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Abstract 

This study aims to explore the molecular mechanisms and associated pathways of myocardial infarction 
(MI). We employed a variety of analytical methods, including Mendelian Randomization (MR) analysis, 
transcriptome microarray data analysis, gene function and pathway enrichment analysis, untargeted 
metabolomic mass spectrometry analysis, and gene-metabolite interaction network analysis. The MR 
analysis results revealed a significant impact of mitochondrial DNA copy number on MI and coronary 
artery bypass grafting. Transcriptome analysis unveiled numerous differentially expressed genes 
associated with myocardial ischemia, with enrichment observed in cardiac function and energy 
metabolism pathways. Metabolomic analysis indicated a significant downregulation of mitochondrial 
regulation pathways in ischemic myocardium. T500 metabolite quantification analysis identified 90 
differential metabolites between MI and Sham groups, emphasizing changes in metabolites associated with 
energy metabolism. Gene-metabolite interaction network analysis revealed the significant roles of key 
regulatory molecules such as HIF1A, adenosine, TBK1, ATP, NRAS, and EIF2AK3, in the pathogenesis of 
myocardial ischemia. In summary, this study provides important insights into the molecular mechanisms 
of MI and highlights interactions at multiple molecular levels, contributing to the establishment of new 
theoretical foundations for the diagnosis and treatment of MI. 

Keywords: Myocardial infarction; Molecular mechanisms; Mendelian Randomization analysis; Metabolomic mass spectrometry 
analysis; Transcriptome analysis; Gene-metabolite interaction network analysis 

1. Introduction 
Myocardial infarction (MI) is a condition 

characterized by myocardial ischemia and necrosis 
due to reduced coronary artery blood flow, typically 
precipitated by thrombus formation [1, 2]. According 
to a report by the World Health Organization (WHO), 
approximately 18 million people worldwide died 
from cardiovascular diseases (CVDs) in 2019, 
representing 32% of the total global mortality and 
emerging as a leading cause of death among all 
diseases. Within the realm of cardiovascular diseases, 

MI resulting from coronary heart disease accounts for 
roughly 75% of cases of sudden cardiac death (SCD), 
thus presenting a significant international health 
challenge [1, 2]. Despite advancements in treatments 
such as anticoagulants, antiplatelet agents, 
thrombolysis, and reperfusion therapy, the incidence 
of MI remains notably high. However, some patients 
still progress to heart failure, underscoring the urgent 
need for effective therapeutic strategies to alleviate 
myocardial damage. The pathophysiological 
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mechanisms of MI involve the development of 
atherosclerosis, encompassing a complex array of 
biological processes including low-density 
lipoprotein (LDL) oxidation, endothelial cell injury, 
inflammatory responses, and thrombus formation [3, 
4]. The primary pathological feature of MI is 
diminished coronary artery blood flow leading to 
myocardial ischemia and necrosis, typically triggered 
by thrombus formation. Apart from thrombus 
formation, other mechanisms such as vasospasm and 
coronary artery anatomical abnormalities may also 
contribute to MI. Treatment modalities for MI 
encompass pharmacological interventions such as 
anticoagulants, antiplatelets, thrombolysis, and 
reperfusion therapy, alongside interventional proce-
dures including percutaneous coronary intervention 
(PCI) and coronary artery bypass grafting (CABG) [2]. 
In recent years, nanomaterials have emerged as a 
novel therapeutic approach, showcasing immense 
potential. Nanomaterials can serve as drug delivery 
systems, reducing drug dosage and frequency, 
mitigating side effects, and enhancing efficacy. 
Additionally, nanomaterials can promote local 
vascular regeneration, alleviate myocardial damage, 
improve local mitochondrial-related metabolic 
remodeling, and potentially chart new directions for 
the future treatment of MI [4]. However, current MI 
treatments still encounter limitations. For instance, 
some patients, despite receiving state-of-the-art 
treatments, still progress to heart failure, highlighting 
the constraints of existing therapeutic methods. 
Furthermore, while nanomaterials exhibit potential in 
MI treatment, their clinical application remains in its 
nascent stages, necessitating further research and 
clinical trials to validate their safety and efficacy. 

The occurrence and progression of MI and heart 
failure are influenced by various factors, including 
mitochondrial dysfunction. Mitochondria serve as the 
energy centers of cardiac cells, maintaining their 
functionality and quantity through fusion and fission 
processes [3]. Recent research indicates that 
mitochondrial fusion and fission play pivotal roles in 
the occurrence and progression of MI and heart 
failure, emerging as a focal point of investigation. 
During the onset and progression of MI, 
mitochondrial fusion serves as a crucial mechanism 
for sustaining cardiac cell survival and function [3]. 
When MI occurs, cardiac cells undergo ischemic and 
reperfusion injuries, leading to a significant increase 
in oxidative stress levels. Oxidative stress damages 
mitochondrial function, thereby affecting cardiac cell 
viability [5]. In such circumstances, mitochondrial 
fusion aids in preserving mitochondrial functional 
integrity, mitigating oxidative stress-induced 
mitochondrial damage, and consequently protecting 

cardiac cells from injury. Additionally, abnormal 
proliferation and fission of mitochondria are key 
features during various forms of cell death such as 
apoptosis and necrosis [6]. Mitochondrial fission leads 
to an increase in intracellular mitochondrial quantity, 
thereby exacerbating oxidative stress and cell death 
processes. During MI, cardiac oxidative stress is a 
crucial pathophysiological mechanism directly 
impacting mitochondrial function and structure [5, 7]. 
Elevated levels of oxidative stress can impair 
mitochondrial function, including loss of 
mitochondrial membrane potential, decreased 
oxidative phosphorylation capacity, and excessive 
reactive oxygen species (ROS) production, thereby 
triggering mitochondrial fission. 

