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Abstract 

Dilated cardiomyopathy (DCM) causes heart failure and sudden death. Epigenetics is crucial in 
cardiomyopathy susceptibility and progression; however, the relationship between epigenetics, 
particularly DNA methylation, and DCM remains unknown. Therefore, this study identified aberrantly 
methylated differentially expressed genes (DEGs) associated with DCM using bioinformatics analysis and 
characterized their clinical utility in DCM. DNA methylation expression profiles and transcriptome data 
from public datasets of human DCM and healthy control cardiac tissues were obtained from the Gene 
Expression Omnibus public datasets. Then an epigenome-wide association study was performed. DEGs 
were identified in both DCM and healthy control cardiac tissues. In total, 3,353 cytosine–guanine 
dinucleotide sites annotated to 2,818 mRNAs were identified, and 479 DCM-related genes were 
identified. Subsequently, core genes were screened using logistic, least absolute shrinkage and selection 
operator, random forest, and support vector machine analyses. The overlapping of these genes resulted 
in DEGs with abnormal methylation patterns. Cross-tabulation analysis identified 8 DEGs with abnormal 
methylation. Real-time quantitative polymerase chain reaction confirmed the expression of aberrantly 
methylated DEGs in mice. In DCM murine cardiac tissues, the expressions of SLC16A9, SNCA, PDE5A, 
FNDC1, and HTRA1 were higher compared to normal murine cardiac tissues. Moreover, logistic 
regression model associated with aberrantly methylated DEGs was developed to evaluate the diagnostic 
value, and the area under the receiver operating characteristic curve was 0.949, indicating that the 
diagnostic model could reliably distinguish DCM from non-DCM samples. In summary, our study 
identified 5 DEGs through integrated bioinformatic analysis and in vivo experiments, which could serve as 
potential targets for further comprehensive investigation. 
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Introduction 
Dilated cardiomyopathy (DCM) is a primary 

cardiac disorder characterized by the presence of 
ventricular systolic dysfunction accompanied by 
hypertrophy in either the left, right, or both ventricles. 
DCM is a leading contributor to the development of 

heart failure and unexpected mortality, and 
epidemiological studies have shown that DCM 
accounts for approximately 60% of all 
cardiomyopathies [1]. The worldwide prevalence of 
DCM is approximately 1:250 [2]. DCM is 
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heterogeneous and lacks specific clinical 
manifestations during its early stages, thus creating 
severe challenges for accurate DCM diagnosis and 
management [3, 4]. The mortality rate of DCM 
remains high despite advancements in current 
understanding. The five-year mortality rate of 
patients with DCM in Europe was found to be 15–
50%, while the mortality rate of patients with DCM in 
China over 52 months of follow-up reached as high as 
42.24%, imposing a substantial cost on individuals, 
families, the economy, and society [5, 6]. Therefore, 
the enhancement of early diagnosis and treatment foe 
DCM is crucial. 

Epigenetics describes the alterations in genomic 
function caused by modifications to non-nucleotide 
sequences [7], including RNA and DNA methylation 
and histone modification [8]. DNA methylation is a 
biochemical process that involves the addition of 
methyl groups to cytosine in DNA, resulting in the 
formation of 5-methylcytosine, which is facilitated by 
methyltransferases. While CpG sites are frequently 
associated with DNA methylation, it should be noted 
that DNA methylation can also occur at non-CpG sites 
[9, 10]. Because methyl groups are hydrophobic, DNA 
hypermethylation can modify chromatin structure, 
DNA stability, DNA structure, and interactions 
between DNA and proteins in order to regulate gene 
transcription [9, 11]. Epigenetics, particularly DNA 
methylation, significantly influences on 
cardiovascular disease susceptibility and changes in 
disease progression [12, 13]; however, its association 
with DCM remains undefined. 

