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Abstract 

This study unveils the pivotal roles of taurine metabolic reprogramming and its implications in the 
development and progression of Abdominal Aortic Aneurysm (AAA). Leveraging an integrated approach 
that combines single-cell RNA sequencing (scRNA-seq) and Weighted Gene Co-expression Network 
Analysis (WGCNA), our research investigates the intricate transcriptional and gene expression dynamics 
crucial to AAA. Our findings uniquely link metabolic shifts to the integrity of the extracellular matrix 
(ECM) and the functionality of smooth muscle cells (SMCs), key elements in the pathology of AAA. 
Utilizing scRNA-seq data from a mouse model (GSE152583 dataset), we identified critical alterations in 
cellular composition during AAA progression, particularly highlighting shifts in fibroblasts and 
inflammatory cells. Concurrently, WGCNA of human AAA tissue samples has outlined distinct gene 
expression patterns correlated with disease severity and progression, offering comprehensive insights 
into both molecular and cellular disease mechanisms. Moreover, this study introduces innovative 
metabolic profiling techniques to identify differential metabolites in AAA, integrating extensive 
metabolomic analyses with pathway enrichment strategies. This novel approach has pinpointed potential 
biomarkers and therapeutic targets, notably within taurine metabolism pathways, crucial for crafting 
non-surgical interventions. By merging state-of-the-art bioinformatics with thorough molecular analysis, 
our study not only enhances the understanding of AAA’s complex pathophysiology but also catalyzes the 
development of targeted therapeutic strategies. This research represents a significant advancement in the 
molecular characterization of AAA, with substantial implications for its future diagnosis and treatment 
strategies. 

Keywords: Taurine Metabolic Reprogramming; Abdominal Aortic Aneurysm; Single-cell RNA sequencing; Weighted Gene 
Co-expression Network Analysis; Metabolomic Analysis 

Introduction 
Abdominal aortic aneurysm (AAA) is a 

peripheral vascular disease characterized by localized 
dilation of the abdominal aorta [1]. Often occurring 
without warning, AAA ruptures result in a mortality 
rate of up to 90%, making it one of the deadliest 
vascular diseases. Epidemiological studies indicate 
that the positive detection rate of AAA among the 

population over 60 years old is close to 1%, with the 
incidence rising annually as the population ages [2, 3]. 
Currently, surgical intervention is the sole method for 
managing AAA. Due to its invasive nature and high 
risk, surgery is typically reserved for cases where the 
aneurysm diameter exceeds 50mm and the risk of 
rupture significantly increases. However, most 
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patients are diagnosed in the early stages of AAA 
when the aneurysm is too small to meet surgical 
criteria [1]. There is a stark absence of effective 
treatments to curb or slow the progression of these 
smaller AAAs, posing a severe threat to patient health 
and well-being [4, 5]. 

AAA is considered a degenerative vascular 
disease, yet its specific etiology and pathogenesis 
remain unclear. Historically, the degradation of the 
extracellular matrix (ECM) and the apoptosis of 
smooth muscle cells (SMCs) have been recognized as 
the hallmark pathological features of AAA. Recent 
research over the past decade has revealed that 
chronic inflammation plays a pivotal role in the 
progression of AAA [4, 5]. It contributes to the 
destruction of the aortic media and the apoptosis and 
dysfunction of SMCs through the release of a series of 
proteolytic enzymes and cytokines. This process 
drives expansive remodeling of the aortic wall, 
progressive functional decline, and the formation of 
intraluminal thrombi [2]. Against this backdrop, this 
study will specifically examine the role of metabolic 
reprogramming in the development and progression 
of AAA. Metabolic reprogramming refers to the 
process by which cells alter their metabolic pathways 
to adapt to environmental stresses, such as hypoxia or 
inflammation, and is a known critical pathological 
process in various diseases, including cancer and 
cardiovascular diseases [6, 7]. In AAA, metabolic 
reprogramming may indirectly affect the stability of 
the ECM and the viability of SMCs by modulating 
energy metabolism, oxidative stress responses, and 
cellular survival pathways [5]. 

By thoroughly investigating the link between 
metabolic reprogramming and AAA, this research 
aims to unveil new pathological mechanisms of AAA 
and explore potential early intervention strategies [2, 
4]. This understanding is not only expected to deepen 
our comprehension of the complex 
pathophysiological processes of AAA but also to 
provide a theoretical basis and experimental evidence 
for developing non-surgical treatment options. The 
findings of this study could offer new perspectives 
and strategies for the prevention and treatment of 
AAA, particularly in controlling the early progression 
of the disease and extending patient survival. 