Mitochondrial fusion/fission processes help 
maintain mitochondrial quantity and functionality, 
facilitating the restoration of energy metabolism and 
protecting cardiac cells from the effects of energy 
insufficiency. Furthermore, during MI occurrence, 
certain cardiac cells may suffer severe ischemic and 
reperfusion injuries, resulting in apoptosis and 
necrosis. Mitochondrial fusion promotes the survival 
of damaged cardiac cells, reducing the number of 
apoptotic cells and maintaining the integrity and 
functionality of cardiac tissue [5, 7]. Additionally, the 
activation of inflammatory cells and release of 
inflammatory mediators further promote 
mitochondrial fission and abnormal proliferation. 
Concurrently, mitochondrial fission may exacerbate 
the severity of MI by promoting the escalation of 
inflammatory responses. Recent studies suggest that 
mitochondrial fusion/fission processes and dynamics 
anomalies may also participate in angiogenesis, 
facilitating the repair and regeneration of damaged 
cardiac tissue. By modulating mitochondrial 
homeostasis, it is possible to enhance the survival and 
regenerative capacity of cardiac cells, thereby aiding 
in the restoration of cardiac function [6, 8]. 

Therefore, investigating mitochondrial metabo-
lism is of paramount importance for delving into the 
mechanisms and clinical applicability of MI. A 
thorough comprehension of mitochondrial metabolic 
pathways facilitates the elucidation of the 
pathophysiological underpinnings of MI, clarifies the 
interplay between oxidative stress and mitochondrial 
impairment, and probes into the regulatory 
mechanisms governing mitochondrial dynamics.  

2. Methods 
2.1 The Mendelian Randomization (MR) 
analysis  

The MR analysis conducted in this study utilized 
five datasets sourced from publicly available GWAS 
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summary data (https://gwas.mrcieu.ac.uk/) [9, 10]. 
The mitochondrial DNA copy number data was 
derived from a meta-analysis study comprising 
383,476 samples of European ancestry (ID: 
EBI-A-GCST90026372), while the summary data for 
coronary artery bypass grafting included 547,261 
samples of European ancestry, and myocardial 
infarction data originated from a meta-analysis study 
encompassing 462,933 samples of European ancestry. 
Data analysis was performed using R (version 4.2.1) 
with the TwoSampleMR (0.5.6) and MRPRESSO (1.0) 
packages [9]. The MR analysis primarily employed 
the Inverse Variance Weighted (IVW) method, which 
utilizes the inverse of the variance of each genetic 
variant's effect size to weight the effects. Additionally, 
four other statistical methods, namely the Weighted 
Median Estimator (WME), Weighted Model-Based 
Method (WM), MR-Egger Regression (MER), and 
Simple mode (SE), were applied to assess the 
association between genetic variants and diseases, 
estimate causal effects, and evaluate bias and 
symmetry of the estimation values, as well as the 
stability and consistency of the results [9]. 
Harmonization was employed to remove SNPs with 
incompatible alleles and those with allele frequencies 
being palindromic. Given potential heterogeneity in 
SNP extraction across different experimental settings, 
leading to heterogeneity in two-sample MR analysis 
and subsequent errors in causal inference, 
heterogeneity testing and MR-Egger regression were 
conducted on the main IVW analysis method to 
address this concern. Regarding horizontal pleiotropy 
in MR analysis, intercept values from MR-Egger were 
utilized to evaluate its presence, with P-values from 
the heterogeneity test indicating its significance [10]. 
A P-value above 0.05 suggested negligible horizontal 
pleiotropy in the causal analysis. Finally, 
leave-one-out analysis was employed to assess result 
consistency. 

2.2 Transcriptome microarray data analysis 
DESeq2 is a widely used tool for analyzing 

RNA-seq data, primarily employed to detect 
differential gene expression under different 
conditions [11]. It is based on a negative binomial 
generalized linear model, which statistically evaluates 
the number of sequence fragments for each gene, 
enabling comparison of gene expression levels across 
different conditions. DESeq2 features data-driven 
prior distributions to estimate dispersion and 
logarithmic fold changes, thereby enhancing the 
accuracy and reliability of the analysis [12, 13]. The 
Count expression value data for each gene in each 
sample was downloaded from the Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/ 

geo/) database [14], specifically from GSE110209 [15]. 
Using the DESeqDataSetFromMatrix function, the 
Count expression value data, sample information, and 
experimental design information were integrated into 
a DESeqDataSet object. DESeq2 performs data 
normalization, batch effect removal, and other data 
cleaning and correction operations on the dataset to 
ensure the accuracy of the analysis. The DESeq() 
function was applied to conduct differential analysis 
on the DESeqDataSet object. This function calculates 
the differential expression levels for each gene and 
performs statistical significance tests on the 
differential expression, resulting in a list of 
differentially expressed genes along with associated 
statistical information [12, 13]. Differential genes were 
identified based on an FDR-adjusted p-value less than 
0.05 and an absolute log fold change greater than or 
equal to 1.0. 