Over the past decade, the application of 
advanced sequencing techniques and the integration 
of bioinformatics analyses have proven valuable in 
revealing previously unidentified genes and 
pathways involved in disease mechanisms. In this 
research, we conducted a thorough bioinformatic 
analysis of gene expression and DNA methylation 
data sourced from the Gene Expression Omnibus 
(GEO) database of the National Center for 
Biotechnology Information and conducted in vivo 
experiments to identify abnormally methylated genes 
in DCM. Simultaneously, we developed a logistic 
regression prediction model to assess the potential 
clinical utility of these hub genes in diagnosing DCM. 

Materials and Methods 
Epigenome-Wide Association Study  

An epigenome-wide association study (EWAS) is 
an association analysis tool utilizing DNA 
methylation data across the wide genome that aims 
used to analyze the relationships between complex 
phenotypes and epigenetic modification. Methylation 

microarray data from the GSE81337[14] dataset was 
analyzed using the "CpGassoc" tool 
(https://CRAN.R-project.org/package=CpGasso) in 
R (version 4.2.0) (https://www.r-project.org) to 
identify CpG sites associated with DCM. By applying 
this tool to the GSE81337 dataset, we were able to 
narrow down their focus to CpG sites that are located 
in functionally relevant regions of the genome, 
specifically in promoter regions and exons. To ensure 
the reliability and significance of the findings, Only 
CpG sites located in the promoter region, including 
200 base internal regions (TSS200), 1,500 base internal 
regions (TSS1500), and the first exon regions from the 
transcription start sites (TSS) were considered. The 
screening requirement of a false discovery rate (FDR) 
of < 0.001 was applied to ensure that the identified 
CpG sites are statistically significant and unlikely to 
be false positives. 

Differential Gene Analysis 
Comparative analysis of gene was performed to 

identify genes related to DCM. First, R software was 
used to transform the platform and matrix 
information files. After the initial data transformation, 
the data underwent standardization using the 
"normalizeBetweenArrays" purpose of the "limma" 
(http://www.bioconductor.org/packages/release/bi
oc/html/limma.html) package. Finally, the 
differentially expressed genes (DEGs) of DCM in the 
GSE42955[15], GSE79962[16], GSE57338[17], 
GSE84796[18], and GSE111544[18] microarray 
datasets were identified using the limma package [19]. 
The limma package offers robust statistical methods 
to detect significant differences in gene expression 
between groups of samples. In addition to the 
statistical analysis, a literature review was also used to 
acquire DCM proteomic differentially expressed 
proteins directly [20]. Differentially expressed 
proteins and DEGs with |log Fold change (FC)| ≥ 0.5 
and P < 0.05 were deemed statistically significant. 
However, due to excessive DEGs with |logFC| ≥ 0.5 
in the combined GSE84796[18] and GSE111544[18] 
datasets, the screening criteria were narrowed to 
|logFC| ≥ 1. 

Weighted Gene Co-Expression Network 
Analysis 

Weighted gene co-expression network analysis 
(WGCNA) is a biological approach for analyzing gene 
expression patterns across numerous samples to 
uncover meaningful gene modules and their 
relationships with clinical traits [21]. WGCNA was 
performed using the "WGCNA" package in R 
software (https://CRAN.R-project.org/package= 
WGCNA). First, this transcriptome data of the 
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GSE141910[22] dataset with the largest number of 
samples were preprocessed to build a gene 
relationship network. Subsequently, different gene 
modules were then identified by constructing a 
cluster tree to identify distinct gene modules based on 
a gene co-expression network. Finally, a correlation 
analysis was conducted between gene modules and 
the DCM phenotype to identify the essential genes in 
the DCM modules. The threshold was fixed at 5 so 
that the scale-free network map structure R2 > 0.8. The 
key genes associated with DCM were identified by 
performing an intersection analysis between DEGs, 
differentially expressed proteins, and the key genes of 
essential WGCNA modules in each dataset. 

Construction of Protein–Protein Interaction 
Network 

The STRING database serves as a valuable 
resource for the analysis and prediction of 
protein-protein interactions (PPI) [23]. In our study, 
we utilized STRING (version 11.0) (https:// 
string-db.org/) to assess the protein interactions of 
interest. Specifically, we screened for interaction pairs 
with interaction scores greater than 0.4. To facilitate 
visualization and interpretation of the PPI network, 
we employed Cytoscape (version 3.8.2) [24]. 