Methods 
Ethical statement 

This study adhered to the Declaration of 
Helsinki and the ethical guidelines of Fujian Medical 
University Union Hospital. The Ethics Committee 
approved the experimental protocols, with the 
reference number GSE152583. 

scRNA analysis of abdominal aortic aneurysm 
mouse model 

In this study, we employed scRNA-seq 
techniques to thoroughly analyze the transcriptomic 
profiles of single cells in a mouse model of abdominal 
aortic aneurysm. Initially, we downloaded the 
GSE152583 dataset from the Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/ 
geo/query/acc.cgi) [8]and conducted data 
preprocessing using Seurat, which included filtering 
cells based on gene expression and mitochondrial 
content (minimum of 500 genes, maximum of 5000 
genes, and mitochondrial gene percentage capped at 
15%) [9]. To reduce batch effects and variability in 
expression levels, we integrated and normalized the 
data using the Harmony algorithm [10]. Additionally, 
we applied the limma package to analyze 
differentially expressed genes across various 
conditions and time points [11]. For precise cell type 
annotation, we utilized the SingleR and celldex 
packages [10], classifying cell populations based on 
known markers. Through these methodologies, we 
significantly enhanced the interpretability of our data 
and laid the foundation for further sub-cluster 
analysis, revealing critical cell subpopulations and 
transcriptional changes during the progression of the 
aneurysm. 

Weighted Gene Co-expression Network 
Analysis (WGCNA) analysis 

In this segment of our study, we conducted a 
WGCNA [12] on data sourced from GSE232911[13], 
which comprises genome-wide expression profiles 
from 246 samples of media and adventitia, both 
thrombus-covered and thrombus-free, from the 
abdominal aortic vessel walls of 76 patients with AAA 
and 13 organ donor controls. We utilized original CEL 
chip data, corresponding clinical characteristics of the 
samples, and annotation files specific to the 
Affymetrix Human Transcriptome Array 2.0 platform 
[11]. The data preprocessing included utilizing the 
'affy' and 'limma' packages for robust multi-array 
averaging (RMA) background correction, 
normalization, and gene annotation [11]. This was 
followed by differential expression analysis to 
identify significant transcriptomic variations. For the 
WGCNA, we focused on the top 25% most variable 
genes, correlating their expression profiles with 
clinical features to construct a network [12]. We 
analyzed the core modules derived from this network, 
facilitating an understanding of the key gene 
interactions and pathways potentially involved in 
AAA. This approach enabled the identification of 
pivotal biomolecular pathways that may underlie the 
pathological variations observed in AAA, further 
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advancing our understanding of the disease’s 
molecular mechanisms. 

Construction of protein-protein interaction 
network and pathway interaction network 

In the subsequent phase of our analysis, 
protein-protein interaction (PPI) networks were 
explored utilizing the STRING database (Version 12.0; 
available at https://string-db.org) [14]. This analysis 
facilitated the mapping of intricate protein 
interactions which are crucial for understanding the 
molecular underpinnings of abdominal aortic 
aneurysm. Following the construction of the PPI 
network, Cytoscape software (Version 3.10.2; 
available at https://cytoscape.org) [15, 16] was 
employed to analyze the network's degree of 
connectivity, allowing for the identification of core 
nodes within the network. These core nodes represent 
significant proteins that play key roles in the 
biological processes associated with the disease. 
Finally, pathway interaction analyses were performed 
using the Metascape online tool (available at 
https://metascape.org/gp/index.html) [17], 
employing a minimum overlap of 3, a p-value cutoff 
of 0.05, and a minimum enrichment of 1.5. This step 
was essential for identifying significant biological 
pathways and interactions enriched among the 
proteins in the core network modules, providing 
deeper insights into the potential therapeutic targets 
for AAA. 

Full spectrum metabolome detection and 
analysis 

In this study, we incorporated metabolomic 
analysis using a label-free, untargeted approach on 10 
AAA specimens and 7 normal abdominal aorta 
specimens. All protocols were approved by the Ethics 
Committee of Fujian Medical University Union 
Hospital (No. 2022KY031). Metabolomic expression 
level analysis was primarily conducted on the 
abundance of metabolites, with statistical evaluation 
of metabolite expression to assess intra-group and 
inter-group correlations of metabolite expression 
characteristics [18]. Initially, raw data were processed 
using library search analysis through the Compound 
Discoverer software, a commercial metabolomic 
library analysis tool developed by Thermo Scientific. 
Compound Discoverer 3.0 simplifies the identification 
of unknown compounds, measures real differences 
between samples, and elucidates biological pathways 
[19]. This software conducts spectral library searches 
with the mzCloud and internal Thermo Scientific 
mzVault libraries, enabling faster identification of 
unknown analytes [20]. It calculates statistical 
differences across multiple sample groups, identifies 

