitative trait loci (pQTL) were independently 
associated with circulating levels of 2,135 serum 
proteins at a Bonferroni corrected P-value threshold <
1.92 × 10−10 (0.05/54,469/4,782) [13]. Assay details of 
the AGES study have been previously described 
{#14}. 

Effect size and standard errors of genetic 
instruments on CAD were extracted from 
CARDIoGRAMplusC4D 1,000 Genomes-based 
GWAS, one of the largest GWAS on CAD comprising 
60,801 cases and 123,504 controls mainly from 
European ancestry [16]. CAD was defined as an 
inclusive diagnosis of myocardial infarction, acute 
coronary syndrome, chronic stable angina, or 
coronary stenosis of >50%. The extent of sample 
overlap between exposure and outcome samples 
seemed to be low because they were derived from 
different consortiums. Details and web links for 
downloading the data of other GWAS used for 
analysis were summarized in Table S1. 

Selection of genetic instruments 
For each candidate protein identified through 

proteomics analysis, we selected pQTLs associated 
with their serum concentrations at a 
Bonferroni-corrected P-value threshold from the 
AGES study (< 1.92 × 10−10) if available. When two 
or more pQTLs associated with a particular protein 
were located at the same chromosome, we evaluated 
the correlations between the pQTLs using LDlink Tool 
(http://ldlink.nci.nih.gov/). Those independent 
pQTLs, defined as linkage disequilibrium 𝑟𝑟2 < 0.2 
within 500 kb with a reference panel consisting of 
European populations, were retained for subsequent 
analysis [17, 18]. We used the F-statistic to assess the 
strengths of the pQTLs based on an equation 

developed by Bowden et al.: 𝐹𝐹𝑖𝑖 =
𝛾𝛾𝑗𝑗
2

𝜎𝜎𝑥𝑥𝑗𝑗
2 , while 𝛾𝛾𝑗𝑗 and 𝜎𝜎𝑥𝑥𝑗𝑗 

refer to the estimate and standard deviation of the 

association between pQTLs and proteins, respectively 
[19]. pQTLs with an F-statistic>10 and minor allele 
frequency (MAF) > 0.001 were selected as genetic 
instrument variables (IVs) [20]. The F-statistic for 14 
pQTLs ranged from 40.79 to 5575.4, reaching the 
threshold of F-statistic >10, typically recommended 
for MR analyses (Table S2) [20]. For those pQTLs 
absent in GWAS on the outcome, highly correlated 
proxy pQTLs (𝑟𝑟2 > 0.8) were used when available. All 
pQTLs of candidate proteins used in primary MR 
analysis were listed in Table S2.  

Differential expression analysis 
Chip background adjustments and inter-chip 

normalization on row data were performed using 
Raybiotech software. The normalized data were 
subjected to differentially expressed analysis based on 
the ‘limma’ R package (version 3.48.3) [21]. The 
log2-fold change (log2FC) was calculated as the 
logarithm base 2 of the ratio of protein expression 
levels in individuals with CAD (CAD group) to those 
without CAD (non-CAD group), represented as log2 
(CAD/non-CAD). DEPs were defined as P-value<0.05 
and |log2FC|>0.263 (equivalent to FC>1.2 or FC< 
0.83) [22], where FC>1.2 indicated up-regulated DEPs 
and FC<0.83 indicated down-regulated DEPs. 
Volcano Plot (‘ggplot2’ package) was generated to 
visualize the DEPs. The DEPs were used for 
subsequent causal inference based on a 2-sample MR 
approach. 

Two-sample Mendelian Randomization 
In primary MR analysis to assess the causal 

effects of the candidate proteins on CAD, we 
performed the Wald Ratio method for those with a 
single IV and the inverse variance weighted (IVW) 
method based on the fixed-effect (FE) model for those 
with two or more IVs. A random-effect (RE) model 
was used in the IVW method if heterogeneity across 
pQTLs exists. The odds ratio (OR) and 95% 
confidence interval (CI) of the causal relationship 
were estimated based on the predicted beta coefficient 
and standard error. A Benjamini-Hochberg false 
discovery rate (FDR) of < 0.05 indicated a causal 
relationship for adjusting multiple comparisons. For 
the identified proteins, the causal effects of genetic 
instruments on outcomes were summarized in Table 
S3. 