Enrichment Analysis 
The “clusterProfiler” package [25] (https:// 

CRAN.R-project.org/package=grandR) in R software 
was employed to gain a deeper understanding of the 
functional roles of the key genes associated with 
DCM. Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses 
of relevent genes linked to DCM were performed, 
followed by selecting key GO functional enrichment 
entries using the “GOSemSim” package [26]. The 
functional enrichment entry screening criteria were P 
values of < 0.05. 

Analysis of Differentially Expressed Genes with 
Abnormal Methylation 

To further identify key DCM-related genes with 
strong diagnostic value and biological significance, 
we implemented a multi-step analysis using various 
statistical and machine learning techniques. Initially, 
logistic regression models were performed first using 
the "glm" function in the R software "stats" package, 
and an ROC curve was plotted utilizing the "pROC" 
package. Next, the R software "glmnet" package 
(https://CRAN.R-project.org/package=glmnet) was 
used on the positive results of the logistic model. Then 
relevant analysis involved the implementation of 
LASSO regression, which aims to minimize absolute 
shrinkage and selection. A λ value of 13 was chosen as 

it minimized the deviation of the LASSO regression 
model. In parallel, the "randomForestSRC" package 
(https://CRAN.R-project.org/package=randomFores
tSRC) was used to perform random forest analysis, 
and the "e1071" package (https://github.com/ 
cran/e1071) was used to train support vector machine 
models to further feature-screen key genes. Both 
random forest and SVM models were used to further 
screen for key genes based on their feature 
importance. The genes ranking among the top 10 were 
selected from the random forest analysis and support 
vector machine model and intersected. Finally, 
overlapping genes between above results and the 
findings from the EWAS analysis to obtain a set of 
abnormally methylated DEGs that are potentially 
linked to DCM. 

Animals 
Male C57BL/6 mice, aged eight weeks, were 

acquired from Beijing Vital River Laboratory Animal 
Technology Co., Ltd. (located in Beijing, China) and 
reared in a specific pathogen-free environment at the 
Laboratory Animal Center of Tongji Medical College, 
Huazhong University of Science and Technology. 
These facilities maintained optimal conditions, 
including a room temperature range of 20–25 °C, 
humidity between 60–70%, and a regulated 12-hour 
light/dark cycle. Prior to experimentation, all mice 
were acclimatized for one week without any 
experimentation. The Animal Care and Utilization 
Committee of Huazhong University of Science and 
Technology, China, approved all animal experiments 
adhering strictly to the Guide for the Care and Use of 
Laboratory Animals (National Institutes of Health 
Publication 8th Edition, 2011). 

Model Construction for Dilated 
Cardiomyopathy 

DCM was induced by injecting doxorubicin 
hydrochloride (DOX) (No. HY-15142; 
MedChemExpress, Monmouth Junction, NJ, USA) 
into male C57BL/6J mice to verify the expression of 
abnormally methylated DEGs in the DCM cardiac 
tissue [27, 28]. The male C57BL/6J mice, aged 8 weeks 
and free from specific pathogens were randomly 
divided into saline and DOX groups. Mice were 
injected intraperitoneally with saline and DOX (5 
mg/kg) every three days, ten times in total. 
Echocardiography was performed to assess the 
successful establishment of the DCM mode. The mice 
were fully anesthetized when the tail-pinching reflex 
disappeared. Mice were subject to euthanasia using a 
carbon dioxide chamber, followed by cervical 
dislocation for investigations involving the isolation 
of mouse tissues. 
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Echocardiographic Analysis 
Transthoracic echocardiography was performed 

30 days after saline and DOX injections using a Vevo 
2100 high-resolution microimaging system 
(VisualSonics, Toronto, Canada). Mice were placed on 
a warmed cushion after anesthetization by isoflurane 
inhalation (4% for induction, 1.7% for experiment), 
and their chest hair were shaved off. The body 
temperature was controlled at 36-37℃. The M-mode 
tracings were obtained from the short-axis 2-D view 
of the left ventricle. Measurements were taken for the 
left ventricular dimensions during end-diastole and 
end-systole (LVIDd and LVIDs), while left ventricular 
ejection fraction (LVEF) and left ventricular fractional 
shortening (LVFS) were calculated. The analysis of all 
loops and images from five cardiac cycles was 
conducted in a blinded manner, with the average 
value being utilized. 