impurities, metabolites, and degradation products in 
complex samples, and performs fluxomics 
experiments, pathway visualization, and mapping of 
detected compounds and flux information onto 
pathways [18, 20]. Principal Component Analysis 
(PCA) is a widely used dimension reduction 
technique. By performing orthogonal transformations 
using quantitative information of metabolites as 
variables, PCA transforms a large set of metabolite 
data into principal components, allowing for visual 
representation of sample differences through spatial 
data distribution [21]. Partial Least Squares 
Discriminant Analysis (PLS-DA) and Orthogonal 
PLS-DA (OPLS-DA) are supervised discriminant 
statistical methods that establish a relationship model 
between metabolite expression and sample categories 
using PLS-DA, facilitating the prediction of sample 
categories. Models for pairwise group comparisons 
using PLS-DA or OPLS-DA are constructed, with 
model parameters provided in tabular format [21, 22]. 

Identification of differential metabolites and 
pathway enrichment analysis 

Differentially expressed metabolites refer to 
those whose expression levels are upregulated or 
downregulated between samples or within the same 
sample under different conditions. Typically, these 
are evaluated based on fold changes and statistical 
significance. In our analysis, metabolites with an 
absolute log fold change (logFC) greater than 1 and a 
p-value less than 0.05 were classified as differentially 
expressed. Furthermore, the names of these 
differentially expressed metabolites were submitted 
to the MetaboAnalyst database (https://www 
.metaboanalyst.ca/) [21, 23, 24] for functional 
enrichment and annotation, yielding enriched Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways [25]. We then filtered the enriched KEGG 
data, using a p-value cutoff of less than 0.05 as the 
standard for significance [26]. 

Machine learning identification of core 
regulatory genes and pathways 

The classification analysis of data samples based 
on differential gene expression in our study was 
conducted using a comprehensive suite of machine 
learning models, implemented in R version 4.3.2 and 
Python version 3.12. The models utilized include XGB 
Classifier, Logistic Regression, RandomForest 
Classifier, AdaBoost Classifier, DecisionTree 
Classifier, GradientBoosting Classifier, Gaussian NB, 
SVC, and KNeighbors Classifier. Each model was 
meticulously configured with specific parameters to 
enhance predictive accuracy and model robustness. 
For instance, the XGB Classifier was tuned with a 
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learning rate of 0.3 and a max depth of 4, while the 
Logistic Regression used a regularization strength of 
1.0 and a tolerance of 0.0001 for convergence. 
Similarly, RandomForest Classifier was optimized 
with 100 trees and a gini criterion for split quality 
assessment [27]. The selection and tuning of these 
parameters were crucial for maximizing the 
discriminatory power of the models, ensuring the 
reliable classification of samples and providing 
insightful correlations between gene expression 
patterns and phenotypic traits. This approach 
underscores the integration of advanced computa-
tional techniques in genomic research, facilitating a 
deeper understanding of genetic influences on disease 
mechanisms [28]. 

Partial correlation network analysis 
Here, partial correlation network analysis was 

conducted on core gene and pathway expression 
levels using the 'sand' package in R [29]. The direct 
associations between nodes were adjusted using the 
Benjamini-Hochberg correction method to control for 
false discovery rates. Additionally, molecular 
interactions of core regulatory genes were analyzed 
using the online tool available at https://zs- 
revelen.com [30]. This approach facilitated a deeper 
understanding of the intricate relationships and 
regulatory mechanisms among the core genes within 
our dataset [31]. 

Results 
scRNA analysis indicates that the absence of 
fibroblasts is a predominant cellular group in 
the onset and progression of AAA 

In the GSE152583 dataset, the principal variant 
genes in AAA were identified as Fabp4, Saa3, Cytl1, 
Ccl8, and Mmp3, which are associated with fibrosis 
and inflammatory responses (Figure 1A). Cell 
subpopulations were categorized into fibroblasts, 
monocytes, macrophages, NK cells, B cells, T cells, 
and endothelial cells, among which fibroblasts, 
macrophages, monocytes, and endothelial cells were 
the core cell groups (Figure 1B-C). Further 
subclassification of fibroblasts revealed categories 
such as MSC, astrocyte, keratinocytes, and fibroblasts 
(Figure 2A). The primary upregulated genes in 
fibroblasts were Bex4, Gm13861, Optc, Slc22a1, and 
Ccdc42, while downregulated genes included 
Fam173a, Rpl36-ps3, Lamtor3, Dlgap4, and Krit1. 
Keratinocytes primarily upregulated genes such as 
Clec3b, Scara5, Cfb, Igfbp6, and Dpt, with 
downregulated genes including Sep15, Rps3, Thbs1, 
Rpl6, and Rpl24. Differential analysis yielded 1303 
differential genes, with 1180 upregulated and 1923 
downregulated genes (Figure 2B). GO analysis 
revealed enrichment in biological process terms like 
muscle cell differentiation (Adjusted 

