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Abstract 

Lung cancer is a highly fatal disease that poses a significant global health burden. The absence of 
characteristic clinical symptoms frequently results in the diagnosis of most patients at advanced stages of 
lung cancer. Although low-dose computed tomography (LDCT) screening has become increasingly 
prevalent in clinical practice, its high rate of false positives continues to present a significant challenge. In 
addition to LDCT screening, tumor biomarker detection represents a critical approach for early 
diagnosis of lung cancer; unfortunately, no tumor marker with optimal sensitivity and specificity is 
currently available. 
Metabolomics has recently emerged as a promising field for developing novel tumor biomarkers. In this 
paper, we introduce metabolic pathways, instrument platforms, and a wide variety of sample types for 
lung cancer metabolomics. Specifically, we explore the strengths, limitations, and distinguishing features 
of various sample types employed in lung cancer metabolomics research. Additionally, we present the 
latest advances in lung cancer metabolomics research that utilize diverse sample types. We summarize 
and enumerate research studies that have investigated lung cancer metabolomics using different 
metabolomic sample types. Finally, we provide a perspective on the future of metabolomics research in 
lung cancer. Our discussion of the potential of metabolomics in developing new tumor biomarkers may 
inspire further study and innovation in this dynamic field 
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1. Introduction 
Lung cancer is the cancer with the highest 

mortality rate worldwide. According to recent 
statistics, in 2022, an average of nearly 1,700 people 
died every day in the United States, with more than 
350 deaths attributed to lung cancer each day, which 
is more than the combined number of deaths from 
breast cancer, prostate cancer, and pancreatic cancer 
[1]. 

Lung cancer is characterized by the uncontrolled 
proliferation of lung tissue cells. Uncontrolled 
proliferation that is not treated on time can quickly 
spread to tissues near the lungs and eventually to 

other parts of the body. Lung cancer is divided into 
central and peripheral types according to their 
location. According to its biological characteristics, 
lung cancer is divided into non-small-cell lung cancer 
(NSCLC) and small-cell lung cancer (SCLC), of which 
NSCLC accounts for about 80%. NSCLC includes 
large-cell carcinoma, adenocarcinoma, squamous cell 
carcinoma, and other types [2, 3]. The means of the 
diagnosis of lung cancer include laboratory tumor 
markers, imaging examination and histopathologic 
analysis of biopsy [4]. 

Lung cancer has high mortality rate as it is 
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difficult to make an accurate and effective early 
diagnosis. The majority of patients are diagnosed with 
advanced-stage lung cancer. Statistics show that 
about 15% of patients are diagnosed during the initial 
stages (stages I–II). Effective treatment is possible at 
this stage, with a 5-year survival rate of about 60%. In 
contrast, almost 60% of patients are diagnosed with 
metastatic disease (stage IV), prognosis is very poor, 
with a 5-year survival rate below 5% [5]. Other studies 
have found that 2-year progression-free survival is a 
reliable surrogate for overall survival in lung cancer, 
with a 24-month progression-free survival of 40.3% 
and overall survival of 69.4% after treatment with 
chemotherapy plus surgery [6]. In recent years, 
low-dose computed tomography (LDCT) has been 
widely used in the early screening of lung cancer. 
Compared with chest radiography, LDCT screening 
can reduce the risk of lung cancer mortality by 
approximately 20% [7-9]. However, LDCT screening 
can lead to high false-positive results. A previous 
meta-analysis found that across all trials and cohorts, 
20% of individuals in each screening round screen 
positive and require some level of follow-up. In the 
final results, only approximately 1% of individuals 
had lung cancer [10]. A high false-positive rate will 
not only waste the resources of diagnosis and 
treatment but also cause unnecessary panic to people. 
Therefore, there is an urgent need to find sensitive 
and specific markers for the diagnosis of lung cancer 
to supplement the deficiency of imaging exami-
nations. 

Metabolomics is a major branch of system 
biology. It is an emerging discipline and technology in 
the era of “post genomics.” It is one of the most active 
fields of life science research worldwide. Since the 
introduction of the concepts of metabolomics, it has 
aroused great interest from scientists worldwide. 
Scientists have realized that changes in the genome 
are not necessarily reflected in the biological pheno-
type; that is, they do not affect the life system. The 
production of a series of small-molecule metabolites is 
the final result of various reactions and changes in 
organisms and the human body. They can directly 
and accurately reflect the physiological and 
pathological states of organisms. If biology is 
regarded as information science, the study of 
metabolomics provides information on the biological 
information flow, between the levels of genes and 
cells, and plays a connecting role in the transmission 
of biological information. Therefore, some scientists 
have concluded that genomics tells you what may 
happen, proteomics tells you what will happen, and 
metabolomics tells you what has happened [11, 12]. 

Compared with other omics methods, 
metabolomics also has the following characteristics. 

First, small changes at the genetic level are amplified 
at the metabolite level, making it easier to detect 
physiological and pathological changes in vivo. In 
addition, metabolomics technology requires a 
relatively complete database of metabolite 
information, but since the number of metabolites in 
vivo is much smaller than the number of whole 
genome sequencing data, the construction and 
improvement of metabolomics database is relatively 
easy [13, 14]. Because metabolomics reflects the 
terminal effect under the comprehensive action of 
various factors and is highly integrated, metabolomics 
has great potential for identifying reliable biomarkers 
of various diseases [15]. 

The aim of this article is to provide an academic 
account of the application of metabolomics in lung 
cancer research, with a specific focus on its 
advancements in identifying new potential metabolic 
biomarkers for lung cancer diagnosis. To achieve this, 
we begin by briefly introducing and discussing the 
metabolic pathways impacted by lung cancer. 
Subsequently, we describe the commonly used 
instrumental platforms in lung cancer metabolomics 
and explore the various sample types and sources 
employed in such research. 