Histology 
The entire heart was removed and cleaned of 

blood, and the cardiac tissue was fixed overnight at 
room temperature (20–25 °C) with 4% 
paraformaldehyde. The tissues were paraffin-fixed to 
prepare 3-μm paraffin slices. The paraffin slices from 
the papillary muscle layer were stained with 
hematoxylin and eosin (HE) and Masson’s trichrome. 
The visualization of all stained sections was 
conducted using a NIKON ECLIPSE E100 microscope 
(Nikon, Tokyo, Japan).  

Real-Time Quantitative Polymerase Chain 
Reaction  

The extraction of total RNA was performed 
using TRIzol isolation reagent (Vazyme Biotec, 
Nanjing, China), followed by reverse transcription of 
the RNA into cDNA using HiScript RT SuperMix 
(Vazyme Biotec, Nanjing, China). To conduct 
real-time quantitative polymerase chain reaction 
(RT-qPCR), we utilized sequence-specific primers, 
ChamQ SYBR qPCR Master Mix (Vazyme Biotec), and 
a CFX96 Real-Time PCR Detection System (Bio-Rad 
Laboratories, Hercules, CA, USA). Each reaction was 
repeated thrice. The data were normalized to GAPDH 
via the 2-ΔΔCT method. The primer sequences utilized 
for amplifying the target genes can be found in Table 
S1. 

Construction of Logistic Regression Prediction 
Model 

Logistic regression is a widely used classification 
technique for predicting a classification based on a set 
of variables [29]. In this study, the transcriptome 
expression values of each abnormally methylated 
DEG were used to predict the sample type (DCM or 

non-DCM). Based on the two sample groups (DCM or 
non-DCM), the continuous independent variable for 
each DEG with abnormal methylation was 
represented by the transcriptome expression value, 
while the sample type was considered a binary 
variable. The R software was used to build a logistic 
regression model using the generalized linear model 
function. In addition, we also plotted the ROC curve 
of the logistic regression prediction model to assess 
the clinical diagnostic potential of abnormally 
methylated DEGs in DCM. 

Statistical Analyses 

The statistical analyses were conducted utilizing 
GraphPad Prism8 (GraphPad Software, San Diego, 
CA, USA). All experimental data are expressed as the 
mean ± standard deviation. A comparison between 
different groups was conducted using an independent 
sample t-test analysis. Statistical significance was 
considered at P < 0.05. 

Details regarding the extended methods are 
provided in the Supplementary Material. 

Results 
Identification of Dilated Cardiomyopathy- 
Associated Cytosine–Guanine Dinucleotide 
Sites 

To identify DEGs in the hearts of patients with 
DCM, we searched the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) using the 
keywords "Dilated cardiomyopathy". After screening, 
we downloaded seven datasets with a sample size of 
at least 10 for analysis. These comprised the DNA 
methylation dataset GSE81337[14] and the original 
gene expression datasets GSE42955[15], 
GSE79962[16], GSE57338[17], GSE84796[18], 
GSE111544[18], and GSE141910[22]. 

The screening process for aberrantly methylated 
DEGs in DCM is shown in Fig. 1. 

The analysis of EWAS was conducted on DNA 
methylation data from the GSE81337[14] dataset to 
obtain genome-wide critical CpG sites in DCM. A 
Manhattan plot illustrating the distribution of 
DCM-critical CpG sites on different chromosomes is 
presented (Fig. 2a). Each point in the plot represents a 
DCM-critical CpG site; the dashed line horizontally 
represents log10 (FDR), and CpG sites exceeding the 
dashed line have FDR < 0.001. A total of 3,353 CpG 
sites located in the promoter regions were identified 
as being involved in DCM development and were 
mostly located on chromosomes 1 and 2, which 
mapped to 2,818 mRNAs (Fig. 2a). The majority of 
CpG sites within the genome are situated in the island 
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region (Fig. 2b). In addition, analysis of the precise 
spreading of CpG sites within the promoter region 

revealed that a predominant localization of these sites 
in TSS1500 (Fig. 2c). 