 

 
Figure 1. The scRNA analysis of AAA dataset. 1A showing the differential expression of selected markers and UMAP cluster analysis displaying cell type distribution in 
response to AAA Elastase exposure. Markers are plotted against their expression and variance, highlighting variable and non-variable counts. 1B-C showing the clusters in UMAP 
plots are annotated with cell types showing differences between conditions. 
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p-value=3.37E-41), extracellular matrix organization 
(Adjusted p-value=1.24E-37), external encapsulating 
structure organization (Adjusted p-value=1.24E-37), 
extracellular structure organization (Adjusted 
p-value=1.33E-37), and ameboidal-type cell migration 
(Adjusted p-value=2.75E-36). Significantly enriched 
cellular component maps include collagen-containing 
extracellular matrix (Adjusted p-value=7.30E-48), 
contractile fiber (Adjusted p-value=7.49E-26), 
sarcomere (Adjusted p-value=1.42E-25), myofibril 
(Adjusted p-value=3.08E-25), and cell-substrate 
junction (Adjusted p-value=1.70E-24). Molecular 
function pathways notably enriched were actin 
binding (Adjusted p-value=1.42E-25), extracellular 
matrix structural constituent (Adjusted 
p-value=1.42E-25), glycosaminoglycan binding 
(Adjusted p-value=1.42E-25), actin filament binding 
(Adjusted p-value=1.42E-25), and cell adhesion 
molecule binding (Adjusted p-value=1.42E-25) 
(Figure 2C). Pathways such as focal adhesion 
(Adjusted p-value=1.87E-19), cytoskeleton in muscle 
cells (Adjusted p-value=1.87E-19), cGMP-PKG 
signaling pathway (Adjusted p-value=5.86E-10), and 
PI3K-Akt signaling were also significantly enriched.  

WGCNA analysis identifies core gene sets 
associated with vascular dilation and 
thrombosis 

Initially, clustering was performed on the entire 
sample set, demonstrating associations with clinical 
features, notably with vascular tissue types (including 
adventitia or intima) and thrombosis (Figure 3A). 
Utilizing the dynamic tree cut algorithm, we 
identified 22 gene modules (Figure 3B). Cluster 
analysis of these modules revealed that MEbrow, 
MEskyblue, MEpaleturquoise, and MEgrey formed 
one cluster; other modules coalesced into another 
cluster (Figure 3C). Gene module-to-clinical feature 
association analysis showed that MEgrey60 
(correlation coefficient = -0.59, p-value = 2e-24) and 
MEdarkorange (correlation coefficient = 0.64, p-value 
= 2e-29) were closely associated with vascular tissue 
types, MEpaleturquoise was closely linked to disease 
status (correlation coefficient = 0.54, p-value = 1e-19), 
and MEmagenta was closely related to aneurysm 
thrombosis (correlation coefficient = 0.39, p-value = 
2e-10) (Figure 3D). Further analyses constructing core 
module protein-protein interaction and regulatory 
pathway networks revealed that the MEmagenta 

 

 
Figure 2. The distribution and analysis of key cell types like fibroblasts and keratinocytes. 2A-B showing the tSNE plot demonstrating cell type categorization and 
differential gene expression analysis. 2C showing the gene names and their expression differences are displayed alongside biological process alterations, quantified by gene counts 
and statistical significance. 
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module genes are predominantly related to immune 
regulation, MEPaleturquoise module genes to 
metabolic anomalies, MEGrey60 module genes to 
extracellular matrix regulation, and MEDarkorange 
module genes to vasculature development. 