2.3 Gene functional and pathway enrichment 
analysis 

Here, both Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analyses were conducted to elucidate the functional 
and pathway enrichment of genes. The GO analysis 
classified genes into three main groups: biological 
processes (BP), cellular components (CC), and 
molecular functions (MF) [16]. The clusterProfiler, 
enrichKEGG, enrichplot, and enrichGO methods were 
employed for this analysis [16], where terms with 
adjusted p-values less than or equal to 0.05, 
determined using the Benjamini & Hochberg method, 
were considered significantly enriched. Additionally, 
for pathway visualization, barplot and cnetplot 
functions from the enrichplot package were utilized to 
generate a bar chart and a category net plot, 
respectively. 

Moreover, Gene Set Enrichment Analysis 
(GSEA) and Gene Set Variation Analysis (GSVA) were 
performed using gene sets obtained from the 
Molecular Signatures Database (MsigDB) [17, 18]. 
Gene sets were downloaded in gmt format and 
imported into R using the getGmt function in the 
GSEABase package. For GSEA, clusterProfiler, 
gseGO, and gseKEGG functions were employed, 
utilizing a ranked list of genes, species identifier, and 
1000 permutations for the enrichment test. On the 
other hand, GSVA analysis was conducted using the 
gsva function, applied to the expression data matrix, 
gene set collection, and specified calculation method, 
resulting in GSVA scores for each sample [17, 18]. 
Subsequently, these scores were utilized for down-
stream analyses, including differential expression 
analysis based on the LIMMA method. 
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2.4 Untargeted Metabolomic Mass 
Spectrometry Analysis and Quantitative 
Analysis with T500 

Specifically, we selected C57BL/6N mice aged 
8-10 weeks and weighing between 20-25g as research 
subjects and induced myocardial infarction (MI) by 
ligating the left anterior descending artery (LAD) 
under anesthesia. All animal care and experimental 
procedures were approved by Committee on Animal 
Research and Ethics of Guangzhou Medical Univer-
sity (Acceptance number: G2020-073). Following 
tissue sample collection and preparation, LC-MS 
technology was employed for mass spectrometry data 
collection and analysis. And this study leverages the 
novel metabolomic profiling technology provided by 
Wuhan Metware Biotechnology Co., Ltd. (https:// 
www.metware.cn), which combines the advantages of 
untargeted "comprehensive" and targeted "accurate" 
metabolomic approaches, offering high throughput, 
ultra-sensitivity, broad coverage, and accurate 
qualitative and quantitative capabilities. This 
technology utilizes chromatography-mass spectro-
metry coupling to accomplish the entire process from 
substance separation to identification, with liquid 
chromatography-tandem mass spectrometry 
(LC-MS/MS) enabling precise quantification [19]. 
Metabolomic analysis aims to detect and screen 
metabolites of significant biological and statistical 
differences in biological samples, revealing insights 
into metabolic processes and mechanisms of change. 
The analysis comprises two main components: 
experimental procedures and data analysis, involving 
differential metabolite screening and metabolic 
pathway analysis [20]. Through this technology, over 
3000 metabolites can be simultaneously qualitatively 
and quantitatively detected in biological samples. In 
the experiments, both hydrophilic and hydrophobic 
substance extraction methods were utilized, and data 
acquisition was conducted using a chromatography- 
mass spectrometry system, including ultra-high- 
performance liquid chromatography and tandem 
mass spectrometry [21]. Metabolite qualitative 
analysis relied on a self-constructed targeted standard 
product database, MWDB, utilizing retention time 
and precursor and fragment ions for metabolite 
identification. Quantitative analysis depended on 
multiple reaction monitoring (MRM) mode of triple 
quadrupole mass spectrometry (MS), enabling precise 
and reproducible quantification [20]. The entire 
analysis process involves sample preparation, data 
acquisition and analysis, and result interpretation, 
providing important technical support and data 
foundation for metabolomic research. 

In data processing, chromatographic peaks were 
aligned, and normalization and appropriate missing 
value imputation methods were applied. For 
statistical analysis, orthogonal partial least squares 
discriminant analysis (OPLS-DA) was conducted, 
allowing the identification of significant metabolites 
distinguishing control and MI groups. Differential 
expressed metabolites (DEMs) screening was based 
on two key criteria: VIP scores ≥ 1 and fold changes ≥ 
2 or ≤ 0.5 between control and experimental groups. 
Metabolite interactions form various pathways, 
annotated using the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. Subsequently, for 
quantitative analysis of core metabolites, we 
employed a novel technology product called T500 
(also procured from Wuhan Metware Biotechnology 
Co., Ltd.; https://www.metware.cn). T500 is an 
absolute quantitative detection analysis technology 
for metabolomic mass spectrometry, covering 540 
target substances related to energy metabolism, 
tryptophan pathway, fatty acids, bile acids, 
neurotransmitters, steroid hormones, amino acids, 
organic acids, and trimethylamine oxidation. This 
technology enables simultaneous qualitative and 
quantitative analysis across nine major metabolic 
pathways, providing a scientific tool and method for 
studying the occurrence and progression of diseases. 