 

 
Figure 1. Flowchart identifying abnormally methylated differentially expressed genes (DEGs). DCM, dilated cardiomyopathy; EWAS, epigenome-wide association study; LASSO, 
least absolute shrinkage and selection operator 

 
Figure 2. Dilated cardiomyopathy (DCM)-associated cytosine–guanine dinucleotide (CpG) sites (a) Manhattan plot of the DCM-associated CpG sites across all chromosomes. 
Horizontal axis: chromosome; longitudinal axis: log10 (P value). (b) Distribution pattern of CpG sites within the CpG islands. (c) Promoter region CpG sites distribution.  
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Figure 3. Differentially expressed genes (DEGs) of the GSE42955, GSE79962, GSE57338, and GSE84796 + GSE111544 datasets. (a) Volcano map of the GSE42955, GSE79962, 
GSE57338, and GSE84796 + GSE111544 datasets. (b) Heatmap of the GSE42955, GSE79962, GSE57338, and GSE84796 + GSE111544 datasets 

 

Identification of Differentially Expressed 
Genes with Abnormal Methylation in Dilated 
Cardiomyopathy 

The expression matrix data of the standardized 
GSE42955[15], GSE79962[16], GSE57338[17], and 
GSE84796 + GSE111544 [18] datasets were used (Fig. 
S1). A total of 374, 714, 637, and 610 DEGs, 
respectively, were identified between the DCM group 
and the non-DCM group in the above datasets (Fig. 
3a). There was a notable disparity in the expression 
levels of DEGs observed between the DCM and 
non-DCM cohorts (Fig. 3a). The obtained DEGs were 
utilized for subsequent analyses. The heatmap 
visualized all of the identified DEGs (Fig. 3b). 

Next, to comprehensively identify key modules 
and hub genes associated with DCM, we employed 
WGCNA to construct a co-expression network using 
the GSE141910[22] dataset. The samples were 
subjected to clustering analysis by the removal of any 
outliers (Fig. 4a), and a soft threshold of 5 was chosen 
based on scale-free topological criteria to establish a 
weighted adjacency matrix (Fig. 4b). The construction 
of a co-expression network was performed based on 
the optimal soft threshold, and a gene clustering tree 
was generated. Subsequently, 12 modules resulting 
from module clustering were analyzed for 
conservation (Fig. 4c and 4d). Brown modules with 
the smallest P values and the highest correlation 
indices were considered the most relevant to the DCM 
features (Fig. 4e). 

The abovementioned DEGs (Fig. 3a) and key 
module genes were intersected with proteomic 
differentially expressed proteins in DCM reported in 
the literature [20] to identify repetitive genes, 
revealing 479 essential DCM-related genes (Fig. 5a 
and 5b). The STRING database for protein interactions 
was used to investigate these 479 DCM-related 
essential genes, and a total of 479 nodes and 1,702 
edges of the PPI network were obtained, indicating 
interactions between genes and proteins (Fig. 5c). 

DCM-related essential genes were significantly 
enriched, and the top 10 GO biological process (BP) 
(Fig. 6a), GO cellular component (CC) (Fig. 6b), GO 
molecular function (MF) (Fig. 6c), and KEGG (Fig. 6d) 
pathways were identified. GO analysis indicated that 
the DEGs showed enrichment in pathways related to 
remodeling of the extracellular matrix pathways, 
indicating potential alterations in the extracellular 
matrix associated with DCM (Fig. 6a–c). 