Full spectrum metabolomics mass 
spectrometry analysis 

Subsequently, we conducted further differential 
and correlation analyses on metabolites in abdominal 
aortic vascular tissues from 17 human subjects. In the 
differential analysis, we identified 157 upregulated 
and 57 downregulated metabolites, and visualized 
them using a clustering heatmap (Figure 5A). In the 
correlation analysis, we employed a quantitative 
PLSDA scoring method to perform Pearson 
correlation analysis on the identified differential 
metabolites. The results indicated strong correlations 
between Hexylresorcinol and Palmitic Acid, Margaric 
Acid; between Bilirubin and NP-003145 as well as 
C18-Carnitine; and between Palmitic Acid and 
Margaric Acid. To further clarify the interactions 
among differential metabolites, we conducted an 
interaction analysis. The results identified 11 
metabolites as hubs within the differential 
metabolites: Marimastat, Ozagrel, (1R,2S)- 
Tranylcypromine, 4-Methoxy DMT, Meclizine, 

Spermine, PEG n6, Melonal, Furaneol, 
4-tert-Amylphenol, and Mexacarbate (Figure 5B). 
Pathway enrichment analysis indicated significant 
enrichment in core pathways such as Taurine and 
hypotaurine metabolism (Hits = 4; p-value = 0.001), 
beta-Alanine metabolism (Hits = 3; p-value = 0.028), 
and Pyruvate metabolism (Hits = 2; p-value = 0.045) 
(Figure 5C). Differential metabolites were typically 
evaluated and selected based on fold changes and 
significance levels, with criteria set as an absolute 
logFC >1 and p-value <0.05. Core differential 
metabolites identified included 
N1-[1-(2-furylcarbonyl)-4-piperidyl]benzamide, 
N(1)-acetylspermidine, OLEOYL TYROSINE, 
Ioversol, and Bilirubin (Figure 5D). 

Core pathway analysis of adventitia and intima 
in abdominal aortic vessels 

GSEA of differential genes in the adventitia and 
intima highlighted core metabolic pathways. For the 
adventitia, GSEA suggested significant enrichment in 
taurine and hypotaurine metabolism (Counts = 14, 
Enrichment Score = -0.63, NES = -1.83, Adjusted 
p-value = 0.009) (Figure 6A). For the intima, GSEA 
indicated taurine and hypotaurine metabolism 
(Counts = 21, Enrichment Score = -0.52, NES = -1.50, 
Adjusted p-value = 0.037) (Figure 6B). Additionally, 

 

 
Figure 3. The cluster dendrogram using hierarchical clustering methods to group different gene expression modules. 3A showing the hierarchical clustering of 
gene modules and their relationships with various traits. 3B showing the cluster dendrogram using dynamic tree cut methods. 3C-D illustrated the dendrogram categorizes 
modules by similarity, and the heatmap details their correlations with traits such as disease state and other cellular components, complete with statistical annotations. 
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through Gene Set Variation Analysis (GSVA), 
quantified scoring of metabolic pathways revealed 
prominent differential pathways in the adventitia, 
including KEGG: PYRUVATE METABOLISM, KEGG: 
ASCORBATE AND ALDARATE METABOLISM, 
KEGG: PENTOSE AND GLUCURONATE 
INTERCONVERSIONS, KEGG: TAURINE AND 
HYPOTAURINE METABOLISM, and KEGG: 
ALLOGRAFT REJECTION. In contrast, the intima 
primarily included KEGG: HOMOLOGOUS 
RECOMBINATION, KEGG: BUTANOATE 
METABOLISM, KEGG: RETINOL METABOLISM, 
and KEGG: PROPANOATE METABOLISM (Figures 
6C-D). 

Machine learning identification of core 
regulatory pathways and genes 

This study evaluated the predictive performance 
of various machine learning classifiers in the 
classification of disease states using a dataset that 
included expressions of multiple genes related to 
specific metabolic pathways and immunological 
responses. 

Of the media samples, the classifiers employed 
were XGB Classifier, Logistic Regression, 

RandomForest Classifier, AdaBoost Classifier, 
DecisionTree Classifier, GradientBoosting Classifier, 
Gaussian NB, SVC, and KNeighbors Classifier. 
Performance was assessed based on the area under 
the receiver operating characteristic curve (AUC), 
using 10-fold cross-validation. The RandomForest 
Classifier exhibited the highest predictive accuracy in 
the training dataset with an exemplary AUC of 1.000 
(95% CI: 0.000), sensitivity of 1.000 (0.000), and 
specificity of 1.000 (0.000). The classifier also showed 
an excellent F1 score and Kappa coefficient, both 
reaching their maximum values of 1.000 (0.000) and 
0.954 (0.002), respectively, suggesting potential 
overfitting to the training data. In contrast, the 
Gaussian Naive Bayes (GNB) Classifier demonstrated 
the best performance on the validation dataset, with 
an AUC of 0.973 (95% CI: 0.058). The cutoff value for 
GNB was 0.401 with a variance of 0.489, indicating a 
moderate discriminative threshold. The accuracy was 
0.887 (0.082), sensitivity was 0.964 (0.073), and 
specificity was a perfect 1.000. The positive predictive 
value was notably high at 0.975 (0.038), though the 
negative predictive value was not calculable due to 
missing values. The F1 score and Kappa for GNB were 
0.969 (0.054) and 0.502 (0.329), respectively, 

 
Figure 4. The protein-protein interactions within the core gene module and enrichment of key pathways.    
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highlighting its reliability and moderate agreement beyond chance. 
 