The main points of this review center on the 
advantages, disadvantages, and characteristics of 
various sample types utilized in lung cancer 
metabolomics research. We carefully selected and 
analyzed a large number of representative articles in 
recent years to summarize and discuss the latest 
research results of lung cancer metabolomics in 
different sample types. Finally, we look forward to the 
future prospects of metabolomics research in lung 
cancer. By providing a comprehensive overview of 
the state-of-the-art advances in lung cancer 
metabolomics research, we hope to inspire further 
research and development in this vital field. 

2. Main metabolic pathways of 
differential metabolites 

As a malignant tumor, lung cancer disrupts 
multiple metabolic substances and pathways in the 
human body. Firstly, the rapid proliferation of lung 
cancer cells inevitably leads to an increase in 
anaerobic oxidation, resulting in responsive changes 
in a series of metabolites associated with glycolysis. 
Secondly, due to the extensive growth of lung cancer 
cells, there is a significant increase in the consumption 
of lipids, especially phospholipids, which serve as 
important building blocks for cell membranes. 
Furthermore, many amino acids and their derivatives 
are also involved in the altered metabolic pathways 
caused by lung cancer. For example, glutamine serves 
as an important nutrient source for cancer cells, while 
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serine acts as a precursor for purine nucleotides and 
plays a crucial role in DNA synthesis and cell 
proliferation. The following is a classification 
introduction of the metabolic substances and 
pathways affected by lung cancer [16, 17]. 

2.1 Glucose metabolism 
As early as the middle of the last century, Otto 

Warburg, a famous physiologist in Germany, 
discovered that unlike normal cells, which mainly rely 
on mitochondrial oxidative phosphorylation for 
energy supply, most cancer cells mainly rely on 
glycolysis for energy supply. This phenomenon was 
later called the “Warburg effect,” which has been 
discussed and verified in many generations [18]. 
Studies have shown that due to the increased energy 
expenditure of cancer tissues, the concentration levels 
of a series of enzymes related to glucose metabolism 
such as phosphofructokinase, 3-phosphoglycol-
aldehyde dehydrogenase, phosphoglycolate kinase-1, 
pyruvate kinase, and pyruvate dehydrogenase 
increase significantly [19]. 

Because cancer cells use the glycolytic pathway 
for energy supply, the accumulation of lactate affects 
the lactate cycle [20]. Lactic acid is the most commonly 
detected metabolite, whether using blood samples or 
tissue samples from lung cancer patients [21-25]. In 
recent years, a study has used carbon isotopes to label 
glucose and glutamine and to analyze metabolic 
pathways using isotopic tracers. The study confirms 
that glucose in cancer patients is indeed substantially 
converted to lactate and that glucose and glutamine 
are the major sources of carbon in the TCA cycle [26]. 
In addition, Some research teams pointed out the 
relationship between tumor aggressiveness and the 
level of lactic acid elevation; that is, the more 
aggressive the tumor, the more dependent the tumor 
metabolism is on the glycolysis pathway, and thus the 
higher the level of lactic acid detected [27, 28]. 

2.2 Lipid metabolism 
Lipid metabolism changes in tumor patients are 

manifested as endogenous lipid hydrolysis and fatty 
acid oxidation enhancement, increased triglyceride 
conversion, decreased exogenous triglyceride 
hydrolysis, and increased plasma free fatty acid 
concentration. Increased lipolysis and oxidation of 
fatty acids leads to decreased body fat storage and 
weight loss. Therefore, fat consumption is one of the 
main features of tumor cachexia [20]. Previous studies 
have reported that the levels of unsaturated lipids, 
LDL, and VLDL in the serum of cancer patients are 
significantly reduced, which may be due to the 
proliferation and invasion of tumors, thus causing a 
large amount of lipid consumption [22, 23]. 

Choline is a metabolite commonly found in the 
body. Compared with healthy individuals, the 
concentration of choline in the serum of lung cancer 
patients is reduced as it is the precursor of phospho-
lipids in the cell membrane, which is consumed 
through the rapid division and reproduction of 
malignant tumors [23]. Phosphatidylcholine is 
composed of choline and phosphatidylic acid, and is 
the main component of the cell membrane. The 
concentration of phosphatidylcholine in serum 
gradually increases with invasion and metastasis of 
cancer cells [24, 25]. 

Sphingomyelin is the main component of the cell 
membrane. Its metabolites, such as sphingosine, 
sphingosine-1-phosphate, and ceramide, are bioactive 
signaling molecules that can be used as first or second 
messengers to regulate cell growth, differentiation, 
aging, and apoptosis, and many other important 
signal transduction processes [29]. To explore the role 
of plasma S1P and ceramide levels in the diagnosis of 
lung cancer, Alberg et al. performed a nested case 
control study. Increased plasma levels of S1P and total 
ceramide increase lung cancer risk. Furthermore, we 
suggest that disorders of sphingolipid metabolism 
and production of S1P may be linked to lung cancer 
pathogenesis and could be potential biomarkers for 
early diagnosis of lung cancer [30]. 

Lysophosphatidylethanolamine (LPE) is a 
lysophosphatidylcholine involved in cell signal 
transduction in vivo. Yu et al. found that LPE can be 
used as a diagnostic marker for NSCLC. Compared 
with those of healthy controls, LPE concentrations 
were elevated in the plasma of patients with NSCLC, 
especially in patients with adenocarcinoma. In 
addition, the concentrations of lecithin ethanolamine 
were also significantly elevated in the plasma of 
patients with lung cancer [31]. 

