
Int. J. Med. Sci. 2024, Vol. 21 
 

 
https://www.medsci.org 

1915 

International Journal of Medical Sciences 
2024; 21(10): 1915-1928. doi: 10.7150/ijms.98393 

Research Paper 

Deciphering the Anticancer Arsenal of Piper longum: 
Network Pharmacology and Molecular Docking Unveil 
Phytochemical Targets Against Lung Cancer 
Venkatramanan Varadharajan1, Ashwath Kumar Balu1, Atul Shiju1, Pandiyan Muthuramalingam2, 
Hyunsuk Shin2, Baskar Venkidasamy3, Naiyf S. Alharbi4, Shine Kadaikunnan4, Muthu Thiruvengadam5 

1. Department of Biotechnology, PSG College of Technology, Peelamedu, Coimbatore, India. 
2. Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Korea. 
3. Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), 

Saveetha University, Chennai 600077, India. 
4. Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia. 
5. Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea. 

 Corresponding authors: mail4venkat1992@gmail.com (V.V.); baskarbt07@gmail.com (BV). 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2024.05.13; Accepted: 2024.07.11; Published: 2024.07.22 

Abstract 

Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, 
is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper 
longum has emerged as a significant contender in oncological research because of its documented 
anticancer attributes, suggesting its potential for novel therapeutic development.  
Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung 
cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular 
targets.  
Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry 
and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum. Subsequent 
analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the 
isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic 
markers identified through databases including the Therapeutic Target Database (TTD), Online 
Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein 
interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics 
underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1β, 
demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our 
findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and 
ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular 
docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their 
potential as therapeutic agents for lung cancer.  
Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the 
molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics. 
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Introduction 
Lung cancer, also known as lung carcinoma, is 

characterized by uncontrolled proliferation of cells 
within lung tissues [1,2]. The prevalence of lung 
cancer is particularly high in North America, Europe, 

and East Asia, with China accounting for more than 
one-third of all lung cancer cases worldwide. In 
contrast, South Asia and Africa exhibit significantly 
lower rates of lung cancer [3]. This disease is one of 
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the primary causes of cancer-related mortality 
worldwide, including the United States. Lung cancer 
is the foremost habitually analyzed frame of cancer 
and the driving cause of cancer-related passings [4]. 
Lung cancer is significantly influenced by age, with 
older individuals being more vulnerable to it. The 
incidence of lung cancer in patients aged < 45 years is 
minimal, and most cases occur in individuals aged 
≥65 years. On an average, lung cancer is typically 
diagnosed at approximately 70 years of 70 [5]. 

Smoking causes 85–90% of lung cancer cases and 
is primarily responsible for this development. The 
chemicals released from tobacco smoke damage the 
lung tissue, increasing the risk of lung cancer. 
Exposure to second-hand smoke increases the risk of 
lung cancer. It is crucial to remember that both 
smokers and nonsmokers can develop lung cancer, 
and that some cases can occur in people without any 
established risk factors. Often referred to as 
"non-smoker's lung cancer," this particular type of 
lung cancer seems to strike women and those of Asian 
ancestry more commonly [5]. Various treatment 
modalities are available for lung cancer, including 
surgery, radiation therapy, chemotherapy, targeted 
therapy, immunotherapy, and palliative care [6]. 
Early stage lung cancer is typically treated through 
surgical intervention, whereas chemotherapy and 
radiation therapy are employed in the later stages of 
the disease [7]. In cases where specific genetic 
mutations are present, targeted therapy and 
immunotherapy can be utilized as viable treatment 
options.  

Network pharmacology is a scientific discipline 
that investigates the intricate interactions between 
drugs and biological systems. The primary objective is 
to identify drug targets and elucidate the systemic 
mechanisms of drugs [8]. To achieve this, 
computational and data-driven methods, such as 
machine learning, network analysis, and 
bioinformatics, have been employed to analyze and 
interpret molecular and pharmacological information, 
thereby comprehending the complex interactions 
between drugs and biological targets. Network 
pharmacology plays a crucial role in drug discovery 
and development and in the study of disease 
mechanisms. Using this approach, novel drug targets 
can be identified, aiding the development of new 
drugs that are more effective and specific. It also 
enables the evaluation of drug efficacy based on 
interactions with biological systems, assessment of 
drug toxicity, and repurposing of existing drugs. 
These applications facilitate the drug development 
process, leading to a reduction in associated costs and 
mitigation of side effects. Phytochemical constituents 
of medicinal plants have recently become the focus of 

increasing interest in the field of network 
pharmacology.  

Piper longum, a member of the Piperaceae family 
comprising approximately 3,600 species, is commonly 
referred to as pippali or Indian long pepper. This 
flowering plant is indigenous to the Indian 
subcontinent and is cultivated in tropical regions such 
as South America, Africa, and Madagascar. P. longum, 
which has long, slender spikes with tiny berry-like 
fruits, is picked and dried for use as a spice and in 
traditional medicine [8]. When a plant is fully grown, 
it becomes a shrub with expanded nodes, numerous 
creeping stems and substantial woody roots. P. 
longum fruits hold significant value in Ayurvedic 
medicine and are renowned for their therapeutic 
effects on respiratory, digestive, and reproductive 
health. They also possess anti-inflammatory, 
antioxidant, and analgesic properties. Analgesic, 
antidepressant, anti-amoebic, anti-obesity, 
radioprotective, cardioprotective, hepatoprotective, 
immunomodulatory, anti-microbial, anti-platelet, 
anti-hyperlipidemic, and antifungal properties are 
just a few of the beneficial characteristics that make up 
the pharmacological profile [9]. P. longum is an 
important ingredient in many Ayurvedic 
preparations used to treat various ailments, such as 
leprosy, tuberculosis, cough, shortness of breath, 
heart and spleen disorders, persistent fever, gout, and 
rheumatic pain [10]. 