For protein reaching FDR<0.05, we further 
applied several MR methods to validate the 
robustness of the causality as sensitivity analysis. The 
weighted median method can provide reliable 
estimates of causal relationships when at least half of 
the IVs are valid, even with horizontal pleiotropy [23]. 
Based on the assumption that the most common 
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causal effect is consistent with the real causal effect, 
the weighted mode method usually has a low type 1 
error rate inflation [24, 25]. MR-Egger regression 
assessed the association between exposure and 
outcome by performing a weighted linear regression 
of the pQTLs-outcome estimates on pQTLs-exposure 
estimates [26]. The leave-one-out approach removed 
IVs in turn to assess the effect of outlying IVs. We also 
conducted the Mendelian randomization pleiotropy 
residual sum and outlier (MR-PRESSO) test to 
investigate and correct outliers of IVs with pleiotropic 
effects [27]. Cochran's Q test evaluated the 
heterogeneity of the causal effect across IVs on the 
outcome. MR-Egger regression was also used to 
detect pleiotropy. The forest plot depicted the 
predicted effect and standard error of individual IVs 
on CAD, while the scatter plot displayed the 
relationship between the IVs with candidate proteins 
and CAD. The IV’s estimate against its precision was 
plotted in the funnel plot, where asymmetry implied 
directional horizontal pleiotropy.  

Other sensitivity analyses included external 
validation based on additional GWAS data and 
assessing the causality with other atherosclerosis 
diseases, including myocardial infarction, ischemic 
stroke, and its subtype, peripheral artery disease 
(PAD) [16, 28-30]. Post-hoc power calculation was 
performed based on mRnd (http://cnsgenomics 
.com/shiny/mRnd/) [31]. This study is reported as 
per the Strengthening the Reporting of MR studies 
(STROBE-MR) guideline (Text S3) [31].  

Network Mendelian randomization and 
mediation analysis 

We investigate the role of metabolic risk factors 
in the causal pathway from identified proteins to 
CAD using the network MR approach [33, 34], 
including the following traits: lipid profiles [35, 36] 
[low-density lipoprotein cholesterol (LDL-c), 
high-density lipoprotein cholesterol (HDL-c), total 
cholesterol (TC)], glycemic profile [29, 37, 38] 
[glycated hemoglobin (HbA1c), homeostasis model 
assessment of β-cell function (HOMA-β), homeostatic 
model assessment for insulin resistance (HOMA-IR)]. 
Network MR analyses were conducted to identify 
potential metabolic mediators in the causal pathway 
(methodology detailed in Figure S2), and mediation 
analysis was used to quantify the proportion of effects 
mediated by the investigated mediator (Text S4) [33, 
39]. 

Vascular GP73 expression and atherosclerosis 

For the identified protein (Golgi protein 73, 
GP73), we investigate its vascular expression in 

arteries with different atherosclerotic states. 
Apolipoprotein-E-gene-deficient (ApoE-/-) mice 
(8-week old, male, n=5) were fed with a high-fat diet 
(ApoE-HFD) for 12 weeks to establish the 
atherosclerosis model, while 5 ApoE-/- mice were fed 
with normal diet (ApoE-ND) as control. (1) Western 
blot analysis: Total proteins were extracted from the 
isolated abdominal aortic tissues using standard 
procedures. Western blot was performed with specific 
antibodies against GP73 (1:5000, Proteintech) and 
β-actin (1:5000, Abcam). An enhanced chemilumines-
cence reagent kit (Applygen Technologies, Beijing, 
China) was used to visualize the protein, and Image J 
software (NIH, Bethesda, MD, USA) was used to 
quantify band intensity. (2) Immunofluorescence 
Analysis: Immunofluorescence staining method was 
implemented as previously described [40]. Frozen 
aortic root sections from ApoE-HFD and ApoE-ND 
mice were double-stained with anti-GP73 (rabbit, 
Proteintech) antibodies and macrophage marker, 
anti-F4-80 (rat; Abcam) antibodies. The slides were 
imaged by a confocal laser scanning microscope 
(LSM780, Zeiss, Oberkochen, Germany). Other 
information on experimental procedures was 
provided in Text S5. The animal experiment was 
approved by the ethics committees of Sun Yat-sen 
University (Approval NO. SYSU-IACUC-2023- 
000052). Public transcriptome data of human artery 
specimens were downloaded from GEO (Gene 
Expression Omnibus) website (http://www.ncbi.nlm 
.nih.gov/geo/). Differential expressed analyses were 
utilized to compare vascular GP73 expression 
between atherosclerotic artery (n=69) with control 
artery (n=35) (GSE100927), and between early (n=13) 
with advanced plaques (n=16) on human carotid 
(GSE28829) (Table S4) [41, 42]. Associations between 
GP73 mRNA expression level and other 
atherosclerotic markers in plaque were determined 
via Pearson correlations. 