 

 
Figure 5. The detection and enrichment analysis of differentially expressed metabolites. 5A showing the analysis of metabolomic data showcasing differentially 
expressed metabolites. The plot differentiates between up-regulated and down-regulated metabolites based on log2 fold change and statistical significance, providing a 
comprehensive view of metabolic alterations. 5B represents the interaction network analysis of differential metabolites, 5C shows the results of pathway enrichment analysis for 
differential metabolites; 5D illustrates the distribution of core differential metabolites. 

 

 
Figure 6. Metabolism-related pathways are significantly enriched in the pathological progression of both the intima and adventitia of AAA. 6A-B represent 
the GSEA distribution maps of taurine metabolism pathways enriched by differential genes in the vascular adventitia and intima, respectively; 6C-D display heatmaps of metabolic 
pathway changes obtained after quantifying the differential genes in the vascular adventitia and intima using GSVA. 
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Figure 7. Nine machine learning classification algorithms for the identification of core regulatory genes and pathways in the adventitia and intima of 
abdominal aortic aneurysms. 7A-B represent the ROC indices for core genes and pathways in the training and validation sets for the vascular adventitia, respectively. 7C 
displays a forest plot of model characteristics for the nine machine learning algorithms used for the vascular adventitia. 7D-E show the ROC indices for core genes and pathways 
in the training and validation sets for the vascular media, respectively, while 7F presents a forest plot of model characteristics for the nine machine learning algorithms used for 
the vascular media. 

 
Of the adventitia samples, the RandomForest 

Classifier exhibited the highest predictive accuracy in 
the training dataset with an exemplary AUC of 1.000 
(95% CI: 0.000), sensitivity of 1.000 (0.000), and 
specificity of 1.000 (0.000). The classifier also showed 
an excellent F1 score and Kappa coefficient, both 
reaching their maximum values of 1.000 (0.000) and 
0.954 (0.002), respectively, suggesting potential 
overfitting to the training data. In contrast, the 
Gaussian Naive Bayes (GNB) Classifier demonstrated 
the best performance on the validation dataset, with 
an AUC of 0.973 (95% CI: 0.058). The cutoff value for 
GNB was 0.401 with a variance of 0.489, indicating a 
moderate discriminative threshold. The accuracy was 
0.887 (0.082), sensitivity was 0.964 (0.073), and 
specificity was a perfect 1.000. The positive predictive 
value was notably high at 0.975 (0.038), though the 
negative predictive value was not calculable due to 
missing values. The F1 score and Kappa for GNB were 
0.969 (0.054) and 0.502 (0.329), respectively, 
highlighting its reliability and moderate agreement 
beyond chance. 

Through the analysis, key pathways and genes 
were identified as critical for predicting pathological 
changes in the aneurysmal tissues of the abdominal 
aorta. The core pathways include KEGG: 

ASCORBATE AND ALDARATE METABOLISM, 
KEGG: ALLOGRAFT REJECTION, and KEGG: 
TAURINE AND HYPOTAURINE METABOLISM. 
Additionally, the genes CCL4, CCL5, CD74, CXCL10, 
CXCL9, CXCR4, MS4A1, PIK3CG, and PTGS2 were 
pinpointed as central to the disease's progression. 
Models varied significantly in their parameter 
settings, critical for their performance optimization. 
Detailed parameters for each model were strategically 
chosen to balance complexity and predictive power. 
Statistical analysis included a robust comparison of 
ROC curves to evaluate comprehensive model 
performance. The potential overfitting observed in the 
RandomForest Classifier contrasts with the GNB's 
robust performance on the validation set, suggesting 
better generalizability and stability. 