Logistic regression analysis was performed, and 
the Fig. S2 displays the ROC curves. The LASSO 
regression, random forest, and support vector 
machine models were used for feature screening of 
the positive logistic results. The intersection of 13, 10, 
and 10 key genes, identified using LASSO regression 
analysis (Fig. 7a and 7b), random forest analysis (Fig. 
7c and 7d), and support vector machine analysis, 
respectively, was performed to obtain the hub genes. 
Eight DEGs exhibiting abnormal methylation patterns 
were identified: choline dehydrogenase (CHDH), 
regulator of G protein signaling 9 binding protein 
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(RGS9BP), solute carrier family 16 member 9 
(SLC16A9), Fibronectin type III domain-containing 
protein 1 (FNDC1), phosphodiesterase 5A (PDE5A), 
HTRA1, synuclein alpha (SNCA), and neuronal 
pentraxin 2 (NPTX2) (Fig. 7e). 

In Vivo Validation of Differentially Expressed 
Genes with Abnormal Methylation 

We used doxorubicin to induce a DCM model in 
mice[27, 28]. Subsequently, the success of the model 
was assessed through echocardiography and 
quantification of cardiac function in mice. Mice with 
DCM exhibited enlarged heart chambers, thin cardiac 
walls, impaired myocardial mobility and diminished 
systolic function (Fig. 8a). Compared to the control 
group, mice with DCM exhibited a significant 
decrease in LVEF and LVFS, as well as a notable 
increase in LVIDs. However, no statistically 
significant difference was observed in LVIDd (Fig. 
8b), suggesting successfully construction of the DCM 
mouse model. 

HE staining revealed myocardial fiber 
disintegration and disarray in the DOX group. 
Additionally, cardiac muscle cells displayed 
hypertrophy accompanied by vacuolar degeneration, 
disrupted arrangement, enlarged and deformed 
nuclei with intense staining (Fig. 9a). Masson’s 
staining indicated that the DOX group had more 
blue-dyed collagen fibers than the control group had, 
indicating more interstitial fibrosis. The myocardial 
small artery wall undergoes simultaneous thickening 
and lumen narrowing (Fig. 9b). 

The successful establishment of the DCM model 
was confirmed by echocardiography and histological 
staining. Subsequently, we assessed the expression 
levels of the aforementioned DEGs in cardiac tissue. 
The SLC16A9, SNCA, PDE5A, FNDC1, and HTRA1 
transcript levels were found to be significantly 
elevated in the cardiac tissues of the DCM group than 
those of the control group (Fig. 10). Conversely, the 
other three genes (CHDH, RGS9BP, and NPTX2) were 
not sufficiently expressed to be detected in the mouse 
cardiac tissue. 

 

 
Figure 4. Application of the weighted gene co-expression network analysis (WGCNA) on the GSE141910 dataset. (a) Sample clustering plot. (b) Measuring the topological fit 
index and average connectivity for scale-free networks. (c) Gene clustering tree plot. (d) Modular conservation analysis. (e) Association analysis plot between each gene module 
and dilated cardiomyopathy (DCM) phenotype 
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Figure 5. Identification and protein–protein interaction (PPI) network of key genes linked to dilated cardiomyopathy (DCM). (a) Venn diagram. (b) Upset plot. (c) PPI network 
diagram of key genes associated with DCM 

 
Figure 6. Histogram of enrichment analysis of key genes associated with dilated cardiomyopathy (DCM). (a) Scores of the enrichment in the top 10 of Gene Ontology (GO) 
biological process (BP) analysis of enriched pathways. (b) Top 10 enrichment scores of GO cellular component (CC) pathways enrichment analysis. (c) Scores of the enrichment 
in the top 10 of GO molecular function (MF) pathways enrichment analysis. (d) Top 10 enrichment scores of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis 
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Figure 7. Identification for aberrantly methylated differentially expressed genes (DEGs) using various computational algorithms. (a–b) Regression model utilizing the LASSO 
technique for minimizing absolute shrinkage and selecting variables. (c–d) The random forest model. (e) Venn plots of candidate genes in the LASSO regression, random forest, 
and support vector machine models 

 
Figure 8. Echocardiographic images and statistical data of mice. (a) Representative M-mode echocardiographic images of the left ventricle in the control and doxorubicin 
hydrochloride (DOX) groups. (b) Analysis of left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular internal diameter in systole 
(LVIDs), and left ventricular internal diameter in diastole (LVIDd). n = 6 per group. Data in (b) were analyzed using independent sample t-test analyses. Data are expressed as the 
means ± standard deviation. ***P < 0.001  