Network pharmacology analysis was used in 
this study to predict effective inhibitors of lung 
cancer-related targets using phytochemical 
ingredients extracted from the roots and fruits of P. 
longum. The analysis included several critical steps 
such as collecting and organizing information about 
the chemical compounds found in P. longum, building 
a network using analytical tools, identifying key 
nodes through network analysis, validating results, 
and interpreting findings to identify potential drug 
targets and therapeutic applications. This procedure 
is time consuming and requires expertise in 
pharmacology and computational biology. Network 
pharmacology analysis is a potent approach for 
exploring the intricate interactions between natural 
compounds and biological systems. Our study has the 
potential to identify new therapeutic strategies for 
lung cancer.  

Materials and Methods 
Screening for bioactive compounds in P. 
longum 

Bioactive compounds present in the Root and 
Fruit of P. longum through literature mining [11], 
coupled with the utilization of the IMPPAT (Indian 
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Medicinal Plants, Phytochemistry and Therapeutics) 
database (https://cb.imsc.res.in/imppat/) with 
“Piper longum'' as keywords. All compounds and their 
canonical sequences were retrieved from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/). 

Identification of potential bioactive 
compounds of P. longum 

The bioactive compounds identified in the 
earlier step underwent ADME analysis using the 
SwissADME server (http://www.swissadme.ch/) 
[12]. Swiss ADME was used to evaluate the 
pharmacokinetics, drug-likeness, and medicinal 
chemistry compatibility of the small compounds. 
ADME, an abbreviation in pharmacokinetics, 
encompasses the processes of absorption, distribution, 
metabolism, and excretion, playing a pivotal role in 
drug discovery. Oral bioavailability (OB) is a critical 
pharmacokinetic measure that indicates a drug's 
capacity to enter systemic circulation following oral 
delivery. Drug-likeness (DL) refers to the similarity 
between a chemical and existing medication. OB and 
DL were used as the primary parameters for 
screening the active constituents. To adhere to the 
ADME criteria, specific restrictions were imposed, 
such as an overall OB ≥ 30% [13] and the exclusion of 
violations pertaining to Lipinski's rule of 5, to filter 
the phytochemical components. 

Identification of potential targets of P.longum 
Target interactions of bioactive compounds were 

investigated using SwissTargetPrediction 
(http://www.swisstargetprediction.ch/) [14], 
SuperPred (https://prediction.charite.de/) [15], and 
DIGEP-Pred (http://www.way2drug.com/ge/) [16]. 
Target selection was conducted using the 
SwissTargetPrediction tool with a p-value greater 
than 0.4. For SuperPred, targets with a p-value 
exceeding 80 were chosen, whereas for DIGEP-Pred, 
targets with a p-value higher than 0.5 were considered 
[17].  

Screening for targets in lung cancer 
Various databases, including the Therapeutic 

Target Database (https://db.idrblab.net/ttd/), 
OMIM (https://www.omim.org/) (with a probability 
threshold > 0.4) [18], and GeneCards 
(https://www.genecards.org/) (with a relevance 
score exceeding 30) [19], have been used to identify 
the target proteins associated with lung cancer [20].  

Overlapping targets for compound targets and 
disease targets 

Venny 2.1.0 (https://bioinfogp.cnb.csic.es/ 
tools/venny/) was used to identify common targets 

between compound and disease targets. The 
intersection of the identified targets reveals important 
information about the relationships of the target with 
bioactive substances.  

Protein–protein interaction (PPI) network 
construction and analysis 

Protein-protein interactions (PPIs) are of 
paramount importance in governing cellular 
functions and biological processes in various 
organisms. Understanding protein interactions can 
enhance our understanding of infection mechanisms 
and facilitate the development of effective drugs and 
treatment strategies. A protein-protein interaction 
(PPI) network was built using the STRING database 
(https://string-db.org/), focusing on specific genes 
with high-confidence interaction scores of ≥ 0.7 [21]. 
Subsequently, the network data obtained from the 
STRING database were extracted in a tab-separated 
value file format to build the protein-protein 
interaction (PPI) network diagram and perform 
enrichment analysis using Cytoscape v3.9.1 software 
[22]. 

Compound, Target and Disease (C-T-D) 
network construction and analysis 

A C-T-D (C-T-D) network was constructed using 
Cytoscape v3.9.1 software (https://cytoscape.org/). 
The nodes representing diseases, drugs, and core 
genes associated with the disease and compounds 
were extracted. Through node analysis, multiple 
targets were identified based on their degree of 
connectivity, reflecting their significance. Color and 
node-size scaling techniques were employed to depict 
the entire network based on the number of 
connections. The largest node represents the 
component with the highest number of connections. 
The CytoNCA plugin was used to conduct network 
topology analysis, and the component-disease target 
network map was imported into Cytoscape v3.9.1. 
The components were subsequently arranged in 
ascending order of importance based on their degree 
[23, 24].  