2.5 Gene-Metabolite Interaction Network 
Detection 

Using the Network Analysis module in 
MetaboAnalyst (version 6.0; https://www 
.metaboanalyst.ca/) [22], we constructed a 
Gene-Metabolite Interaction Network by inputting 
core genes and differentially expressed metabolites. 
This network analysis tool enables researchers to 
explore and visualize interactions between relevant 
metabolites and genes. We extracted associations 
between chemical substances and human genes from 
the STITCH database, focusing on highly credible 
interactions. These associations are primarily based 
on co-mentions highlighted in PubMed abstracts, 
indicating similarities in chemical structure and 
molecular activity. Additionally, based on the results 
obtained from MetaboAnalyst online analysis, we 
further conducted network analysis using Cytoscape 
software. Utilizing the cytoHubba plugin in 
Cytoscape [23], we analyzed core regulatory 
subgroups within the overall network. By employing 
the Maximum Clique Centrality (MCC) algorithm, we 
iteratively narrowed down the core subset of genes 
and metabolites, ultimately identifying the most 
critical gene-metabolite regulatory relationships. 
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Figure 1: Association Analysis of Mitochondrial DNA Copy Number with Myocardial Infarction and Coronary Artery Bypass Grafting. (A-B). Scatter plots 
illustrating the allelic expression magnitudes between Mitochondrial DNA Copy Number (mtDNA CN) and Myocardial Infarction, as well as Coronary Artery Bypass Grafting 
(CABG). (C-E). Schematic representation of differential Single Nucleotide Polymorphism (SNP) loci: There are 5 differential loci between mtDNA CN and Myocardial Infarction, 
7 between mtDNA CN and CABG, with 2 core differential loci shared between both conditions, namely rs142158911 and rs1569419. 

 

3. Results 
3.1 MR Analysis Results 

In our MR analysis, we initially selected 67 SNPs 
as instrumental variables (IVs) using Mitochondrial 
DNA copy number as the exposure factor, with 
myocardial infarction as the outcome factor. The 
results of the Inverse Variance Weighted (IVW) 
analysis revealed an odds ratio (OR) of 0.99372 (95% 
CI=0.98785-0.99961, P=0.03) for myocardial infarction. 
Similarly, using Coronary artery bypass grafting as 
the exposure factor and extracting 75 SNPs, the IVW 
analysis showed an OR of 0.97672 (95% 
CI=0.95954-0.99421, P=0.009) for Mitochondrial DNA 
copy number as the outcome factor (Table 1). These 
findings indicate a significant impact of 
Mitochondrial DNA copy number on myocardial 
infarction and Coronary artery bypass grafting 
(Figure 1C-D). Furthermore, Cochran’s Q analysis 
revealed heterogeneity between Mitochondrial DNA 

copy number and myocardial infarction, as well as 
Coronary artery bypass grafting (P<0.05) (Table 2). 
This heterogeneity may arise from fixed SNP loci, 
potentially affecting sample selection in dual-sample 
settings. However, this does not undermine the 
reliability of the IVW method's conclusions. 
Moreover, MR-Egger analysis indicated no horizontal 
pleiotropy between Mitochondrial DNA copy number 
and myocardial infarction, as well as Coronary artery 
bypass grafting (Table 3). Scatter plots depicting SNP 
expression magnitudes between Mitochondrial DNA 
copy number and myocardial infarction, and 
Coronary artery bypass grafting, were illustrated in 
Figure 1A-B. To estimate the strength of the 
instrumental variables, we calculated R² and the 
f-statistic using the allele frequency (EAF) and effect 
estimate (BETA) in the presence of an effective allele 
frequency value. All f-statistic values exceeded 10. 
Notably, there were 5 differential SNP loci between 
Mitochondrial DNA copy number and myocardial 
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infarction, 7 between Mitochondrial DNA copy 
number and Coronary artery bypass grafting, and 2 
shared core differential loci, namely rs142158911 and 
rs1569419 (Figure 1E). 

3.2 Transcriptomic Microarray Analysis of 
Myocardial Infarction in Mice 

Downloaded GSE110209 count data from GEO 
was analyzed for differential expression using 
DESeq2. A total of 2255 upregulated and 895 
downregulated genes were identified in the 
myocardial ischemia group compared to the Sham 
group (Figure 2A). GO enrichment analysis of the 
differentially expressed genes revealed significant 
enrichment in several BP terms including 
phospholipid binding, metal ion transmembrane 
transporter activity, and GTPase regulator activity. 
Additionally, terms related to CC such as 

mitochondrial matrix, mitochondrial protein- 
containing complex, and mitochondrial outer 
membrane were significantly enriched. Furthermore, 
MF terms like glycerolipid metabolic process, 
carboxylic acid transport, and mitochondrial 
transport showed significant enrichment (Figure 2B). 
Moreover, KEGG enrichment analysis revealed 
significant enrichment in pathways associated with 
Dilated cardiomyopathy, Hypertrophic cardiomyo-
pathy, Arrhythmogenic right ventricular cardiomyo-
pathy, Lipid and atherosclerosis, and Inositol 
phosphate metabolism, as well as relevant energy 
metabolism pathways (Figure 2C). Furthermore, 
GSEA indicated significant enrichment of the 
Mitochondrial electron transport pathway (ES=0.94; 
NES=-1.64; adjusted P-value=2.68e-07) (Figure 2D). 