2.3 Amino acid metabolism 
Due to the increase in glycolysis, alanine 

concentrations in lung cancer patients will naturally 
increase. The uptake of leucine, valine, and isoleucine 
is also increased in lung tumors as they are required 
for the production of TCA cycle intermediates [32, 33]. 
Phenylalanine is a precursor of tyrosine and 
neurotransmitters such as dopamine, norepinephrine, 
and adrenaline. The serum phenylalanine level in 
lung cancer patients usually significantly increases 
due to the downregulation of genes involved in 
phenylalanine metabolism in tumor cells [34]. 

Glutamine is an important component of the 
amino acid metabolism. Glutamine is a substance that 
cancer cells depend on for their survival and 
reproduction. It does not only play an important role 
in the synthesis of various proteins but also 
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participates in the synthesis of fats and nucleotides. 
Glutamine is an important nitrogen and carbon source 
for a variety of biochemical pathways in the body. 
When the body lacks local glucose supply, glutamine 
can also be used as the raw material for cancer cells to 
obtain energy. Glutamine and water are broken down 
into glutamic acid and ammonia, respectively, under 
the action of glutaminase. Glutamate and pyruvate 
then form α-ketoglutarate and alanine, respectively, 
under the action of pyruvate transaminase. 
A-ketoglutarate then enters the TCA cycle to produce 
energy. Glutamine hydrolysis produces ammonia and 
glutamate to balance the pH of tumor cells, which 
may explain the high glutamate levels observed in the 
NSCLC patient group [22, 23, 35]. Further, glutamine 
can also be used to determine the prognosis of cancer. 
When NMR technology was used to analyze patients' 
serum metabolites, patients with higher glutamine 
levels survived longer, while those with lower 
glutamine levels survived shorter [35]. 

Cysteine and glutamic acid are important GSH 
components. Fahrmann et al. found that the 
concentrations of cysteine and glutamate were 
significantly increased in patients with lung 
adenocarcinoma by comparing tumor tissues with 
control tissues. In addition, many enzymes associated 
with glutathione biosynthesis, glutathione cycling, 
allobiotic metabolism, and nitrogen balance are 
significantly increased [36]. Serum histidine and 
threonine levels are reduced in lung cancer patients 
due to the increased utilization of the glycine, serine, 
threonine, and pyrimidine pathways [23, 37]. Some 
researchers have pointed out that serine is a key node 
in cancer cell metabolism. The serine synthesis 
pathway provides serine for protein synthesis in 
cancer cells. The serine synthesis pathway, together 
with glycolysis and the 1C metabolic pathway, forms 
a crucial metabolic network for tumorigenesis. 
Specifically, the serine synthesis pathway is an 
important destination for the glycolysis intermediate 
3-phosphoglycerate. Therefore, monitoring serine 
metabolism is of great significance for studying the 
occurrence and development of lung cancer as well as 
improving the treatment of lung cancer [16]. 

2.4 Summary of metabolic markers 
In recent years, an increasing number of lung 

cancer metabolomics experiments have not only 
provided new potential markers for the early 
diagnosis of lung cancer, but also studied the 
metabolic pathways affected by lung cancer to gain a 
deeper understanding of its pathogenesis [38, 39]. It 
should be noted that,even with the same type of lung 
cancer, patients with different disease stages will 
show different metabolic characteristics. Zhang et al. 

indicated that the serum glutamine concentration in 
lung cancer patients was significantly higher than that 
in normal controls [22]. By contrast, Puchedes- 
Carrasco et al. observed a reduction in serum 
glutamine levels in lung cancer patients compared 
with that in normal controls [23]. When the 
similarities and differences between the two studies 
were compared, the stages of lung cancer cases used 
in the study differed. The former study focused on 
patients with early-stage lung cancer, while the latter 
study included patients with all stages of lung cancer, 
and the proportion of patients with advanced-stage 
lung cancer was relatively large. Therefore, the serum 
glutamine concentration is related to the stage of lung 
cancer, and glutamine tends to increase in the early 
stage of lung cancer due to the stress response. In the 
advanced stage of lung cancer, patients often present 
with cachexia, a wasting syndrome, and glutamine is 
largely decomposed as a functional substance; 
therefore, the blood shows a downward trend. 
Therefore, we must pay attention to the different 
stages of the same disease may produce some obvious 
differences. 

In general, the common metabolic alterations in 
lung cancer metabolomics studies include glycolysis 
pathway [40], tricarboxylic acid cycle pathway [24], 
pentose phosphate pathway [41], etc. Unfortunately, 
these metabolic alterations are often reported in other 
tumors and thus lack specificity. Some less mentioned 
pathway alterations may merit continued attention 
and in-depth study, such as biodegradation pathways 
of aromatic compounds [42], phospholipid metabo-
lism [43], putrescine and spermidine generation and 
transformation [44]. Exploration and in-depth 
discussion of the alterations in these metabolic 
pathways may lead to a deeper understanding of the 
mechanism of the disease. 