Gene Ontology (GO) enrichment and pathway 
analysis 

ShinyGO 0.7 (http://bioinformatics.sdstate 
.edu/go/) [25] was used for pathway and process 
enrichment analysis. This program includes a 
standard set of enrichment analysis ontologies, such 
as Gene Ontology (GO) processes, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways, reactome gene sets, canonical pathways, 
and comprehensive resource of mammalian protein 
Complexes) complexes. GO biological process 
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enrichment analysis and KEGG pathway analysis 
were performed on the target genes identified in the 
protein-protein interaction (PPI) network [26]. 

Gene expression analysis 

The gene expression profiling interactive 
analysis dataset (GEPIA 2, http://gepia.cancer- 
pku.cn/) [27] was used to analyze the expression of 
the top five hub genes (lung cancer genes). Lung 
cancer-associated gene expression levels in Lung 
Adenocarcinoma (LUAD) and Lung Squamous cell 
carcinoma (LUSC) compared to normal cells. 
According to Muthuramalingam et al., the log2FC and 
p-values were set to 1 and 0.01, respectively, in the 
GEPIA 2 webserver [28].  

Overall survival and survival heat map analysis 

Overall survival and survival map analysis of 
the top five lung cancer genes were validated against 
LUAD and LUSC in-built datasets using the GEPIA 2 
server, which was used to predict the impact of 
patients’ survival time [29]. Survival analysis was 
performed using the Kaplan-Meier plotter in GEPIA2 
with the preset default parameters. 

Molecular docking and visualization 

The PDB identifier of the top five previously 
identified core targets was obtained through literature 
mining, and their corresponding PDB structures were 
downloaded from the Protein Data Bank (PDB) 
(https://www.rcsb.org/). The downloaded target 
structure files are shown in .pdb format were then 
accessed using Swiss-PDB Viewer (SPDBV) software. 
Prior to energy minimization, water molecules and 
other heteroatoms such as Ca, Cl, and Na were 
removed from the structures. Next, the top five 
bioactive compounds (ligands) from P. longum, 
represented by their canonical SMILES notation, were 
converted into their respective compounds .sdf file 
format using the OSIRIS DataWarrior (https:// 
openmolecules.org/datawarrior/). Subsequently, the 
target molecules in the PDB format were loaded into 
PyRx software (https://pyrx.sourceforge.io/), and 
the software's auto dock setting was employed to 
convert them into macromolecules, which were then 
saved as .pdbqt files. The drug molecules were saved 
earlier .sdf file format, was inputted using the Open 
Babel module, energy-minimized, and converted to 
Autodock Ligand (.pdbqt). The VinaWizard window 
was opened and both macromolecules and ligands 
were selected for docking. Finally, the protein-ligand 
interactions resulting from the docking process were 
analyzed using the BIOVIA Discovery Studio 
Visualizer 2016 v16.1.0.15350 [28].  

Results 
Active bioactive compounds in P. longum  

Literature mining and IMPPAT database 
searches identified 145 bioactive compounds. Of 
these, 82 bioactive compounds were identified in the 
fruit and 63 were identified in the roots of P. longum 
(Supplementary Table 1). Subsequently, all 145 
compounds underwent the Swiss ADME analysis. To 
identify potential drug-like ligands, compounds were 
screened based on specific criteria, including oral 
bioavailability (OB) ≥ 30% and compliance with 
Lipinski's rule of 5. Swiss ADME assessment of P. 
longum compounds identified 33 potential drug-like 
ligands (Table 1), with 17 originating from the fruit 
and 16 from the root. The BOILED-Egg plot (Figure 1), 
incorporating the topological polar surface area 
(TPSA) and logarithm of the partition coefficient 
between n-octanol and water (Log PO/W), suggested 
that the tested compounds possessed favorable 
characteristics in terms of toxicity and drug-likeness. 
Molecular property analysis indicated that all 33 
compounds fell within the appropriate range of Log P 
values, typically between -2 and 5. Furthermore, these 
compounds exhibit lower molecular weights, 
generally below 500-600 Da, indicating their potential 
for efficient permeability across the gastrointestinal 
tract (Human Intestinal absorption, HIA) and the 
blood-brain barrier (BBB). Among the 
phytocompounds, most are non-substrates for 
P-glycoprotein (PGP) and therefore can avoid P-gp 
efflux. 

Potential targets of P. longum and lung cancer 
After ADME screening, the bioactive 

compounds were subjected to target prediction using 
SwissTargetPrediction, SuperPred, and DIGEP-Pred 
databases, resulting in 676 target predictions. A 
comprehensive search using the keyword "Lung 
Cancer" in databases such as the Therapeutic Target 
Database, OMIM, and GeneCards resulted in a total of 
666 target genes. When examining the target genes 
associated with P. longum and lung cancer, an overlap 
of 72 targets was identified and it is depicted in Figure 
2. 

Protein–Protein interaction (PPI) network 
construction and analysis 

The STRING database was used to create a 
protein-protein interaction (PPI) network using 
overlapping targets (Figure 3a). The resulting 
network comprises 72 nodes and 384 edges. To 
further analyze the network, the nodes were sorted 
based on their degrees, and a PPI network graph was 
created for the top 20 genes using the Cytoscape tool, 
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as depicted in Figure 3b. The top 20 identified genes 
were CTNNB1, STAT3, HIF1A, HSP90AA1, ERBB2, 
PTGS2, MDM2, CDK4, CASP8, MAPK1, CDK2, 
MAPK8, AR, PGR, MMP2, STAT1, MCL1, CDK1, 
CHEK1, and DNMT1. The top 20 PPI network genes 
had 20 nodes, 155 edges, and an average number of 
neighbors of 15.50. The degree centrality (DC), 
betweenness centrality (BC), and closeness centrality 
(CC) values for the top 20 genes are shown in 
Supplementary Table 2. DC measures the number of 
direct connections that a node has. BC quantifies the 
number of times a node acts as a bridge along the 
shortest path between two other nodes. CC measures 
the closeness of a node to all other nodes in the 
network. It is the reciprocal of the average shortest 
path distance from node to all other nodes [30]. 
Among the top 20 nodes, five (CTNNB1, STAT3, 
HIF1A, HSP90AA1, and ERBB2) exhibited DC, BC, 
and CC values that surpassed the average values. 
Therefore, these genes are potential lung cancer 
targets associated with P. longum infection. Table 2 
lists the DC, BC, and CC values for the top five nodes. 