The study highlights the necessity of selecting 
models based on validation performance, rather than 
training performance alone, to ensure generalizability 
in clinical settings. The identification of specific 
metabolic pathways and key genes offers potential 
targets for therapeutic intervention and a deeper 
understanding of the molecular mechanisms 
underlying the disease. Future research could explore 
ensemble methods to enhance predictive accuracy 
and stability across different datasets. 
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Figure 8. Identification of core regulatory genes and construction of partial correlation interaction networks related to taurine metabolism pathways. 8A 
shows the partial correlation interaction network related to taurine metabolism pathways associated with core gene expression in the vascular adventitia. 8B analyzes the 
interactions between the core regulatory gene PTGS2 and its upstream and downstream genes in the vascular adventitia. 8C displays the partial correlation interaction network 
related to taurine metabolism pathways associated with core gene expression in the vascular media. 8D analyzes the interactions between the core regulatory gene MS4A1 and 
its upstream and downstream genes in the vascular adventitia. 

 

Partial correlation analysis and protein 
interaction analysis 

To further explore the core regulatory pathways 
quantitatively scored within the adventitia and intima 
tissues, we utilized partial correlation network 
analysis. We discovered that the PTGS2 gene in the 
adventitia acts as a principal regulator connecting the 
KEGG pathways for TAURINE AND 
HYPOTAURINE METABOLISM and ALLOGRAFT 
REJECTION with the expression of related 
inflammatory factors (Figure 8A). Molecular 
upstream and downstream regulatory analysis of 
PTGS2 revealed its close biological association with 
pathways such as Positive regulation of nitrogen 
compound metabolic process (GO:0051173), Positive 
regulation of metabolic process (GO:0009893), and 
Regulation of catabolic process (GO:0009894), 
suggesting its potential role as a regulator in 
TAURINE METABOLISM involved in adventitial 
pathology of abdominal aortic aneurysms (Figure 8B). 
Interestingly, in the analysis of the intima, MS4A1 was 
identified as the main regulator connecting 
KEGG_TAURINE_AND_HYPOTAURINE_METABO
LISM, KEGG_ALLOGRAFT_REJECTION, and the 
expression of related inflammatory factors (Figure 

8C). It is closely related to pathways such as Antigen 
receptor-mediated signaling pathway (GO:0050851), 
Lipase activator activity (GO:0060229), and Regula-
tion of KIT signaling (R-HSA-1433559), suggesting its 
potential role as a regulator in TAURINE 
METABOLISM involved in intimal pathology of 
abdominal aortic aneurysms (Figure 8D). 

Discussion 
Taurine constitutes nearly 50% of the free amino 

acid content in the heart, underscoring its vital role in 
cardiac biochemistry [32]. It enhances myocardial 
contractility and modulates ionic balance, crucial for 
heart function. Taurine supplementation has been 
associated with improved cardiac output and left 
ventricular function in both animal models and 
human studies [33, 34]. Notably, taurine's approval in 
Japan for the treatment of heart failure highlights its 
clinical relevance and therapeutic potential [32, 33]. 

Taurine influences cardiac function through 
several mechanisms: (1) Ion Handling: It regulates 
intracellular Ca2+ and Na+ levels, essential for proper 
cardiac rhythm and contractility. (2) Energy 
Metabolism: Taurine supports myocardial energetics, 
enhancing ATP production and energy utilization 
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within cardiac cells. (3) Signaling Pathways: It 
interacts with multiple cellular signaling pathways, 
including those related to glucose transport and 
anti-inflammatory responses, thereby protecting the 
heart under stress conditions. (4) Hormonal 
Regulation: Taurine promotes natriuresis and 
diuresis, affecting fluid balance and blood pressure 
through its actions on renal function and hormone 
release [32-35]. 

Vascular endothelial health is crucial for 
maintaining vascular tone and integrity. Taurine 
enhances endothelial function by promoting nitric 
oxide (NO) production, which facilitates vascular 
relaxation and reduces arterial stiffness [36, 37]. This 
action is particularly beneficial in preventing and 
managing vascular pathologies such as 
atherosclerosis. Taurine's ability to scavenge reactive 
oxygen species protects endothelial cells from 
oxidative stress, a key factor in the pathogenesis of 
vascular diseases. Clinical studies and meta-analyses 
have demonstrated that taurine supplementation can 
effectively reduce blood pressure, which is a 
significant risk factor for vascular disease. By 
enhancing endothelial cell function and reducing 
inflammatory responses, taurine helps maintain the 
endothelium's integrity and responsiveness, crucial 
for vascular health. While the existing research 
underscores taurine's potential in cardiovascular 
therapy, particularly for vascular pathologies, more 
extensive clinical trials are required to establish 
optimal dosing strategies, long-term effects, and 
mechanisms of action [37-39].  