3. Platform of lung cancer metabolomics 
3.1 Nuclear magnetic resonance (NMR) 

NMR is the main technique used in 
metabolomics research and has become one of the 
schools of metabolomics research. The NMR detection 
and analysis platform is characterized by 
nondestructive and unbiased sample detection 
without complicated sample preprocessing. It has 
good objectivity, easy quantification, simple analytical 
conditions, and good reproducibility. However, 
compared with MS, it has relatively low sensitivity 
and limited dynamic range; hence, it is difficult to 
simultaneously determine the metabolites with large 
concentration differences coexisting in biological 
systems. To improve the sensitivity of NMR 
techniques, the field intensity was increased using 
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cryogenic probes and microprobes [45, 46]. In recent 
years, high-resolution magic angle spinning proton 
magnetic resonance spectroscopy detection has been 
increasingly used, which can directly detect in vitro 
tissues, without physical or chemical processing of 
samples, to obtain higher-resolution spectrograms. 
Especially when the tissue structure is not damaged, 
high-resolution spectral information can be obtained 
to screen the metabolites, which can move freely in 
the cell solute with appropriate rotation speed [47, 48]. 

3.2 Mass spectrometry (MS) 
MS analysis is characterized by its high 

sensitivity and is one of the most important and 
widely used platforms for metabolomics analysis [49, 
50]. In addition, MS can detect ions without protons 
or carbon, such as metal ions. As a detection 
technology, MS can overcome certain limitations of 
NMR. MS is usually combined with chromatography 
and is characterized by the separation of complex 
mixtures into single components. With the 
development of MS and its combination technology, 
the rapid analysis and identification of multiple 
compounds have been achieved. Therefore, an 
increasing number of researchers have applied MS to 
metabolomic studies [51-54]. In recent studies, 
isotopic tracer technology using an MS platform has 
been developed to explore the metabolism and signal 
pathways more intuitively and accurately, thereby 
obtaining new and valuable biological insights [55].  

3.2.1 Gas chromatography-mass spectrometry 
(GC-MS)  

GC-MS is suitable for the separation and analysis 
of samples that are stable and easy to gasify, 
particularly for the separation of homologues and 
isomers [56, 57]. The sensitivity, efficient separation, 
high-resolution, and good repeatability of GC-MS 
make it suitable for the analysis of complex metabolic 
mixtures. More importantly, this method has a 
reference and comparative standard spectrum library 
among different laboratories worldwide, which can 
be used for the characterization of metabolites. 
GC-MS has been criticized for the need for 
derivatization of many samples, which increases the 
time required for sample preparation. For metabolites 
with low volatility, GC-MS is either unable to 
measure or requires complex sample pretreatment 
steps. These shortcomings restrict the application of 
this detection method to a certain extent. 

3.2.2 Liquid chromatography-mass spectrometry 
(LC-MS) 

Compared with GC - MS, LC - MS has higher 
sensitivity and wider testing scope, so the LC - MS in 

metabonomics analysis in recent years has been 
widely used. LC-MS avoids the complex sample 
pretreatment in GC-MS. Because front-loaded liquid 
chromatography allows easy separation of mixtures, 
LC-MS can be used to detect potential markers in 
complex biological samples [58, 59].  

Conventional C18 columns are commonly used 
for the separation of components, but for hydrophilic 
metabolites, they are poorly retained in 
reversed-phase chromatography. In order to solve 
this problem, Hydrophilic Interaction Chromato-
graphy was used for the analysis and detection of 
hydrophilic substances. Different types of ionization 
methods can be selected according to the metabolites 
to be measured. Atmospheric pressure chemical 
ionization method is the earlier electrical method 
developed, while matrix-assisted laser desorption- 
ionization method is increasingly used in current 
metabolomics research due to its superior effect 
[60-62].  

3.2.3 Capillary electrophoresis-mass spectrometry 
(CE-MS) 

CE-MS is another characteristic and noteworthy 
technology in metabolomics research. Compared with 
GC-MS, which is only suitable for volatile substances, 
CE-MS can easily analyze non-volatile substances 
without cumbersome derivatization steps. Compared 
with LC-MS, CE-MS is particularly suitable for the 
separation of polar and charged compounds because, 
in principle, the technology is based on the 
charge-to-mass ratio of the compounds. Therefore, 
CE-MS is frequently utilized in metabolomic research 
and can be complementary to the above methods. 
CE-MS has many advantages. It does not require 
complicated pretreatment schemes, it consumes very 
few organic solvents, it does not require organic 
solvents, it uses cheap fused silica capillaries instead 
of expensive chromatographic columns, and the 
analysis and separation of components is convenient, 
cheap, and fast. However, CE has low stability and 
sensitivity, and the supporting schemes for combined 
use with MS are also less than those of GC-MS and 
LC-MS [63, 64].  

3.3 Summary of instrument platforms 
NMR and MS, the two pillar platforms in 

metabolomics research, are widely used in the study 
of physiological and pathological metabolism. NMR 
does not require cumbersome sample preparation, 
and its detection is convenient and fast. It does not 
destroy the sample, and the same sample can be 
tested repeatedly without sample loss. NMR is the 
only metabolomics platform that can be used for in 
vivo detection. One of the greatest criticisms of NMR 
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is its low sensitivity (relative to mass spectrometry), 
and some metabolites at low concentrations may be 
difficult to detect. MS has been increasingly used in 
metabolomics research in recent years. MS is often 
combined with chromatographic techniques to enable 
better separation of metabolites. GC-MS technology 
has high sensitivity and a good separation effect, and 
is very suitable for the detection of volatile and less 
polar substances. The GC-MS technology is relatively 
stable and has good repeatability. In terms of 
substance identification, relatively mature and 
complete public databases are available for reference 
and comparison. However, GC-MS can only detect 
non-volatile and polar substances. Although the 
volatility of the tested substances can be enhanced by 
derivatized pretreatment, the detection of such 
substances remains a technical problem. To a large 
extent, LC-MS technology can compensate for the 
deficiencies of GC-MS. It can detect difficult-to-detect 
volatile and polar substances, and can flexibly replace 
chromatographic columns and columns with different 
characteristics according to the experimental needs. 
During the mobile phase, the range of detectable 
substances is significantly increased. The main 
limitation of LC-MS technology is that the 
compatibility of public databases is not strong 
enough, and material characterization is more 
dependent on the established local databases or 
standard substances, which is cumbersome to operate 
and has high cost ratio. CE-MS is rarely used; this 
method is especially suitable for the separation of 
charged compounds and macromolecular substances 
and can be used as an effective supplement to the 
above methods. If energy and funds are sufficient, the 
multi-platform combined analysis can cover more 
metabolite species, which is conducive to the 
screening of metabolic markers for lung cancer 
diagnosis and identification (Table 2). 