C-T-D Network Construction and Analysis 
The Cytoscape tool was used to build a 

compound-target-disease network to examine the 
intricate relationships between compounds, targets, 
and diseases. The C-T-D network is illustrated in 
Figure 4 It contains 104 nodes and 423 edges with an 
average neighbor size of 8.135. Supplementary Table 3 
shows the degree, betweenness, and closeness 
centralities of the top ten bioactive compounds linked 
to lung cancer. Among the bioactive compounds 
analyzed, 7-epi-eudesm-4(15)-ene-1beta, demethoxy-
piplartine, methyl 3,4,5-trimethoxycinnamate, 
6-alpha-diol, and aristolodione showed the highest 

degrees, in the range of 15-32. Table 3 lists the DC, BC, 
and CC values of the top five bioactive substances 
with the highest node degrees. 

 

 
Figure 1. Predicted BOILED-Egg diagram of the selected compounds. BBB - Blood 
Brain Barrier, HIA - Human Intestinal Absorption, PGP+ - substrate of P-glycoprotein 
and PGP- - non-substrate of P-glycoprotein 

 
Figure 2. Intersecting targets between the active phytochemical potential protein 
targets in P. longum and Lung cancer-related genes.  

 

 
Figure 3. (a) The PPI network of the 72 intersecting targets and (b) The PPI network of the top 20 target genes were constructed. 
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Table 1. ADME properties of the selected phytochemicals of P. longum 

Name of the compound MW MR Rotatable bonds XLOGP3 H-bond 
acceptors 

H-bond 
donors 

Bioavailability 
Score 

Norcepharadione B 307.3 90.02 2 3.16 4 1 0.55 
Piperine 285.34 85.47 4 3.46 3 0 0.55 
Aristolodione 307.3 90.45 1 3.02 4 1 0.55 
Aristolactam BII 279.29 83.75 2 3.28 3 1 0.55 
Dehydropipernonaline 339.43 104.23 7 4.7 3 0 0.55 
Piperlongumine 317.34 89.47 6 2.07 5 0 0.55 
Pluviatilol 356.37 92.45 3 2.48 6 1 0.55 
Aristololactam 293.27 83.32 1 3.12 4 1 0.55 
Fargesin 370.4 96.92 4 2.81 6 0 0.55 
Pellitorine 223.35 71.47 9 4.39 1 1 0.55 
Aristolactam AII 265.26 79.28 1 2.95 3 2 0.55 
longamide 351.98 67.28 2 1.23 3 2 0.85 
tetrahydropiperic acid 222.24 58.47 5 2.54 4 1 0.85 
piperettine 311.37 94.61 5 4.11 3 0 0.55 
asarinine 354.35 90 2 2.68 6 0 0.55 
piperlonguminine 273.33 78.77 6 4.32 3 1 0.55 
demethoxypiplartine 287.31 82.98 5 2.1 4 0 0.55 
N-isobutyl decadienamide 223.35 71.47 9 3.69 1 1 0.55 
tetrahydro piperine 289.37 85.63 6 3.52 3 0 0.55 
sesamin 354.35 90 2 2.68 6 0 0.55 
Cepharadione B 321.33 94.92 2 3.34 4 0 0.55 
Norcepharadione B 307.3 90.02 2 3.16 4 1 0.55 
Piperine 285.34 85.47 4 3.46 3 0 0.55 
Piperlonguminine 273.33 78.77 6 4.32 3 1 0.55 
Methyl 3,4,5-trimethoxycinnamate 252.26 66.91 6 2.07 5 0 0.55 
Cepharadione A 305.28 88 0 3.21 4 0 0.55 
Piperolactam A 265.26 79.28 1 2.95 3 2 0.55 
5-[3-(1,3-Benzodioxol-5-yl)-1,3,3a,4,6,6a-hexahydrofuro[
3,4-c]furan-6-yl]-1,3-benzodioxole 

354.35 90 2 2.68 6 0 0.55 

Tetrahydropiperlongumine 218.29 69.49 4 2.06 2 1 0.55 
Trimethoxy cinnamoyl-piperidine 289.33 83.46 5 1.95 4 0 0.55 
6-alpha-diol 308.46 88.25 0 3.17 3 3 0.55 
2E,4E-dienamide 343.17 84.03 5 4.1 3 1 0.55 
7-epi-eudesm-4(15)-ene-1beta 238.37 71.58 1 2.63 2 2 0.55 

 
 

 
Figure 4. Compound - Target - Disease network of P. longum and lung cancer. 
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Table 2. The DC, BC and CC values of the hub genes. 