Statistical analysis 

Statistical analyses were performed in R version 
4.0.1 and GraphPad Prism (version 7.0). Statistical 
comparison between two groups was based on 
Student’s t test (continuous variables), χ2 tests 
(categorical variables), and the Kruskal-Wallis test as 
appropriate. Pearson correlation was used to 
determine the linear relationship between continuous 
variables. MR analyses were conducted using the 
‘TwoSampleMR’ and ‘MR-PRESSO’ R package. 
‘DESeq2’ R package was used for differential 
expressed analysis. A P-value < 0.05 was considered 
statistically significant unless specifically indicated 
otherwise. 
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Results 
Differentially expressed analysis 

Baseline characteristics of 64 participants (33 in 
the CAD group and 31 in the control group) enrolled 
in proteomics were shown in Table 1. Cardiovascular 
risk factors showed similar distributions in the two 
groups. Individuals in the CAD group exhibits higher 
Gensini score and elevated concentration of creatine 
kinase-MB and cardiac troponin T. Among 640 
proteins detected, we identified 33 DEPs 
(|log2FC|>0.263, P-value<0.05) in the CAD groups 
compared with the control group (Table S5), among 
which 15 were upregulated and 17 were 
downregulated (Figure 1). Some proteins were 
already well known in CAD pathogenesis, e.g., renin; 
however, there were still some proteins not yet been 
investigated in the field of CAD.  

Genetically determined circulating levels of 
candidate proteins and risk of CAD 

Among the DEPs identified by protein array, 
genetic IVs for 17 DEPs were extracted from the AGES 
study. In a 2-sample MR analysis using the IVW 
method, genetically predicted higher GP73 
concentration was positively associated with 
increased CAD risk (OR, 1.11; 95%CI, 1.05-1.18; 
p-value<0.001; Table S6) after accounting for multiple 
comparisons (FDR=0.005). However, we detected no 
evidence of a causal relationship between genetically 
determined levels of the other 16 DEPs with CAD risk 
(Table S6). In a post-hoc power calculation for GP73, 

the proportion of variance in the GP73 level explained 
by genetic instruments was 11%. Assuming the real 
causal OR of GP73 on CAD was 1.11, we had 
sufficient statistical power (>80%) to detect the causal 
association between GP73 and CAD with a total 
sample size of 184,305 (33.0% CAD cases) and the 
significance level α of 0.05, even at an α of 0.01 for 
multi-comparison. 

 

Table 1. Baseline characteristics of CAD group and control 
group 

Characteristics CAD group 
(n=33) 

Control group (n=31) P-value 

Age, years 56.4±12.1 54.7±11.1 0.56 
Men, % 21 (63.6) 19 (61.3) 0.85 
Smoking, % 11 (33.3) 13 (41.9) 0.48 
BMI, kg/m2 23.9±3.0 25.0±3.0 0.15 
SBP, mmHg 127.6±19.7 125.0±15.0 0.56 
DBP, mmHg 79.8±10.5 78.0±11.7 0.52 
Hypertension, % 20 (60.6) 17 (54.8) 0.64 
DM, % 9 (27.3) 8 (25.8) 0.89 
TC, mmol/L 4.71±1.1 4.4±0.9 0.26 
TG, mmol/L 2.1±1.4 1.7±0.8 0.17 
LDL-c, mmol/L 3.0±0.7 2.7±0.7 0.12 
HbA1c, % 6.6±2.1 6.0±0.9 0.16 
CK-MB, ng/ml 3.2±3.3 1.3±0.6 0.003 
cTNT, ng/ml 0.4±0.9 0.0±0.0 0.007 
Gensini Score 88.2±52.4 0.0±0.0 <0.001 
Data are presented as mean ± SD or number (percentage). 
Abbreviation: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; DM, diabetes mellitus; TC, total cholesterol; TG, triglycerides; 
LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein 
cholesterol; HbA1c, glycated hemoglobin; CK-MB, Creatine kinase-MB; cTNT, 
Cardiac troponin T. 