 
 

 
Figure 2: Analysis of Ischemic Cardiac Tissue Reveals Dysregulated Pathways. (A). DESeq2 analysis reveals 2255 upregulated and 895 downregulated genes compared 
to Sham controls. (B). GO enrichment highlights significant biological processes, cellular components, and molecular functions. (C). KEGG pathway analysis indicates enrichment 
of cardiac and lipid metabolism pathways. (D). GSEA identifies significant enrichment of the Mitochondrial electron transport pathway. 
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Table 1: Mendelian Randomization Estimation of the Relationship between Mitochondrial DNA Copy Number and Myocardial Infarction, 
Coronary Artery Bypass Grafting. 

exposure outcome method OR p value 
Mitochondrial DNA copy number  myocardial infarction  MR Egger 0.99316(0.97812-1.00843) 0.38 
Mitochondrial DNA copy number  myocardial infarction  Weighted median 0.99233(0.98586-0.99883) 0.02 
Mitochondrial DNA copy number  myocardial infarction  Inverse variance weighted 0.99372(0.98785-0.99961) 0.03 
Mitochondrial DNA copy number  myocardial infarction  Simple mode 0.99189(0.97910-1.00485) 0.22 
Mitochondrial DNA copy number  myocardial infarction  Weighted mode 0.99340(0.98441-1.00247) 0.16 
Coronary artery bypass grafting Mitochondrial DNA copy number  MR Egger 0.94940(0.91719-0.98272) 0.005 
Coronary artery bypass grafting Mitochondrial DNA copy number  Weighted median 0.98203(0.96628-0.99805) 0.028 
Coronary artery bypass grafting Mitochondrial DNA copy number  Inverse variance weighted 0.97672(0.95954-0.99421) 0.009 
Coronary artery bypass grafting Mitochondrial DNA copy number  Simple mode 0.99955(0.96554-1.03477) 0.98 
Coronary artery bypass grafting Mitochondrial DNA copy number  Weighted mode 0.98792(0.96641-1.00991) 0.283 

 

Table 2: Heterogeneity Test between Mitochondrial DNA Copy Number and Myocardial Infarction, Coronary Artery Bypass Grafting. 

outcome exposure method Q Q_df Q_pval 
Mitochondrial DNA copy number  Coronary artery bypass grafting MR Egger 237.6645 60 5.47E-23 
Mitochondrial DNA copy number  Coronary artery bypass grafting Inverse variance weighted 251.4736 61 5.74E-25 
myocardial infarction  Mitochondrial DNA copy number  MR Egger 94.92871 50 0.000130747 
myocardial infarction  Mitochondrial DNA copy number  Inverse variance weighted 94.94027 51 0.000184057 

 

Table 3: Horizontal Pleiotropy Test between Mitochondrial DNA Copy Number and Myocardial Infarction, Coronary Artery Bypass 
Grafting 

outcome exposure egger_intercept se pval 
Mitochondrial DNA copy number  Coronary artery bypass grafting 0.002487964 0.001333 0.066771 
myocardial infarction  Mitochondrial DNA copy number 1.38E-05 0.000177 0.93811 

 

3.3 Untargeted Metabolomic Mass 
Spectrometry Analysis 

Upon GSVA analysis of the GSE110209 dataset, 
we observed significant decreases in pathway 
enrichment scores related to mitochondrial regulation 
in the myocardial ischemia group compared to the 
Sham group. Specifically, pathways such as 
REACTOME: mitochondrial TRNA aminoacylation, 
REACTOME: mitochondrial iron sulfur cluster 
biogenesis, and REACTOME: mitochondrial protein 
import exhibited markedly reduced scores in the 
ischemic myocardium. Conversely, in the ischemic 
border zone, these scores showed a decreasing trend 
but remained significantly lower. Notably, in the 
ischemic distal region (relative to normal tissue), the 
scores for mitochondrial-related regulatory pathways 
were significantly elevated and comparable to those 
of the Sham group (Figure 3A). Through 
comprehensive metabolomic profiling using 
OPLS-DA, we established a robust predictive model 
with satisfactory parameters. The model exhibited 
high explanatory power for both X and Y matrices, as 
indicated by R2X=0.652 and R2Y=0.999 (p < 0.05), 
respectively. Moreover, the model demonstrated 
strong predictive capability, with a Q2 value of 0.872, 
signifying an effective and reliable model 
approaching excellence (Figure 3B). Subsequently, we 
identified a total of 739 DEMs, comprising 130 
downregulated and 609 upregulated DEMs (Figure 
3C). Notably, certain metabolites such as Trp-Arg- 

Met, Inosine 5'-monophosphate, and Trp-Ala-Asp 
showed significant upregulation, while others 
including Imidazole-4-methanol, TG(8:0_16:1_18:2), 
and Cer(d28:2/29:0(2OH)) exhibited significant 
downregulation (Figure 3D  and Figure 4A). Upon 
pathway enrichment analysis of the DEMs, we 
observed that Oxidative phosphorylation, Steroid 
biosynthesis, and Cholesterol metabolism exhibited 
the most significant Differential Abundance Scores 
(Figure 4B). 