4. Sample types of lung cancer 
metabolomics 

Various types of metabolomic samples are 
available. Generally speaking, the common sample 
types in metabolomics experiments for the diagnosis 
of lung cancer are as follows: blood (including serum 
and plasma), urine, saliva, expiration (organic 
volatiles), alveolar lavage fluid, skin, tissues, and 
cells. Each type of specimen has its own unique 
pretreatment method, and its functions also differ. 

4.1 Blood 
Blood is one of the most common and popular 

sample types in metabolomics research. The blood 
metabolome undergoes dynamic changes at various 
stages of the organism's own genetic replication, 

transcription, and translation, and is continuously 
regulated by the body, reflecting the individual's 
health or disease status. These changes are induced by 
endogenous or exogenous metabolites, such as those 
provided by diet or oral medications. Therefore, blood 
metabolomics has been widely applied in the 
exploration of potential disease biomarkers, 
pharmacodynamics, and the discovery of drug 
targets, providing relevant clues for the diagnosis and 
treatment of diseases [65, 66]. 

4.1.1 Serum 
Serum samples, as a widely utilized sample type 

in metabolomics research, hold significant 
importance. The preparation procedure for serum 
samples is relatively straightforward, involving the 
natural coagulation of blood followed by 
centrifugation. Such simplicity allows for the 
application of diverse analytical methods, including 
mass spectrometry, chromatography, and nuclear 
magnetic resonance, thus enabling comprehensive 
metabolomic analysis. Serum samples serve as 
valuable resources in capturing various metabolic 
alterations associated with diseases. Utilizing these 
samples, researchers are able to explore and identify 
potential disease markers. The rich metabolomic 
information obtained from serum not only aids in 
deciphering the underlying metabolic changes 
induced by diseases but also offers promising avenues 
for disease diagnosis [67, 68]. 

Published in 2018, Hu J et al. collected serum 
samples from 43 healthy individuals and 39 patients 
with advanced-stage NSCLC, tested the samples 
using NMR, and analyzed the differences in 
metabolites shown on hydrogen NMR spectra. The 
serum levels of glutamate, glycoprotein, lactic acid, 
phenylalanine, alanine, tyrosine, proline, and 
tryptophan were Significantly elevated, while the 
levels of glutamine, taurine, glucose and glycine were 
reduced in patients with NSCLC compared with those 
in healthy individuals. Therefore, serum metabolites 
are potential biomarkers for NSCLC diagnosis [42].  

In a scholarly publication from 2020, Chen et al. 
conducted a study involving 142 patients with 
NSCLC and 159 healthy controls. Serum samples 
were collected from both groups and subjected to 
analysis using the LC-MS platform. After comparison 
and statistical analysis, the results showed that there 
were 35 significantly different metabolic biomarkers 
between the two groups. Compared with the healthy 
population, the serum levels of metabolites such as 
C16-Sphinganine, Phytosphingosine, Sphinganine, 
Capric acid, and Arachidate were increased in lung 
cancer patients, while metabolites such as 
lysoPC(18:2), acyl-carnitine C10:1, and Inosine were 
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decreased. The researchers performed a combined 
analysis of the ROC curves of the differential 
metabolites and ultimately identified a separation 
model containing six differential metabolites: 
lysoPC(18:2), acyl-carnitine C10:1, L-Tryptophan, 
Indoleacrylic acid, Inosine, and Hypoxanthine. The 
sensitivity of this model was 95.7%, and the specificity 
was 95.0%. In addition, the research team further 
accessed relevant transcriptomic data through the 
TCGA database. The metabolomic and transcriptomic 
data can be matched and validated with each other, 
revealing disturbances in metabolic pathways such as 
glycolysis, amino acid metabolism, phospholipid 
metabolism, and fatty acid metabolism in NSCLC 
patients [69]. 

The following year, Schult et al. collected serum 
samples from 79 NSCLC patients and 79 healthy 
controls, and used high-resolution magic angle 
spinning (HRMAS) proton magnetic resonance 
spectroscopy (MRS) to measure differences in 
metabolites between the two groups. The experiment 
showed that changes in organic acids, amino acids, 
carnitine, sugar phosphates, vitamins, coenzymes, 
nucleosides, nucleobases, and derivatives could 
establish a model for early diagnosis of lung cancer. 
The metabolic pathway disorders affected by lung 
cancer were most evident in glycolysis and 
tricarboxylic acid cycle metabolism. Furthermore, this 
model could also predict the 5-year survival rate of 
lung cancer patients [70]. 