 

Construction of Logistic Regression Prediction 
Model 

Five DCM-related DEGs exhibiting abnormal 
methylation (SLC16A9, SNCA, PDE5A, FNDC1, and 
HTRA1) were used to create logistic regression 
models, and the dependent variables were either of 
the DCM or non-DCM sample type. The risk score 
was calculated as follows: Risk score = 3.94 × FNDC1 

+ 7.26 × HTRA1 + 1.91 × PDE5A + 3.14 × SLC16A9 − 
2.22 × SNCA. The GSE141910[22] and GSE57338[17] 
datasets were used as the training and validation sets, 
respectively, to evaluate the accuracy of the 
established logistic regression prediction model. The 
training dataset revealed significant variations in risk 
ratings between DCM and non-DCM samples (P < 
0.01) (Fig. S3). Additionally, the risk scores between 
the DCM and non-DCM samples in the validation set 
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differed significantly (P < 0.01) (Fig. 11a). This finding 
demonstrates that the logistic regression prediction 
model effectively distinguished DCM from non-DCM 
samples. Furthermore, the expression of the 5 
DCM-related DEGs with abnormal methylation 
varied significantly between the DCM and non-DCM 
samples (Fig. 11b–f), thereby demonstrating the 

critical role of these genes in DCM. The area under the 
curve of the logistic regression prediction model was 
0.949, indicating a high level of the accuracy in the 
predictions of this model (Fig. 11g). Thus, the 
potential diagnostic efficacy of the 5 DCM-related 
DEGs with abnormal methylation was demonstrated. 

 

 
Figure 9. Photomicrographs of pathological staining in the control and doxorubicin hydrochloride (DOX) groups. (a) Photomicrographs of hematoxylin and eosin staining. (b) 
Representative photomicrographs of Masson’s staining. Scale bar: 100 μm 

 
Figure 10. Expressions of SLC16A9, SNCA, PDE5A, FNDC1, and HTRA1 mRNA of cardiac tissue in dilated cardiomyopathy (DCM) mice, determined using quantitative real-time 
polymerase chain reaction. Each group contained four samples. (a) SLC16A9 transcripts in cardiac tissue. (b) SNCA transcripts in cardiac tissue. (c) PDE5A transcripts in cardiac 
tissue. (d) FNDC1 transcripts in cardiac tissue. (e) HTRA1 transcripts in cardiac tissue. Data in (a–e) were analyzed using independent sample t-test analyses. Data are expressed 
as the means ± standard deviation. * P < 0.05, ** P < 0.01, **** P < 0.0001 
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Figure 11. The results of the logistic regression prediction model of the GSE57338 dataset. (a) A significant difference in risk scores between dilated cardiomyopathy (DCM) 
and non-DCM samples was observed. (b–f) The expression values of 5 aberrantly methylated DEGs (SLC16A9, SNCA, PDE5A, FNDC1, and HTRA1) differed significantly between 
DCM and non-DCM samples. (g) Receiver operating characteristic (ROC) curve of the logistic regression prediction model. ****P < 0.0001 

 
Discussion 

Due to the difficulties in diagnosing DCM, many 
patients are typically presented with grade III–IV 
cardiac function, resulting in a dismal prognosis [30]. 
As the pathophysiology of DCM remains elusive, 
research efforts in this field have increasingly pivoted 
towards advancing early detection and treatment 
strategies, aiming to mitigate myocardial damage and 
improve patient outcomes [31]. Gene expression 
microarrays, next-generation transcriptome 
sequencing, and crucial bioinformatics components 
have been extensively used to study cardiovascular 
diseases and to offer various opportunities for 
molecular treatment, molecular prediction, and drug 
targeting [32, 33]. 