Gene Degree Betweenness Closeness 
CTNNB1 42.0 536.3216 0.70408165 
STAT3 39.0 415.04984 0.6831683 
HIF1A 37.0 601.5508 0.6699029 
HSP90AA1 35.0 279.21713 0.6448598 
ERBB2 33.0 225.435 0.6330275 

 

Table 3. The DC, BC and CC values of the compounds with high 
node degrees. 

Compound Degree Betweenness Closeness 
7-epi-eudesm-4(15)-ene-1beta 33.0 820.94586 0.48356807 
demethoxypiplartine 20.0  242.6487 0.43096235 
Methyl 3,4,5-trimethoxycinnamate 19.0 244.99773 0.4273859 
6-alpha-diol 31.0 720.89215 0.47465438 
Aristolodione 17.0 164.20059  0.42040816 

 

Gene Ontology (GO) enrichment and KEGG 
pathway Analysis 

P. longum targets were subjected to functional 
annotation and enrichment analysis, which revealed 
significant biological functions related to its 
phytochemical components. The targets linked to the 
phytochemical components found in the roots and 
fruits of P. longum were associated with a variety of 

biological processes (BP), including the regulation of 
cell death, muscle cell proliferation, cellular response 
to oxygen-containing compounds, and positive 
regulation of gene expression, according to Gene 
Ontology (GO) enrichment analysis. Targets for 
cellular components (CC) include mitochondria, 
cyclin-dependent protein kinase holoenzyme 
complex, chromatin, chromosomes, outer membrane, 
and other cellular components. Additionally, the 
molecular functions (MF) of the targets included 
binding to specific protein domains, RNA polymerase 
II CTD heptapeptide repeat kinase activity, histone 
kinase activity, protein kinase activity, protein serine 
kinase activity, and other activities. With an FDR 
cutoff of 0.05, 166 GO terms under MF, 143 under CC, 
and 1001 under BP were associated with the top 20 
genes (Figure 5). The top 20 genes were connected to 
158 pathways according to KEGG pathway analysis. 
Important pathways include those in cancer, Kaposi 
sarcoma-associated herpesvirus infection, prostate 
cancer, viral carcinogenesis, hepatitis C, pancreatic 
cancer, and microRNAs in cancer. Figure 5 displays 
the outcomes of the GO enrichment and KEGG 
pathway analyses. 

 

 
Figure 5. Top 20 GO terms and KEGG pathways associated with P. longum and lung cancer. a) Molecular Functions, b) Cellular Components c) Biological Processes and d) 
KEGG pathway. 
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Figure 6. Box plots encode the 5-lung cancer associated gene expression levels [a)CTNNB1, b) ERBB2, c) HIF1A, d) HSP90AA1, e) STAT3] in LUAD and LUSC compared with 
normal cells. Tumor tissues are marked in cyan color and noncancerous or normal tissues are marked in grey color. 

 

Expression of unique genes  
 The expression levels of the top five lung cancer 

genes, CTNNB1, STAT3, HIF1A, HSP90AA1, and 
ERBB2, were determined by comparing them with the 
LUAD and LUSC datasets using the GEPIA2 web 
server (Figure 6). The TCGA_LUAD dataset contains 
expression data from 483 tumor tissues and 347 
normal tissues associated with LUAD. The 
TCGA_LUSC dataset contained expression data from 
486 tumor tissues and 338 normal tissues associated 
with LUSC. In the box plot, tumor tissues are marked 
in cyan, whereas normal tissues are marked in gray. 
The presence of a red asterisk indicates that a 
statistically significant p-value (less than 0.01) was 
calculated, suggesting a potentially meaningful 
difference in gene expression between tumor and 
normal tissues. The expression levels of the genes are 
represented on the y-axis using the mean log2 (TPM 
+1) values. This form of transformation is often used 
in gene expression analysis to stabilize variance across 
different expression levels. The results yielded that 
the above set lung associated cancer genes showed 
significant expressions with a p-value <0.01. ERBB2 
was significantly upregulated and overexpressed in 
both TCGA_LUAD and _LUSC datasets. The 

expression levels of CTNNB1, STAT3, HIF1A, and 
HSP90AA1 were downregulated (Figure 6). 

Unique genes and their survival analysis 
 Using GEPIA2, survival analysis was performed 

by comparing the gene expression levels determined 
by survival heat map analysis against TCGA_ LUAD 
and LUSC (Figure 7). Among the 5-lung cancer 
associated genes, HSP90AA1 and HIF1A were highly 
expressed in LUAD and LUSC datasets. However, all 
other genes, namely, CTNNB1, STAT3, and ERBB2, 
showed negligible expression in both the LUAD and 
LUSC datasets (Figure 7). A survival heat map is a 
visual representation of survival data that displays 
the relationship between certain variables (in this 
case, the top five lung cancer-associated genes) and 
survival outcomes (such as overall survival time) for 
different individuals or groups. 

Prognostic impact aids in understanding which 
genes are associated with better or worse survival 
outcomes and can help in identifying potential 
biomarkers for prognosis and treatment strategies. 
The Kaplan-Meier plotter shows that the distinct 
genes were substantially connected with lung cancer 
patients, with a p-value of 0.05, for the overall 
survival of lung cancer patients. In addition, certain 
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genes with high expression and associations with 
survival in patients with LUAD and LUSC included 
CTNNB1(HR = 1.1; P = 0.5), STAT3 (HR = 1; P = 0.99), 
HIF1A (HR = 1; P = 0.71), and HSP90AA1 (HR = 1.2; P 
= 0.079). Additionally, the expression of the ERBB2 
gene was associated with lower prognoses and lower 
survival rates in LUAD and LUSC patients (Figure 8). 
The heatmap results indicated that both of these genes 
(HSP90AA1 and HIF1A) at diagnosis can be 
considered undesirable prognostic genes and may 
lower the overall survival of LUAD- and 
LUSC-infected individuals (Figure 8). 