PTGS2, commonly known as cyclooxygenase-2 
(COX-2), is increasingly recognized for its pivotal role 
in the pathogenesis of vascular diseases, particularly 
atherosclerosis [40-42]. As an inducible enzyme 
predominantly expressed during inflammatory 
responses, PTGS2 catalyzes the conversion of 
arachidonic acid to prostaglandin H2 (PGH2), a 
precursor to various prostanoids involved in 
inflammatory and thrombotic processes. The 
expression of PTGS2 in vascular endothelial cells and 
macrophages is stimulated by inflammatory 
cytokines, growth factors, and mechanical stress, 
which are prevalent in atherosclerotic lesions [40-42]. 
PTGS2-derived prostanoids, such as prostaglandin E2 
(PGE2) and thromboxane A2 (TXA2), contribute to 
vascular inflammation by enhancing leukocyte 
recruitment, vascular permeability, and platelet 
aggregation. Furthermore, PTGS2 is implicated in the 
modulation of endothelial function and vascular 
smooth muscle cell migration and proliferation, key 
events in the development of atherosclerotic plaques. 
Clinical and experimental studies have highlighted 
the dual role of PTGS2 in promoting initial 

inflammatory responses and in the resolution phase 
of inflammation, suggesting a complex involvement 
in the progression and stabilization of atherosclerotic 
lesions [41, 43]. Given its central role in mediating 
inflammatory responses within vascular tissues, 
PTGS2 represents a potential therapeutic target for 
modulating disease progression in atherosclerosis and 
possibly other related vascular disorders. 
Consequently, selective PTGS2 inhibitors and 
nonsteroidal anti-inflammatory drugs (NSAIDs) 
targeting COX pathways are under investigation for 
their capacity to mitigate inflammatory processes in 
the vasculature without adverse cardiovascular 
effects [40, 42].  

MS4A1, commonly known as CD20, plays a 
pivotal role in the pathogenesis of Kawasaki Disease 
(KD), a principal cause of acquired pediatric heart 
disease characterized by vasculitis primarily affecting 
the coronary arteries. This condition can lead to the 
formation of coronary artery aneurysms, significantly 
elevating the risk of myocardial infarction and 
ischemic heart diseases in children [44, 45]. MS4A1 is 
a key marker of B-cell activation and differentiation, 
essential for the immune system’s response through 
antibody production. Its elevated expression in KD 
suggests a robust immune activation contributing to 
the disease’s vascular pathology. Recent 
immunohistochemical studies have shown significant 
upregulation of MS4A1 alongside other immune 
markers such as AIF1, IL-18, and TLR-7 in the 
coronary tissues of KD fatalities [44, 45]. This suggests 
a dynamic interplay among various immune cells, 
including macrophages, dendritic cells, and B-cells 
within the inflamed vascular tissues. Notably, the 
co-localization of MS4A1 with macrophage and 
dendritic cell markers highlights complex cellular 
interactions that exacerbate arterial inflammation, 
leading to severe vascular damage [44, 46]. The 
presence of MS4A1-positive B-cells within inflamed 
tissues indicates their dual role in KD pathogenesis: 
directly, through proliferation and aberrant 
activation; and indirectly, by facilitating other 
immune responses via antigen presentation and 
cytokine production. Furthermore, the correlation 
between MS4A1 expression levels and disease 
severity underscores its potential as both a biomarker 
of disease activity and a prognostic indicator, 
providing insights into the severity of coronary artery 
aneurysms. Therapeutically, the significant role of 
MS4A1 in KD raises the possibility of developing 
targeted interventions to modulate its activity. 
Analogous to the use of anti-CD20 monoclonal 
antibodies like Rituximab in other autoimmune 
conditions, targeting MS4A1 could mitigate the 
excessive immune response characteristic of KD, 
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thereby ameliorating coronary lesions and improving 
cardiovascular outcomes. In summary, MS4A1/CD20 
is integral to the complex immune landscape of KD. 
Its study not only enriches our understanding of KD's 
immunopathology but also facilitates the exploration 
of targeted therapies [45, 46]. Such advances are 
crucial for enhancing the treatment paradigms of this 
severe pediatric condition, emphasizing the need for 
continued research into immunological markers in 
vascular inflammatory diseases, especially in 
pediatric cohorts where early detection and 
therapeutic intervention are critical. 

Conclusion 
This study delineates the roles of MS4A1 and 

PTGS2 in taurine metabolic reprogramming and their 
implications in the pathogenesis of AAA. In addition, 
this study not only advances our understanding of the 
complex pathophysiology associated with AAA but 
also lays the groundwork for future research into 
targeted treatments. By bridging advanced 
bioinformatics tools with deep molecular insights, we 
pave the way for innovative strategies in the 
prevention and management of AAA, potentially 
transforming patient outcomes in vascular health. 
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