In a scholarly publication by Jiaoyuan et al. in 
2023, the researchers aimed to investigate the serum 
samples of 193 patients diagnosed with NSCLC and 
243 healthy controls. Notably, 70% of the samples 
from each group were randomly selected for analysis 
and modeling, and the remaining 30% were used as a 
validation set to test the modeling results. In this 
study, the serum was detected using a mass 
spectrometry analysis platform, and a total of 278 
statistically different metabolites were found by 
comparing and analyzing the metabolite concentra-
tions between the two groups. Among them, the 
serum levels of metabolites significantly increased in 
lung cancer patients included 11,12-Epoxy- 
(5Z,8Z,11Z)-icosatrienoic acid, Cholic acid, 11-Deoxy-
prostaglandin, Glycocholic acid, and Docosahexa-
enoic acid ethyl ester, which were more than 2 times 
higher in lung cancer patients than in healthy 
controls. In contrast, metabolites such as 
2,4-Dihydroxybenzoic acid, Salicylic acid, and 
Piperine were significantly decreased in the serum of 
lung cancer patients. Algorithms such as Random 
Forest (RF) and Support Vector Machine (SVM) were 
used to establish a model for lung cancer diagnosis, 
which was tested using samples from the validation 

set. The sensitivity of the random forest model was 
74%, and the specificity was 92%, indicating that the 
model had high specificity and could be used for 
exclusive diagnosis. The sensitivity of the support 
vector machine model was 83%, and the specificity 
was 89%, indicating that the overall diagnostic 
accuracy was high. Pathway analysis found that the 
most significant disturbances in lung cancer patients 
occurred in the phenylalanine, linoleic acid, and bile 
acid metabolism pathways [71]. 

4.1.2 Plasma 
Plasma is a vital sample type that plays a crucial 

role in metabolomics research. It constitutes the 
supernatant fraction obtained from blood that has 
been mixed with an anticoagulant, retaining 
fibrinogen. While the majority of the components 
present in plasma are similar to those found in serum, 
including hormones, inorganic ions, amino acids, 
sugars, lipids, and various other metabolites, the 
response intensity of certain substances in nuclear 
magnetic resonance or mass spectrometry may differ 
from that observed in serum. Despite these 
differences, plasma remains widely deployed as a key 
sample type in metabolomics analysis. By comparing 
metabolic differences between plasma derived from 
patients versus healthy individuals, valuable insights 
for disease diagnosis and treatment can be gleaned. 
The information gleaned from plasma samples may 
help identify potential disease markers and facilitate 
the development of precision medicine approaches 
[65, 72]. 

In a scholarly publication from 2018, Peng et al. 
conducted a study aimed at predicting the response of 
patients with lung cancer to chemotherapy based on 
platinum. The researchers collected plasma samples 
from 43 patients with varying chemotherapeutic 
outcomes and analyzed them using LC-MS-based 
metabolomics. The study employed a rigorous 
methodology involving multivariate statistical, 
pathway, and correlation analyses, leading to the 
identification of eight biomarkers that demonstrated 
significant correlations with the efficacy of 
platinum-based chemotherapy [73].  

According to a recent scholarly publication in 
2021, Zheng et al. aimed to identify potential serum 
diagnostic biomarkers for lung cancer. The 
researchers conducted an analysis of plasma samples 
obtained from both lung cancer patients and healthy 
individuals using gas chromatography-mass 
spectrometry (GC-MS). Multiple algorithms were 
applied to screen and identify candidate biomarkers. 
The study findings revealed the diagnostic value of 
several differential metabolites, such as oleic acid, 
2-hydroxybutyric acid, cholesterol, and inositol, in 
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accurately diagnosing lung cancer [38]. In the same 
year, Sarlinova M et al. designed an interesting 
metabolomics experiment using plasma samples. 
Plasma samples were collected from 132 patients with 
primary lung cancer and 47 patients with secondary 
lung cancer. Metabonomics analysis showed that 
there was no significant difference in plasma 
metabolites between primary lung cancer and 
secondary lung cancer.Compared with the healthy 
control group, the common characteristics of the lung 
cancer group were significantly increased glucose, 
citrate, acetate, 3-hydroxybutyrate, and creatinine 
levels, and decreased pyruvate, lactic acid, alanine, 
tyrosine, and tryptophan levels. The differential 
metabolites mentioned above can be used as auxiliary 
modes for diagnosing lung cancer [74].  

In the exploration of disease biomarkers, most 
researchers prefer untargeted metabolomics as it is a 
comprehensive and unbiased detection strategy that 
facilitates the discovery of novel metabolic markers. 
However, if the target metabolites to be studied and 
detected have been pre-defined, targeted metabolo-
mics is a better choice. Untargeted metabolomics can 
only achieve relative quantitation based on the 
response intensity of signal peaks, whereas targeted 
metabolomics enables precise quantitative analysis by 
setting standards and isotopes. Cao et al. collected 
plasma samples from 128 lung cancer patients to 
explore biomarkers that can distinguish between 
squamous cell lung cancer and adenocarcinoma of the 
lung. They used an LC-MS analysis platform to 
conduct targeted metabolomics detection based on 
endogenous metabolites. The results showed that 
2-(methylthio)ethanol, cortisol, D-glyceric acid, and 
N-acetylhistamine could effectively distinguish 
between squamous cell lung cancer and 
adenocarcinoma of the lung. The diagnostic model 
established using these four biomarkers had a 
sensitivity of 92.0% and a specificity of 92.9%. In 
addition, through KEGG database analysis of 
metabolic pathways, it was found that the differences 
between the two types of lung cancer mainly occurred 
in the riboflavin metabolism pathway and the steroid 
hormone biosynthesis pathway [75]. 