Molecular docking 
The interactions between the components of the 

five hub genes and the phytochemicals were 
examined using molecular docking. Molecular 
docking studies involved the use of structures 
obtained from the Protein Data Bank (PDB), namely 
1JDH [31], 1BG1 [32], 3KCX [33], 3Q6N [34], and 
1N8Z [35], which correspond to hub genes CTNNB1, 
STAT3, HIF1A, HSP90AA1, and ERBB2, respectively. 
Table 4 presents the top five ligand binding affinity 
values for each hub gene. Among the observed 
results, six protein-ligand complexes displayed 
binding affinities below -7 kcal/mol. kcal/mol), 
HSP90AA1_6-alpha-diol (-7.1 kcal/mol), STAT3_ 

Aristolodione (-7.2 kcal/mol), CTNNB1_ 
Aristolodione (-7.2 kcal/mol), STAT3_6-alpha-diol 
(-7.5 kcal/mol), HIF1A_Aristolodione (-7.8 kcal/mol), 
and HIF1A_6-alpha-diol complex (-7.9 kcal/mol). 
Figure 9 illustrates the 3D and 2D interaction plots of 
the protein-ligand complexes with the top five 
binding affinities. 

 

 
Figure 7. The survival heat map represents the prognostic impacts of unique gene 
expression levels based on the TCGA_LUAD and TCGA_LUSC datasets. The heat 
map represents the hazard ratios in log10 scale for the lung cancer associated genes. 
Red color represents higher risks, blue color indicates lower risks. The darkened 
rectangular frames indicate the significant favorable and unfavorable results in 
prognostic analyses. 

 

 
Figure 8. Lung cancer associated unique genes and their prognostic value is represented by overall survival analyses (Kaplan - Meier plotters and logrank tests) based on 
TCGA_LUAD and _LUSC visualized by GEPIA2. The dashed lines denote upper and lower confidence intervals. a) CTNNB1, b) ERBB2, c) HIF1A, d) HSP90AA1, e) STAT3. 
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Figure 9. Molecular docking results of key Bioactive of P.longum with lung cancer core targets (a) CTNNB1 docked with Aristolodione (b) HIF1A docked with Aristolodione (c) 
STAT3 docked with 6-alpha-diol (d) STAT3 docked with Aristolodione (e) HIF1A docked with 6-alpha-diol. 

 
In Figure 9a, the interactions between HIF1A and 

6-alpha-diol are clearly depicted. The complex was 
stabilized by two hydrogen bonds (ASN137 and 
VAL145), one π-sigma bond (PHE148), one π-alkyl 
bond (PHE148), and several van der Waals 
interactions. In the case of the HIF1A_Aristolodione 
complex (Figure 9b), three hydrogen bonds formed by 
ARG3, VAL250, and GLU248, one π-π stacking 
interaction (TRP13), one π-cation (GLU1), and one 
π-alkyl bond (PRO27) were observed. Figure 9c shows 
the interactions between STAT3 and 6-alpha-diol, 
involving one hydrogen bond (LYS430), one alkyl 
bond (PRO327), and numerous van der Waals 
interactions. In contrast, the STAT3_Aristolodione 
complex (Figure 9d) exhibited three hydrogen bonds 
(one by CYS274 and two by ASN276), one amide-pi 
stacked interaction (GLY229), two alkyl bonds 
(LYS239), and two π-alkyl bonds (LYS239). Finally, 
the CTNNB1_Aristolodione complex (Figure 9e) was 
stable because of the formation of five π-alkyl bonds 

(one by VAL415, three by PRO451, and one by 
ILE455). The presence of multiple non-bonded 
interactions between the hub genes and the 
phytochemical constituents of P. longum suggests that 
these constituents may possess significant anticancer 
activity against lung cancer. 

Discussion 
Network pharmacology offers a promising and 

scientifically rigorous approach to identify potential 
therapeutic interventions for lung cancer. This 
emerging field combines bioinformatics with experi-
mental methodologies to construct comprehensive 
"compound-target/disease-gene" biomolecular net-
works. By analyzing these networks, network 
pharmacology enables the exploration of molecular 
interactions at different biological scales, providing 
insights into both the adverse and beneficial effects of 
drugs. Additionally, this approach revealed the 
underlying mechanisms of synergy among 
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conventional medications, shedding light on their 
therapeutic properties for the treatment of diseases 
[36].  

 

Table 4. Top 5 binding affinity values of ligands with the hub 
genes. 