3.4 T500 Metabolite Quantification Analysis 
Using T500 quantitative metabolite detection 

technology, we identified 90 differential metabolites 
in myocardial tissue between the MI and Sham 
groups, with 44 downregulated DEMs and 46 
upregulated DEMs (Figure 4C). Among these, 
Serotonin, 12-Hydroxyoleic acid, and N-Glycyl-L- 
Leucine were significantly upregulated DEMs, while 
L-Proline, Glycine, and L-Valine were significantly 
downregulated DEMs (Figure 4D). To facilitate the 
observation of changes in metabolite levels, we 
normalized the raw abundance of differential 
metabolites identified using the applied selection 
criteria by row-wise normalization (Unit Variance 
Scaling, UV Scaling). We found that energy 
metabolism-related metabolites were significantly 
different DEMs (Figure 4E). 

DEMs may exhibit synergistic or antagonistic 
relationships, and correlation analysis can help assess 
the metabolic proximity between significantly 
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different metabolites, aiding in further understanding 
the regulatory relationships between metabolites 
during changes in biological states. Pearson 
correlation analysis was performed on differentially 
significant metabolites identified based on selection 
criteria, revealing close associations between various 
classes of metabolites, particularly energy 
metabolism-related DEMs (Figure 5A). 

3.5 Gene-Metabolite Interaction Network 
Detection 

To further investigate the mitochondrial 
regulatory mechanisms, we conducted differential 
expression analysis on core genes obtained from 
GSEA mitochondrial enrichment and visualized them 
using a heatmap. Among these genes, Map1lc3a, 
Mfn1, Mapk10, Optn, Samm50, Mfn2, Pink1, and 
Rhot2 exhibited significantly decreased expression in 

myocardial ischemic tissue compared to normal 
tissue, while their expression gradually increased in 
ischemic border and distal regions relative to normal 
tissue. Conversely, TBK1, HIF1A, NRAS, EIF2AK3, 
and GABARAP showed opposite expression trends 
across different myocardial tissue groups (Figure 5B). 
Using MetaboAnalyst online tools, we constructed an 
interaction regulatory network between the above 
myocardial regulatory genes and DEMs quantified by 
T500. The network was visualized using Cytoscape 
software, and the MCC algorithm in the cytoHubba 
plugin was employed to identify core regulatory 
subgroups within the interaction network (Figure 
5C-E). Ultimately, we identified a core regulatory 
network composed of HIF1A, Adenosine, TBK1, 
Adenosine triphosphate, NRAS, and EIF2AK3 as key 
regulatory molecules. 

 

 
Figure 3: Analysis of Mitochondrial Regulation and Metabolomic Profiling in Ischemic Cardiac Tissue. (A). GSVA analysis reveals reduced mitochondrial pathway 
enrichment scores in ischemic myocardium compared to Sham controls, with normalization in the distal region. (B). OPLS-DA-based metabolomic profiling establishes a highly 
predictive model with strong explanatory and predictive capabilities. (C). Analysis identifies 739 differential metabolites (DEMs), including both upregulated and downregulated 
species. (D). Specific metabolites, such as Trp-Arg-Met and Imidazole-4-methanol, show significant dysregulation.  
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Figure 4: Metabolite Profiling and Pathway Enrichment in Ischemic Cardiac Tissue. (A). Radar chart shows significant upregulation of metabolites like Trp-Arg-Met 
and downregulation of others such as Imidazole-4-methanol. (B). Pathway enrichment analysis reveals significant scores for Oxidative phosphorylation, Steroid biosynthesis, and 
Cholesterol metabolism pathways. (C). Using T500 quantitative metabolite detection technology, we identified 90 differential metabolites between MI and Sham groups, with 44 
downregulated and 46 upregulated DEMs. (D). Specific metabolites like Serotonin and L-Proline are significantly upregulated, while Glycine and L-Valine are significantly 
downregulated. (E). Row-wise normalization of raw abundance of differential metabolites highlights significant differences in energy metabolism-related metabolites. 

 

4. Discussion 
A comprehensive analysis of the metabolic and 

gene expression profiles in acute ischemic cardiac 
tissue has provided profound insights into the 
molecular mechanisms underlying MI. Our research 
findings have unveiled dysregulated metabolites and 
genes intricately linked to mitochondrial function, 
energy metabolism, and cellular homeostasis, thereby 
holding significant implications within the context of 
myocardial ischemia. Metabolomic analysis has 
delineated substantial alterations in metabolite 
abundance in ischemic tissue compared to controls, 
with select metabolites exhibiting marked upregu-
lation or downregulation. Notably, metabolites 
associated with energy metabolism pathways have 