4.1.3 Dried blood spots (DBS) 
DBS testing, in which whole-blood samples are 

collected on paper, has certain advantages over 
conventional methods of blood sample collection. 
Dried blood plaques have been used to measure 
phenylalanine levels since the 1960s [76, 77]. From the 
perspective of sample collection, it requires less 
amount of blood and is less invasive compared 
whole-blood collection. As regards sample 
preservation, dried blood plaque is more stable than 

traditional blood samples; thus, its storage and 
transportation costs are much lower than that of 
whole blood [78]. Owing to the simplicity and high 
stability of the DBS method, it has been widely 
applied in disease diagnosis [79, 80]. In recent years, 
scholars have proposed that using 80% acetonitrile as 
the extraction solvent and injecting internal standards 
after the chromatographic column is beneficial for 
metabolomics research based on DBS. Tests have 
shown that using this method can effectively improve 
the quality of detected data [81]. 

In a study published in 2020, Yu et al. collected 
DBS for metabolomic studies of lung cancer. The DBS 
samples from 37 SCLCs, 40 NSCLCs, and 37 controls 
were analyzed. A combination of five differential 
metabolites was selected to establish a lung cancer 
diagnosis model, and the diagnostic accuracy of the 
combination was 95% for male SCLC patients and 
94% for female SCLC patients by receiver operating 
characteristic curve analysis. In subsequent studies, a 
validation cohort comprising 78 individuals was used 
to further evaluate the performance of the 
discriminant model. Results showed that the accuracy 
rates of the developed discriminant model were 91% 
for men and 81% for women [82].  

4.1.4 Discussion of blood sample studies 
Which sample type of serum and plasma is more 

suitable for the study of metabolomics has aroused a 
wide discussion among researchers [83, 84]. When 
using serum or plasma for metabolomics studies, the 
results produced by these two sample types will 
inevitably differ to some extent due to the differences 
in the preparation methods and production principles 
of the two samples [85]. The serum does not require 
the addition of anticoagulants, which avoids the 
matrix effect caused by anticoagulants and the 
potential interference of anticoagulants on metabolic 
activities [86]. However, the formation of blood clots 
requires a long wait time. During this process, some 
unstable metabolites may be degraded, resulting in 
the loss of potential marker metabolites [87]. Another 
influencing factor is that platelets release a variety of 
compounds into the serum during coagulation, 
including peptides, hypoxanthine, and xanthine [88, 
89]. Therefore, a standardized process should be 
followed during serum sample collection, as well as 
during the coagulation of all samples. Based on the 
above reasons, using plasma for metabolomic analysis 
is a better strategy. The collected plasma no longer 
needs to undergo additional steps related to blood 
coagulation and can be directly centrifuged and 
stored after mixing, which makes the experimental 
results obtained by plasma analysis more 
repeatable [90].  
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The choice of anticoagulants must be considered 
when using plasma in metabolomic studies. The 
experimental results of some researchers showed that 
there was only a slight difference between the results 
of common anticoagulant heparin and ethylenedia-
minetetraacetic acid (EDTA) in the metabolomic 
analyses [87]. However, some scholars believe that 
EDTA does not only inhibit blood coagulation but 
also suppress the production of magnesium 
ion-dependent enzymes in red blood cells, such as 
glycolytic enzyme hexokinase, thus making plasma 
more suitable for metabolomic applications [91]. 
Anticoagulants are usually pre-added to vacuum- 
sampling tubes. Goldberg et al. compared the 
differences in metabolomic studies of lung cancer 
patients when using Streck and heparin tubes for 
blood collection; blood samples from 42 patients with 
suspected lung cancer were collected in Streck and 
heparin tubes, and were used for metabolomic 
analysis using LC-MS. Statistical analysis showed that 
leucine and other 18 kinds of compound 
concentration in Streck tube is higher, and 15 
compounds such as LysoPC concentration is higher in 
the heparin tube [92]. 

Some researchers believe that serum is the 
preferred sample type for metabolomics studies, 
because plasma contains anticoagulants, and common 
anticoagulants such as EDTA, citrate, etc., can 
interfere with the metabolic fingerprint generated by 
NMR spectroscopy [65]. A recent study showed that 
among the metabolites associated with the diagnosis 
of the disease, including acylcarnitines, bilirubin, 
nucleosides, etc., the concentrations of these metabo-
lites in serum were significantly different from their 
detected concentrations in plasma samples supple-
mented with different anticoagulants[93] For this 
reason, when conducting multi-center, large-sample 
metabolomics studies, it is important to consider the 
interference and impact caused by different types of 
blood samples collected by different institutions. 

4.2 Urine 
Urine is an important type of sample in 

metabolomic studies. Using urine as a metabolomic 
sample has a series of advantages. First, the collection 
of urine is noninvasive; hence, it is easier to obtain, 
and patients or volunteers are more willing to 
cooperate [94]. Moreover, changes in urine samples 
include the joint effects of endogenous and external 
environmental factors, such as diet, exercise, and 
metabolism of the intestinal microbiota. Therefore, 
urine samples can be used for a comprehensive 
process. However, when using urine as a sample, we 
must also pay attention to the following problems. 
First, urine samples must be collected at a fixed time 

according to the needs of the test (e.g., collecting 
morning urine). Moreover, it may contain cells (such 
as red blood cells, white blood cells, and epithelial 
cells), bacteria, tubular cells, fat droplets, mucus 
filaments, and other components [95]. Hence, it is 
necessary to add an appropriate amount of 
preservative to the urine sample to ensure its stability. 
In addition, because urine samples are usually 
collected by the subjects themselves, the researchers 
should inform the subjects in advance of the 
precautions for collecting urine. Finally, it should be 
noted that similar to the two studies mentioned 
below, the urine biomarkers of lung cancer found by 
metabolomics are still in the laboratory research stage, 
and their real application in clinical diagnosis or 
prognosis evaluation of lung cancer may need several 
years of exploration and practice [66]. 