 
 

 

 
Figure 1. Volcano Plot showed the differentially expressed proteins (DEPs) between CAD and control groups. Differentially expressed proteins were identified 
between 33 CAD and 31 controls. The x-axis and y-axis correspond to log2(Foldchange) value and -log10 (P-value), respectively. Circulating proteins with 
|log2(Foldchange)|>0.263 and P-value <0.05 were considered as significantly differentially expressed. The red dots represent significantly up-regulated proteins, while blue dots 
display significantly down-regulated proteins in CAD group. 
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In sensitivity analyses, despite MR estimate 
using MR Egger did not detect a causal relationship 
between GP73 concentrations with CAD, the 
predicted effect sizes of GP73 on CAD were 
comparable and consistent in the direction across 
IVW, weighted median, and weighted mode method 
(all P-value<0.05; Table 2, Figure 2A). MR-Egger 
methods reported no horizontal pleiotropy 
(intercept=-0.006, se = 0.021, P=0.79; Table 2). Besides, 
the MR-PRESSO method did not detect outlying 
pQTL causing horizontal pleiotropy (P-value for 
MR-PRESSO global test = 0.19). In leave-one-out 
analysis, when singly withdrawing pQTLto assess the 
remaining effect, all estimates were consistent at each 
time, indicating that no pQTL substantially influenced 
overall estimation and the causal association was not 
biased by potential driving pQTL (Figure 2B). The 
scatter plot showed dose–response relationship 
between circulating GP73 level and the incidence of 
CAD (Figure 2C). Besides, no asymmetry was 
observed in the funnel plot, suggesting no horizontal 
pleiotropy of pQTLs (Figure S3).  

When externally replicated in CAD GWAS of 
FINNGEN study, genetically determined GP73 level 
was still significantly associated with CAD risk; 
meanwhile, the causal estimates were comparable 
with that in the primary analysis (OR, 1.08 versus 
1.11, Table S7). We further evaluated the causal 
relationship between genetically determined GP73 
levels with other atherosclerosis diseases using the 
IVW method. As depicted in Table S8, genetically 
determined higher circulating GP73 concentration 
was associated with an increased risk of myocardial 
infarction (OR, 1.18; 95% CI, 1.09–1.28; P-value, 
<0.001), large artery atherosclerotic stroke (OR, 1.29; 
95% CI, 1.07–1.55; P-value, 0.008) and PAD (OR, 1.001; 
95% CI, 1.000–1.001; P-value, 0.02).  

Network Mendelian randomization 
Network MR analysis showed that across 

metabolic risk factors profiles for CAD, GP73 level 
was causally associated with LDL-c and HbA1c, both 
of which were externally validated using other GWAS 
data (Table S9). Besides, LDL-c and HbA1c were 
causally associated with incident CAD (Table 3). 
Mediation analysis showed that they served as 
mediators in the causal pathway from GP73 to CAD 
and transmitted 42.1% and 8.7% of the total effects, 
respectively (Table 3). 

Vascular GP73 expression and atherosclerosis 
Western blot and immunofluorescence staining 

demonstrated that GP73 expression in the aorta was 
significantly upregulated in ApoE-HFD mice 

compared with ApoE-ND mice (Figure 3A and C). 
Apparent colocalization of GP73 (green) and F4-80 
(red) in the aortic section was observed in ApoE-HFD 
mice, while ApoE-ND mice had a considerably 
reduced colocalization area and diminished 
fluorescence intensity (Figure 3C). Besides, GP73 
expression in the aorta was positively correlated with 
body weight, circulating TC, and LDL-c 
concentrations (Figure 3B). As for the human case, 
peripheral arteries with atherosclerotic plaques 
exhibited higher expression of GP73 than control 
arteries (Figure 3D). Using a sample composed of 69 
atherosclerotic arteries and 35 control arteries, we 
observed reversal mRNA expression patterns of GP73 
and contractile markers of vascular smooth muscle 
cells (VSMCs), including MYOCD (myocardin) and 
TAGLN (transgelin) (Figure 3E). On the opposite, we 
demonstrated strongly positive correlations in 
expression patterns between GP73 with proliferation 
marker of VSMCs (proliferating cell nuclear antigen, 
PCNA) and macrophage marker (CD68) (Fig 3F and 
G). Moreover, vascular GP73 expression became 
up-regulated with plaque progression, significantly 
higher in advanced plaque than early plaque (Figure 
3H). 