Reduced DNA methylation levels of the trypsin 
receptor 3 gene impact mRNA production, thereby 
elevating the likelihood of myocardial infarction [34]. 
Fifty-two genome-wide CpG methylation sites linked 
to myocardial infarction were found in a follow-up 
study involving 11,461 people. The biological activity 
of these CpG sites showed that they are primarily 
associated with calcium metabolism and renal 
function [35]. According to Chinese cohort studies, 
racial disparities exist in the correlation between DNA 
methylation and common coronary heart disease risk 
factors [36, 37]. Conclusively, DNA methylation is 
highly associated with cardiovascular illness; 
however, there is currently insufficient evidence 
linking DNA methylation to DCM 

In this study, we used bioinformatics techniques 
to thoroughly analyze six transcriptome datasets and 
one DNA methylation dataset of DCM to identify 
DEGs for DCM-related aberrant methylation. Overall, 
3,353 CpG sites, which may map to 2,818 mRNAs, 
were associated with DCM development. These sites 
were primarily concentrated on chromosomes 1 and 2. 
A total of 479 key DCM-related genes were identified 
by means of differential analysis, WGCNA, and 
differential expression protein screening. Eight 
DCM-related DEGs with abnormal methylation were 
identified using logistic regression, LASSO 
regression, random forest, and support vector 
machine analyses.  

Of the 8 genes exhibiting aberrant DCM-related 
methylation, 5 genes - SLC16A9, SNCA, PDE5A, 
FNDC1, and HTRA1 - displayed significantly higher 
expression levels in the cardiac tissue of DCM mice 
compared to healthy counterparts. However, the 
expression of the remaining three genes was too low 
to be reliably evaluated. SLC16A9, a transporter gene, 
oversees the intestinal and renal excretion of uric acid. 
Abnormal expression of SLC16A9 can hinder uric acid 
excretion, resulting in hyperuricemia, [38], which is a 
recognized risk factor for cardiovascular diseases [39, 
40]. SNCA affects neurotransmitter release by 
encoding α synuclein, which affects normal neuronal 
function and was the first causative gene found to be 
associated with hereditary Parkinson’s disease; 
however, its association with cardiovascular disease 
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has not yet been elucidated [41]. PDE5A is highly 
expressed in vascular smooth muscle cells and 
mediates vasodilation [42, 43]. Sildenafil increases 
abdominal aortic aneurysms by inhibiting PDE5A 
[44]. FNDC1 is a biomarker of aortic calcified valves 
and interacts with lipid components in plasma to 
promote the development of inflammatory responses 
during aortic valve calcification [45]. Human serine 
protease HTRA1 involves several physiological 
processes, including mitochondrial homeostasis 
regulation, apoptosis, and cell signal transduction 
[46]. The structure and function abnormalities of 
HTRA1 lead to transforming growth factor-β 
expression variations, impacting cardiovascular 
disease progression [47, 48]. HTRA1 methylation 
could be used as a possible diagnostic tool to diagnose 
strokes [49]. Our logistic regression prediction model, 
based on these 5 DCM-related DEGs with aberrant 
methylation, successfully distinguished DCM 
samples from non-DCM samples, further illustrating 
that epigenetic regulation of these 5 DCM-related 
DEGs may play an essential role in the pathogenesis 
of DCM. 

This study demonstrated a correlation between 
DNA methylation and DCM; however, it had several 
limitations. Most data were obtained from public 
databases, and while some clinical data were needed 
for more comprehensive research, there was no 
particular direct mechanism of action study to 
support the mechanism of action.  

Conclusion 
We comprehensively analyzed the transcriptome 

and DNA methylation data of DCM and identified 8 
DCM-related DEGs with aberrant methylation. Five 
(SLCA6A9, SNCA, PDE5A, FNDC1, and HTRA1) were 
highly expressed in the cardiac tissue of DCM mouse 
models. In addition, the logistic model established for 
these 5 genes showed that DCM samples could be 
accurately distinguished from non-DCM samples, 
suggesting that these genes are associated with the 
occurrence and prognosis of DCM. These discoveries 
have increased our understanding of DCM and offer 
novel guidelines for future therapeutic strategies. 
These 5 genes could be used in future studies to 
determine their role in DCM pathogenesis and to 
elucidate their mechanism of action. 
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