displayed pronounced dysregulation, suggesting 
perturbation of cellular energy metabolism in 
response to ischemic insult. Radar plot visualization 
has underscored notable changes in specific 
metabolites, such as Trp-Arg-Met and Imidazole-4- 
methanol, offering potential biomarkers for diagnostic 
and therapeutic targeting of MI. Pathway enrichment 
analysis of differential metabolites has unveiled 
involvement of key metabolic pathways, including 
oxidative phosphorylation, steroid biosynthesis, and 
cholesterol metabolism, which undergo substantial 
alterations in ischemic cardiac tissue. These pathways 
play pivotal roles in cellular energy production, lipid 
metabolism, and cell membrane structure, implicating 
their dysregulation in the pathogenesis of ischemic 
heart disease. Additionally, correlation analysis has 
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unveiled intricate associations among different 
metabolite categories, particularly those pertinent to 
energy metabolism, emphasizing the intricate nature 
of metabolic regulation in ischemic cardiac tissue. In 
terms of gene expression, differential expression 
analysis has revealed alterations in core genes 
associated with mitochondrial function and cellular 
stress response. Genes such as Map1lc3a and Mfn1 

have exhibited diminished expression in ischemic 
tissue yet augmented expression in the ischemic 
border and remote regions, indicating dynamic 
alterations in mitochondrial dynamics and autophagy 
in response to ischemic insult. Conversely, genes such 
as TBK1 and HIF1A have demonstrated contrasting 
expression trends, reflecting the diverse regulatory 
mechanisms underlying MI pathophysiology. 

 

 
Figure 5: Metabolic and Gene Expression Analysis in Ischemic Cardiac Tissue. (A).Pearson correlation analysis reveals associations between metabolites, particularly 
energy metabolism-related DEMs. (B). Heatmap displays expression patterns of core genes from GSEA mitochondrial enrichment analysis. Genes like Map1lc3a and Mfn1 show 
decreased expression in ischemic tissue but increase in ischemic border and distal regions, while TBK1 and HIF1A exhibit opposite trends. (C-E). Interaction regulatory network 
between myocardial regulatory genes and DEMs quantified by T500, visualized using Cytoscape. Core regulatory molecules include HIF1A, Adenosine, TBK1, Adenosine 
triphosphate, NRAS, and EIF2AK3. 
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Ultimately, we have identified a cohort of core 
regulatory molecules, including HIF1A, adenosine, 
TBK1, ATP, NRAS, and EIF2AK3, which play pivotal 
roles in the pathogenesis of MI. These regulatory 
molecules intricately interact to form a complex 
regulatory network involving cellular energy 
metabolism, autophagy, inflammatory response, and 
stress response. 

Hypoxia-inducible factor-1α (HIF-1α) assumes a 
crucial role in MI. Characterized by ischemic necrosis 
of myocardial tissue consequent to coronary artery 
occlusion, MI precipitates severe cardiac damage and 
inflammatory response [24]. Under hypoxic 
conditions, HIF-1α expression significantly escalates, 
likely facilitating cellular adaptation to hypoxia. 
Activation of HIF-1α can modulate the development 
and outcomes of MI through multifaceted pathways. 
Primarily, HIF-1α activation fosters angiogenesis and 
sustenance of vascular function. During myocardial 
infarction, ischemic myocardial tissue necessitates 
heightened vascularization for oxygen and nutrient 
provision [25, 26]. HIF-1α orchestrates angiogenesis 
and vasodilation by modulating the expression of 
vascular endothelial growth factor (VEGF) and other 
genes, thereby ameliorating blood supply to ischemic 
myocardium. Secondly, HIF-1α activation also 
impacts myocardial cell metabolism. In myocardial 
infarction, metabolic activity of myocardial cells is 
disrupted due to hypoxia and energy metabolism 
perturbations. HIF-1α promotes activation of the 
glycolytic pathway, bolstering lactate production and 
ATP synthesis to sustain myocardial cell viability. 
Furthermore, HIF-1α participates in regulating 
myocardial cell survival and apoptosis. Throughout 
myocardial infarction, hypoxia and reactive oxygen 
species production may induce apoptosis and 
necrosis of myocardial cells. Activation of HIF-1α 
shields myocardial cells from hypoxia-induced 
damage by modulating the expression of 
apoptosis-related genes, such as members of the Bcl-2 
family and apoptosis regulatory factors [25, 26]. 
Adenosine emerges as a pivotal cellular signaling 
molecule released under ischemic conditions, 
regulating cellular metabolism and safeguarding cells 
from hypoxic and oxidative stress damage. A close 
association exists between myocardial infarction and 
adenosine. Released during cellular or tissue hypoxia 
or ischemia, adenosine, alongside ATP and ADP, 
instigates reactive hyperemia. Reactive hyperemia 
denotes transient augmentation in blood flow ensuing 
re-opening of blood vessels after tissue blood supply 
cessation [27, 28]. During myocardial infarction, tissue 
hypoxia and ischemia precipitate adenosine release 
from cells, which interacts with adenosine receptors 
on the cell surface, eliciting a gamut of physiological 