 

Table 2. Causal associations between genetically determined 
GP73 level and CAD 

Exposure- 
outcome 

Method Causal estimate 
pQTLs OR 95% CI P-value 

GP73-CAD Inverse variance weighteda 5 1.11 1.05-1.18 <0.001 
Weighted median 5 1.11 1.06-1.16 <0.001 
Weighted mode 5 1.11 1.06-1.17 0.02 
MR Egger 5 1.14 0.98-1.32 0.20 
MR-PRESSO 5 1.11 1.05-1.18 0.02 
Test for Heterogeneity: P=0.02 (MR-Egger) and P=0.05 (IVW) 
Test for Horizontal pleiotropy: MR-Egger intercept=-0.006, se = 
0.021, P=0.79 
MR-PRESSO global test: P=0.19 

Abbreviations: GP73, golgi protein 73; CAD, coronary artery disease; OR, odds 
ratio; 95% CI, 95% confidential interval; FDR, false discovery rate. 
a Inverse variance weighted (random-effect) method 

 

Discussion 
Using a strategy integrating protein arrays and 

causal inference, we first reported an association 
between higher genetically predicted circulating GP73 
levels and increased CAD risk. Evidence from a 
network MR design showed that dyslipidemia and 
hyperglycemia transmitted the causal effects from 
GP73 to CAD. Apart from the circulating form of 
GP73, we also observed up-regulation of vascular 
GP73 expression upon atherosclerotic lesions, which 
may involve in macrophage recruitment and VSMCs 
phenotypic switching during atherosclerosis.  
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Figure 2. Mendelian randomization analysis for circulating GP73 level and risk of CAD. (A) Forest plot displays the summary of MR estimates on coronary artery 
disease (CAD) using each protein quantitative trait loci (pQTL) as instrument via the Wald method. The overall OR of GP73 on CAD is estimated based on the inverse variance 
weighted (IVW) method. (B) Leave-one-out analysis excludes one pQTL at a time and test the MR estimate from remaining pQTLs. Five pQTLs showed consistent results and 
reported no outlier pQTL. (C) Scatter plots showed the dose-response relationship between circulating GP73 level and CAD risk. 

 
GP73, a type II Golgi transmembrane glyco-

protein, is highly expressed in liver inflammation and 
a wide variety of tumors [43-45]. Despite this, limited 
research has explored the role of GP73 in 
cardiovascular diseases. In our prior investigation, we 
demonstrated that GP73 promotes atherosclerosis by 

activating NF-κB/NLRP3 inflammasome signaling 
[46]. Notably, the present study represents the first 
attempt to explore the epidemiological association 
between GP73 and CAD. Our results not only 
generate an effective biomarker for the identification 
of CAD but also provides a potential target for 
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prevention and therapeutic intervention in CAD. The 
findings enrich the etiological information of CAD, 
facilitating further research to understand the 
pathophysiology underlying CAD. From the 
perspective of translational medicine, future 
fundamental research confirming and illustrating the 
underlying pathogenic mechanism of GP73 may help 
establish an effective strategy in the management of 
CAD. From an epidemiological perspective, 
considering the causal role of GP73 in the 
pathogenesis of CAD, a further prospective study 
focusing on the prognostic value of GP73 will provide 
evidence for clinical risk stratification of CAD in the 
general population. Besides, network MR analysis in 
the present study partially sheds light on the 
biological network from GP73 to CAD thus, targeted 
interventions acting on the identified mediators along 
the causal pathway, e.g., management of 
dyslipidemia and hyperglycemia, are also helpful to 
minimize the harmful effects of GP73 on CAD.  

 Contrary to the high burden of CAD, despite the 
technological advancement and substantial efforts in 
drug discovery for targeting CAD, new drug 
approval seems to stagnate recently [47]. Summarized 
data from 218 failed drug trials showed that over half 
of the failures in phase Ⅱ and Ⅲ trials are attributed 
to the lack of efficacy [48]. Pre-screening for causality 
of candidate drug target in disease etiology provides 
genetic evidence to anticipate the treatment efficacy 
before entry into clinical trial [47, 49]. MR approach, 
analogous to a ‘natural’ randomized controlled trial, 
exhibited promising performance in predicting 
whether interventions on therapeutic target modifies 
the risk of disease [49]. Being different from the 
emerging ‘Phenome-wide Mendelian randomization’ 
approach to systematically evaluate the causal effects 
of circulating proteome on diseases [50-52], we 
integrated the results from CAD biomarker study 

with causal inference, making our findings more 
reliable in the prediction of drug targets. Further 
research is warranted to validate and excavate the 
potential therapeutic value of GP73 on CAD. 