Target gene and Ligand Binding affinity (kcal/mol) 
CTNNB1_6-alpha-diol -6.5 
CTNNB1_7-epi-eudesm-4(15)-ene-1beta -6 
CTNNB1_Aristolodione -7.2 
CTNNB1_Demethoxypiplartine -6.4 
CTNNB1_Methyl_3,4,5-trimethoxycinnamate -5 
STAT3_6-alpha-diol -7.5 
STAT3_7-epi-eudesm-4(15)-ene-1beta -6.4 
STAT3_Aristolodione -7.2 
STAT3_Demethoxypiplartine -7 
STAT3_Methyl_3,4,5-trimethoxycinnamate -5.9 
HIF1A_6-alpha-diol -7.9 
HIF1A_7-epi-eudesm-4(15)-ene-1beta -6.4 
HIF1A_Aristolodione -7.8 
HIF1A_Demethoxypiplartine -6.7 
HIF1A_Methyl_3,4,5-trimethoxycinnamate -5.7 
HSP90AA1_6-alpha-diol -7.1 
HSP90AA1_7-epi-eudesm-4(15)-ene-1beta -6 
HSP90AA1_Aristolodione -6.9 
HSP90AA1_Demethoxypiplartine -6.6 
HSP90AA1_Methyl_3,4,5-trimethoxycinnamate -5.6 
ERBB2_6-alpha-diol -6.7 
ERBB2_7-epi-eudesm-4(15)-ene-1beta -5.5 
ERBB2_Aristolodione -7 
ERBB2_Demethoxypiplartine -6 
ERBB2_Methyl_3,4,5-trimethoxycinnamate -5 

 
By analyzing the phytochemical constituents 

present in the fruit and roots of P. longum, this study 
successfully identified several noteworthy genes 
associated with cancer and potential anticancer 
substances. Specifically, the investigation revealed a 
connection between the phytochemical constituents 
and the genes CTNNB1, STAT3, HIF1A, HSP90AA1, 
and ERBB2, which have established links to lung 
cancer and play essential roles in the critical cellular 
pathways involved in disease progression. These 
findings strongly suggest that P. longum possesses 
properties that hold promise for alleviating lung 
cancer, thereby emphasizing its potential as a 
valuable therapeutic agent.  

CTNNB1, also known as β-catenin-interacting 
protein 1, represses β-catenin transactivation and 
plays a significant role in the development of lung 
tumors [37]. Signal Transducer and Activator of 
Transcription 3 (STAT3) revival has been observed in 
non-small cell lung cancer (NSCLC) patient samples. 
STAT3 plays a pivotal role in driving tumor- 
promoting inflammation and evasion of antitumor 
immunity [38]. Hypoxia-inducible factor-1α (HIF-1α) 
is involved in tumor cell metastasis because it is a 
crucial transcription factor that regulates oxygen 
homeostasis [39]. The AKT/glycogen synthase kinase 
3 (GSK3) pathway, which functions downstream of 
sphingosine kinase-1 (SPHK-1), is involved in 

hypoxia-induced HIF-1 stability [40]. HSP90AA1 
(heat shock protein 90 alpha family class A member 1) 
plays a significant role in NSCLC regulation. Studies 
have also suggested that the HSP90AA1 protein 
product HSP90α plays a key role in regulating tumor 
invasion and migration [41]. Erythroblastic oncogene 
B (ERBB2) has been identified as a marker for 
pancreatic malignancies, breast carcinomas, and 
gastric cancers. It is also known as human epidermal 
growth factor receptor 2 (HER2) [42]. The HER2 gene 
encodes tyrosine kinase receptors, the modifications 
of which are known to cause carcinogenesis. HER2 
modifications, including elaboration, deviation, and 
overexpression, have been noted in gastric and breast 
cancers [43]. 

GO enrichment analysis of the common genetic 
goals shared by lung cancer and the phytochemical 
constituents of P. longum revealed several GO 
biological pathways that were dysregulated in lung 
cancer. These pathways include how cells respond to 
the stress created by chemicals, the response to 
oxidative stress, regulation of intracellular signaling, 
and favorable control of cell population growth. 
Targeting these pathways holds potential for the 
development of therapeutics and is crucial for 
understanding the molecular mechanisms underlying 
lung cancer. Notably, oxidative stress, induced by 
factors such as smoking and air pollutants, 
contributes to the synthesis of pneumonia mediators 
in pulmonary epithelial cells that trigger carcinogenic 
mechanisms [44]. Moreover, deactivation of the 
Wnt/β-catenin pathway, mediated by disheveled 
(Dsh) proteins, leads to accumulation of β-catenin in 
the cytosol. The gathered β-catenin is translocated 
into the nucleus, where it forms complexes with 
transcription factors, including T-cell factor family 
proteins (TCFs). These transcription factors are 
responsible for the activation of genes such as cyclin 
D1 and c-Myc, which are oncogenes involved in 
tumorigenesis and cell proliferation [45].  

KEGG pathway analysis identified common 
genes with various KEGG pathways, including 
pathways such as cancer, microRNAs, proteoglycans, 
cancer, transforming growth factor-beta (TGF-beta) 
pathway, and PI3K-Akt pathway. An important 
relationship between these pathways provides 
valuable insights into the underlying molecular 
mechanisms involved in the development and 
progression of lung cancer. They play crucial roles in 
cell division, proliferation, apoptosis, and survival, 
and their dysregulation is well-documented in lung 
cancer. MicroRNAs (miRNAs), a family of small 
non-coding RNAs composed of 21-25 nucleotides, 
exert their regulatory effects by binding to 
complementary sites on target mRNAs. This 
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communication is responsible for the inhibition of 
mRNA translation and promotion of mRNA 
degradation, thereby facilitating the 
post-transcriptional regulation of gene expression. 

Glycosaminoglycans and proteoglycans are the 
major components of the Extracellular Matrix (ECM) 
that directly or indirectly interact with various 
cytokines, growth factors, adhesion molecules, and 
glycoproteins. This interaction contributes to 
cancer-related processes such as angiogenesis, 
proliferation, invasion, and metastasis [46]. The 
TGF-β signaling pathway, which is responsible for 
epithelial-mesenchymal communication during lung 
branching and alveolarization, is implicated in 
pulmonary diseases [47]. The PI3K-Akt signaling 
pathway involves a heterodimeric protein consisting 
of p110 catalytic and p85 regulatory subunits. AKT, a 
serine/threonine kinase, comprises a C-terminal tail 
domain and core kinase domain containing a 
threonine residue (T308) [48]. NSCLC commonly 
activates the PI3K pathway, which is critical for 
oncogenesis as it promotes cell survival, growth, 
proliferation, and migration [49]. 