effects. Studies underscore the pivotal role of 
adenosine receptor A2AR in myocardial infarction. 
Activation of A2AR regulates coronary artery blood 
flow, fostering blood perfusion in myocardial tissue. 
Additionally, A1R negates the reactive hyperemia 
mediated by A2AR, further modulating myocardial 
perfusion [29]. While controversy surrounds the role 
of adenosine in coronary reactive hyperemia, its role 
in myocardial infarction remains widely scrutinized 
and acknowledged. Nonetheless, certain studies have 
cast doubt on the precise role of adenosine in 
myocardial infarction, positing adenosine as not being 
a decisive factor in myocardial infarction 
development. In select animal models and clinical 
studies, a direct correlation between adenosine levels 
and myocardial infarction severity remains elusive 
[27, 28]. TBK1 emerges as a multifaceted protein 
kinase modulating cellular autophagy processes and 
inflammatory response, thereby influencing cell 
viability and apoptosis. As a downstream kinase of 
the cGAS-STING signaling pathway, TBK1 assumes a 
pivotal role in the development of MI [30]. MI entails 
ischemic necrosis of myocardial tissue, culminating in 
severe cardiac damage and inflammatory response. 
Studies indicate that abundant ischemic cell death and 
influx of cellular debris in the MI disease model 
trigger activation of the cGAS-STING-IRF3 signaling 
pathway. Activation of this pathway further 
exacerbates MI-associated inflammatory response, 
thereby exacerbating the dire consequences of MI. 
Furthermore, in heart failure, cGAS-STING signaling 
gradually escalates, further fostering pathological 
cardiac remodeling and left ventricular dysfunction 
[30-32]. Adenosine triphosphate (ATP) stands as a 
pivotal intracellular energy molecule, adapting 
cellular energy demands amidst hypoxic conditions 
by modulating adenosine triphosphate-sensitive 
potassium channels (KATP channels) activity, thereby 
engaging in regulating cell electrical activity and 
function. KATP channels regulate their opening and 
closing states by modulating cell metabolic status, 
thereby shielding myocardial cells from metabolic 
stress-induced damage [33, 34]. During myocardial 
infarction, ATP concentration diminishes, prompting 
KATP channel activation, thereby inhibiting cellular 
hyperexcitability and reducing energy consumption, 
thus alleviating myocardial injury. Furthermore, 
mutual interaction between ATP and KATP channels 
is regulated by intracellular factors such as 
magnesium ion concentration, ATP, and ADP 
concentrations. These factors collectively influence 
KATP channel activity, subsequently impacting 
myocardial cell function and survival [33, 34]. NRAS 
participates in regulating multiple signaling 
pathways, including the MAPK signaling pathway, 
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which play crucial roles in myocardial cells. During 
myocardial infarction, aberrant activation or 
mutations of NRAS might impede normal functioning 
of these signaling pathways, thus affecting 
myocardial cell survival and function [35]. Lipid 
modifications of NRAS, such as saturation and 
prenylation, and other post-translational modifica-
tions, like phosphorylation, influence its localization 
on the cell membrane. This localization is critical for 
maintaining normal myocardial cell function, as the 
cell membrane serves as a key site for signal 
transduction. The Cys118 residue of NRAS might be 
susceptible to oxidative stress, potentially altering its 
stability, activity, and interactions, thereby 
influencing myocardial cell function and survival [35]. 
Additionally, NRAS might play a role in oxidative 
stress through modifications such as S-nitrosylation. 
EIF2AK3 stands as an endoplasmic reticulum stress 
sensor, closely associated with endoplasmic reticulum 
protein quality control (ER-PQC) and unfolded 
protein response (UPR), protein kinase pivotal in 
myocardial cell growth and responses to 
physiological and pathological challenges [36]. Under 
physiological conditions, such as exercise and 
pregnancy, myocardial cells undergo adaptive 
growth, resulting in myocardial hypertrophy, rather 
than pathological growth. This growth process is 
associated with increased protein synthesis, placing 
higher demands on endoplasmic reticulum protein 
folding mechanisms. However, the unfolded protein 
response components in the adult heart seem 
adequate to meet these demands, and thus, 
myocardial cell death is not observed under these 
conditions [35-37]. Therefore, EIF2AK3 might 
modulate myocardial cell responses to the increased 
protein synthesis requisite for physiological growth, 
contributing to myocardial function preservation. 
Conversely, under pathological conditions such as 
myocardial infarction, myocardial cells endure severe 
damage, culminating in cell death and pathological 
changes in myocardial tissue. Under these 
circumstances, expression of UPR components often 
escalates, although whether this escalation is the 
cause or consequence of myocardial defects remains 
unclear. Thus, EIF2AK3 might influence myocardial 
cell responses to physiological and pathological 
conditions by modulating endoplasmic reticulum 
protein quality control and unfolded protein 
response, thereby affecting the development and 
progression of myocardial infarction [38, 39]. 
Nonetheless, elucidating the precise role of EIF2AK3 
in myocardial infarction warrants further research 
and clarification. 

5. Concussion 
These discoveries of core regulatory molecules, 

including HIF1A, adenosine, TBK1, ATP, NRAS, and 
EIF2AK3, unveil crucial signaling pathways and 
regulatory networks implicated in MI pathogenesis, 
providing novel perspectives for comprehensive 
understanding of this disease. Further exploration of 
the functions and interactions of these core regulatory 
molecules holds promise in offering novel targets and 
strategies for the treatment of ischemic heart disease. 
Therefore, in-depth investigation into the roles of 
these core regulatory molecules in ischemic heart 
disease offers vital theoretical and practical 
foundations for future therapeutic interventions. 
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