 Network MR in the present analysis provided 
insights into how GP73 induces CAD and highlighted 
that LDL-c serves as the most predominant mediator 
in the causal pathway from GP73 to CAD (Table 3). 
According to the GeneCards database 
(https://www.genecards.org) [53], regulation of lipid 
metabolic process is one of the biological processes of 
GOLM1, the gene coding for GP73 (Table S10). In line 
with our findings, Yang et al. elucidated that 
overexpression of GP73 in HepG2 and HL7702 cell 
enhanced SCAP-SREBPs binding, which in turn 
upregulated cholesterol synthesis-related gene 
expression and intracellular cholesterol level, leading 
to lipogenesis [54]. On the other hand, here we found 
hyperglycemic condition is another potential 
intermediate in the atherogenic pathway downstream 
of GP73. Interestingly, Wan et al. found experimental 
administration of GP73 into mice led to immediate 
hyperglycemia and compensatory hyperinsulinemia, 
indicating that GP73 may serve as a “glucogenic 
hormone” [55], verifying our assumption from MR 
analysis. Despite all of these findings supporting the 
causal relationship between GP73 with LDL-c and 
HbA1c, further epidemiological surveys in 
population are still needed to verify whether GP73 
induced glucose and lipid metabolism disorder, 
consequently causing CAD in the real world. If 
confirmed, intervention targeted on LDL-c and 
glucose may act as an alternative strategy to reduce 
the risk of CAD in individual genetic predisposition 
to high GP73 levels. On the contrary, GP73 may also 
provide new perspectives for managing dyslipidemia 
and hyperglycemia. 

 
 
 

Table 3. Network Mendelian Randomization and mediation analysis between GP73 and CAD based on IVW method 

Metabolic trait Causal estimates between GP73 with traits (Discovery) Causal estimates between 
traits with CAD 

PM 

pQTLs β SE P-value pQTLs OR 95%CI P-value 
TC 3 0.072 a 0.056 0.20 - - - - - 
HDL-c 3 0.032 a 0.048 0.51 - - - - - 
LDL-c 3 0.099 a 0.049 0.04 40 1.58 a 1.43-1.74 <0.001 42.1% 
HbA1c 5 0.033 b 0.007 <0.001 11 1.33 b 1.09-1.61 0.004 8.7% 
HOMA-β 5 -0.002 b 0.007 0.78 - - - - - 
HOMA-IR 5 0.011 b 0.008 0.18 - - - - - 
Abbreviations: GP73, golgi protein 73; CAD, coronary artery disease; IVW, inverse variance weighted; CAD, coronary artery disease; TC, total cholesterol; LDL-c, 
low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; HbA1c, glycated hemoglobin; HOMA-β, homeostasis model assessment of β-cell function; 
HOMA-IR, homeostatic model assessment for insulin resistance; PM, proportion mediated. 
a Inverse variance weighted (random-effect) method;  
b Inverse variance weighted (fixed-effect) method. 
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Figure 3. GP73 is expressed in human and mouse atherosclerotic lesions. (A) GP73 was upregulated in aortas from ApoE-HFD mice (n=5) than those from ApoE-ND 
mice (n=5). (B) Vascular GP73 expression was positively correlated with body weight, TC, and LDL-c in samples composed of 5 ApoE-HFD mice and 5 ApoE-ND mice. (C) 
Representative images showed GP73 (green) was co-localized with F4-80 (red) in the aortic section from ApoE-HFD mice, whilst fluorescence intensity of GP73 and F4-80 was 
markedly reduced in ApoE-ND mice. (D and H) GP73 mRNA expression was significantly upregulated in human peripheral arteries with atherosclerosis and advanced plaques 
in carotid arteries. (E, F, and G) In transcript levels, GP73 was negatively correlated with MYOCD and TAGLN, positively correlated with CD68 and PCNA. The samples were 
obtained from human peripheral arteries in GSE100927 (D, E, F, G) and human carotid arteries in GSE28829 (H) dataset. GP73, Golgi protein 73; ApoE-HFD, ApoE-/- mice 
with high-fat diet; ApoE-ND, ApoE-/- mice with normal diet; TC, total cholesterol; LDL-c, low-density lipoprotein cholesterol; MYOCD, myocardin; TAGLN, transgelin; PCNA, 
proliferating cell nuclear antigen. 
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 Both mouse models and human tissues 
confirmed higher vascular GP73 expression in the 
case of atherosclerosis, more pronounced in an 
advanced state; however, unlike the circulating form 
of GP73, there is currently no evidence to determine 
whether vascular GP73 up-regulation in situ is the 
result of atherosclerosis or serves as an initiator in the 
atherosclerotic process. Indeed, the correlations 
between GP73 and several atherosclerotic markers of 
plaques guide the direction for subsequent 
mechanistic studies. Macrophage infiltration into the 
artery is the key contributor in the atherosclerotic 
process, involving in plaque initiation, progression, 
and destabilization [56]. Here, our findings revealed 
that macrophage recruitment was dramatically 
enhanced in the GP73 expression region in the 
atherosclerotic artery of ApoE-HFD mice. Additional 
research should elucidate whether inhibition of GP73 
in arteries can attenuate macrophage recruitment and 
formation of foam cells, subsequently ameliorating 
atherosclerosis. Under physiologic circumstances, 
healthy VSMCs generate a series of contractile 
proteins to maintain their normal contractile function, 
e.g., MYOCD, TAGLN, and smooth muscle alpha 
actin 2 (ACTA2) [57, 58]. During the atherosclerosis 
process, VSMCs decrease contractile gene expression 
in response to stimuli whilst switching to synthetic 
VSMCs, manifested as aberrant activation of 
proliferation and migration. Our study found 
vascular GP73 up-regulation in situ was concomitant 
with contractile phenotype loss and synthetic 
phenotype transition, which required silencing and 
overexpression experiments for functional validation.  