Molecular docking is a computational method 
used in network pharmacology and drug discovery to 
forecast and examine atomic-level interactions 
between small molecules (ligands) and target proteins 
(receptors). They play a crucial role in elucidating the 
potential therapeutic effects of compounds and their 
mechanisms of action by determining the preferred 
orientation of a ligand to a target to form a stable 
complex. In the context of lung cancer research, 
molecular docking experiments were conducted using 
the top five compounds derived from P. longum and 
the top five lung cancer-related genes. The results 
revealed that 6-alpha-diol exhibited the highest 
affinity for HIF1A, suggesting that HIF1A may be a 
suitable target for lung cancer treatment. 
Furthermore, the strong binding of 6-alpha-diol to 
HIF1A suggests that it may possess pharmacological 
activity against HIF1A-mediated pathways. In 
particular, 6-alpha-diol has the potential to modulate 
HIF1A signaling in hypoxic environments relevant to 
lung cancer, thereby influencing processes, such as 
angiogenesis, metabolism, and cell survival.  

Network pharmacology and molecular docking 
approaches have been developed in recent years and 
are widely employed to investigate the key targets 
and underlying mechanisms responsible for the 
anticancer properties of various medicinal plants. 
Iksen et al. [46] used a network pharmacology 
approach to identify lung cancer targets associated 
with aspileterin-derived steroidal saponins. Their 
study revealed significant anticancer targets including 
IL2, FGF2, HSP90AA1, VEGFA, and STAT3. 

Furthermore, molecular docking studies demonstra-
ted the strong binding affinity of aspileterin A for 
STAT3. Another study conducted by Cheng et al. [49] 
examined the anticancer effects of Qishan formula 
against lung adenocarcinoma. This study identified 
several major anticancer targets, including AKT1, 
HRAS, PIK3CA, HSP90AA1, MAKP1, STAT3, 
MAPK3, PIK3R1, TP53, and SRC. Among these 
targets, HSP90AA1 exhibited high-affinity binding 
(up to 10 kcal/mol) to six compounds present in the 
Qishan formula. Additionally, Zhou et al. [50] 
conducted a study on Camellia nitidissima C.W.Chi and 
identified five phytochemical constituents (3'4-O- 
dimethylcedrusin, eriodictyol, quercetin, kaempferol, 
and luteolin) that showed high-affinity binding to 
four lung cancer targets (CCND1, AKT1, SRC, and 
EGFR). The findings of this study align closely with 
those of the aforementioned studies, particularly with 
regard to the identified anticancer targets.  

Overall, the network pharmacology analysis of 
P. longum fruits and roots provides valuable insights 
into potential therapeutic targets for lung cancer. 
However, further research is necessary to validate the 
findings of our analysis and establish the safety and 
efficacy of P. longum-based therapeutics. Rigorous 
pre-symptomatic and clinical studies should be 
conducted to ensure the safety and effectiveness of 
potential treatments in human subjects after their 
identification. 

Conclusions 
In this study, a network pharmacology approach 

was employed to identify potential bioactive 
substances and their corresponding targets for the 
treatment of lung cancer. A total of 145 bioactive 
compounds were identified by a literature review and 
the IMPPAT database, of which 33 showed potential 
anticancer properties. These compounds were 
screened using Swiss ADME considering their 
drug-like properties and adherence to specific 
restrictions. Subsequent filtering with Swiss Target, 
SuperPred, and DIGEP-Pred resulted in 37 
compounds with 676 targets, of which 72 overlapped 
with 666 lung cancer gene targets. To assess the key 
compound targets and establish the main hub nodes 
for the P. longum lung cancer-curing effect, we 
constructed a protein-protein interaction network 
using STRING and Cytoscape software. Key 
parameters include the degree, betweenness 
centrality, and closeness centrality. Notably, 
substances such as 7-epi-eudesm-4(15)-ene-1beta, 
demethoxypiplartine, methyl 3,4,5-trimethoxycinna-
mate, 6-alpha-diol, and aristolodione exhibited higher 
degrees of inhibition, indicating their potential 
therapeutic value in lung cancer. Additionally, this 
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study identified dysregulated GO biological 
pathways associated with lung cancer, including how 
cells respond to the stress created by chemicals, the 
response to oxidative stress, regulation of intracellular 
signaling, and favorable control of cell population 
growth. These pathways play vital roles in 
understanding the molecular mechanisms underlying 
lung cancer and are potential targets for therapeutic 
development. KEGG pathway enrichment analysis 
revealed the transforming growth factor-beta 
pathway, PI3K-Akt pathway, miRNAs, proteo-
glycans, and cancer, shedding further light on the 
molecular mechanisms associated with lung cancer 
development and progression. Furthermore, docking 
analysis demonstrated the potential of 6-alpha-diol 
and similar chemicals from P. longum in targeting 
HIF1A. However, presymptomatic and clinical 
studies are essential to confirm the safety and efficacy 
of these potential therapeutic agents in humans. 
Nevertheless, our study demonstrated the promising 
application of network pharmacology in the discovery 
of potential anti-lung cancer compounds.  
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