Strengths and limitations 
 Several methodological strengths should be 

mentioned in our study. Indeed, disparate lines of 
evidence, called “triangulation”, can produce a more 
convincing conclusion [59]. The reliability of our 
research lies in the comprehensive evidence from 
patient-level data, causal inference, and mouse model. 
Additionally, sensitivity analyses verified the 
reliability and robustness of the results, including 
other optional MR methods, using other 
atherosclerosis outcomes sharing similar etiology and 
adequate external replications in MR analysis.  

Despite the advantage, this study also has some 
limitations. First, the proteomics evidence was 
susceptible to the relatively small sample size and 
limited variety of protein measurements in the protein 
array. Even so, it still provided us with an alternative 
DEPs list from the clinical scenario, thus reinforcing 
the findings of causal inference. Second, considering 
the participants of GWAS used for our analysis were 
predominantly of European ancestry, it was unclear 

whether the evidence of causality could be 
generalizable to other racial groups. Nevertheless, the 
consistency of the findings between protein arrays 
using the Asian population (the RED-CARPET study) 
and causal inference from European ancestry 
alleviated this concern to some extent. Third, owing to 
the design of 2-sample MR, only summary-level 
estimates on genetic associations were used, therefore 
limiting some analyses requiring individual-level 
data, e.g., investigating the nonlinear causal effect of 
GP73, subgroup analyses to explore whether the 
association was modified by other factors. Fourth, 
only 6 among 18 candidate proteins acquired 
available genetic instruments from the AGES study. 
Further MR research incorporating more available 
GWAS on proteome may help to uncover additional 
causative agents of CAD. Last but not least, we 
observed different results in the causal association 
between GP73 and CAD risk using MR-Egger method 
and other MR methodology. Indeed, MR-Egger 
method is less precise in estimation of causal effects, 
especially with limited number of genetic instruments 
[26]. Hence, MR-Egger method is mainly applied to 
test the pleiotropy instead of causal effect estimation 
[26]. 

Conclusion 
In conclusion, our study showed that genetic 

predisposition to higher circulating GP73 levels is 
associated with increased CAD risk, which was 
mainly mediated by dyslipidemia and hyper-
glycemia. Furthermore, upregulation of vascular 
GP73 expression is also correlated with the occurrence 
and progression of atherosclerosis. These findings 
suggest a potential direction for exploring unknown 
mechanisms in the pathogenesis of CAD, and 
subsequent in-depth research should focus on 
whether interventions targeting GP73 can ameliorate 
CAD risk. 
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