In a study published in 2014, Mathé et al. 
collected urine samples from 1005 subjects, including 
469 patients with non-small cell lung cancer and 536 
healthy controls. The samples were analyzed using an 
LC-MS instrument platform, and the results were 
statistically analyzed. It was found that the levels of 
creatinine riboside and N-acetylneuraminic acid 
(NANA) were significantly elevated in cancer patients 
compared to healthy controls. The researchers then 
collected another 80 urine samples from patients with 
non-small cell lung cancer and 78 from healthy 
controls to verify the reliability of the two biomarkers. 
The validation results were consistent with the initial 
experiment. The authors further pointed out that the 
higher the levels of creatinine riboside and 
N-acetylneuraminic acid, the poorer the prognosis of 
lung cancer patients [96]. 

In a study published by Seow et al. in 2019, a 
case-control research design was implemented. They 
selected 275 female lung cancer patients from a pool 
of non-smokers and chose 278 healthy female controls 
of similar age for comparison. Urine samples were 
collected from both groups and analyzed using mass 
spectrometry and NMR techniques. The study results 
revealed a protective association between 
5-methyl-2-furoic acid and lung cancer risk. This 
metabolite is partially derived from soy-related 
dietary products. The authors speculated that 
bioactive compounds present in soy may possess 
antioxidant and anti-inflammatory properties, which 
could inhibit tumor growth, invasion, and induce cell 
apoptosis.Furthermore, exposure to environmental 
pollutants, particularly long-term exposure to 
traffic-related air pollution, increases the risk of 
developing lung cancer. Disruptions in certain 
systemic metabolic pathways, such as one-carbon 
metabolism and oxidative stress response, have also 
been associated with lung cancer risk [97]. 
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Zhao et al. analyzed the changes of metabolic 
substances in the urine of lung cancer patients and 
explored its potential pathogenesis using 
bioinformatics. Based on the case-control experiment, 
urine metabolites were detected by LC-MS platform. 
Statistical analyses were performed using 
Multivariate to identify potential lung cancer 
markers. Thirty-five potential markers were found. 
Five key markers were found to correlate well linearly 
with serum biochemical indices after screening and 
optimization. In addition, further studies have shown 
that glutamine metabolism disorder and amino acid 
imbalance are closely related to the occurrence and 
development of lung cancer [98].  

In a study published in 2021, Ahmed et al. 
collected 29 pairs of urine samples and 32 pairs of 
serum samples from early-stage lung cancer patients 
before and after surgery. The samples were analyzed 
using mass spectrometry and NMR, and the results 
showed that the changes in urinary metabolites were 
greater than those in blood before and after surgery in 
lung cancer patients. In urine samples, the concentra-
tions of Leucyl proline and isopentenyladenine 
significantly decreased after surgery, with Leucyl 
proline decreasing to 1/625 of its pre-surgery 
concentration and isopentenyladenine decreasing to 
1/31 of its pre-surgery concentration. However, the 
concentration of N6-methyladenosine increased to 27 
times its pre-surgery concentration after surgery. The 
researchers believed that surgery, as a direct 
intervention, divided the metabolic state of patients 
into having cancer (pre-surgery) and not having 
cancer (post-surgery), and the metabolic biomarkers 
identified in this study could be used as a basis for 
monitoring treatment effects and possibly for 
diagnosing the presence or absence of lung cancer 
[99]. 

4.3 Saliva 
Saliva is secreted by salivary glands and has 

functions such as cleaning the oral cavity, 
moisturizing the oral cavity, and pre-digesting food.  
As a biological fluid that can reflect the physiological 
and pathological status of the human body, saliva has 
metabolic components similar to tissue fluid and is a 
sample type worthy of attention in clinical diagnosis. 
In addition, saliva sample collection is non-invasive 
and sampling is very convenient, with high patient 
compliance, making it suitable for early disease 
screening of large-scale populations [100, 101]. 

In a study published in 2021, Nijakowski et al.'s 
systematic review paper introduced the research 
progress of metabolomics studies of saliva samples in 
the diagnosis and treatment of multiple tumor 
diseases [102]. Specifically, in the field of 

metabolomics in lung cancer, Jiang et al collected 
saliva specimens from 89 patients with early-stage LC, 
11 patients with advanced-stage LC, and 50 healthy 
controls. To screen for potential saliva biomarkers for 
early diagnosis of lung cancer, researchers used an 
ultra-low noise TELDI-MS platform to detect the 
metabolic profiles of saliva samples. By using 
statistical methods to analyze metabolic differences 
among groups, researchers combined 23 altered saliva 
metabolites to establish a model that can distinguish 
between LC patients and healthy controls, with a 
sensitivity of 97.2% and specificity of 92% [103].    

According to a paper published in 2022, 
Takamori et al. collected saliva samples from 41 
patients with LC and 21 patients with benign lung 
lesions (BLL). To explore the differential metabolites 
between the two groups of samples, researchers used 
a capillary electrophoresis mass spectrometry 
platform to test and analyze saliva metabolic 
products. In addition, in the process of data analysis, a 
multiple logistic regression (MLR) model was 
established to evaluate the distinguishing ability of 
each saliva metabolite.The analysis detected ten 
significantly different metabolites between the two 
saliva sample groups from LC and BLL patients. The 
concentration of tryptophan (Trp) was significantly 
lower in the saliva samples from the LC group than 
the BLL group. The concentrations of choline, 
thymine, cytosine, phenylalanine (Phe), leucine (Leu), 
isoleucine (Ile), lysine (Lys), and tyrosine (Tyr) in the 
saliva samples from the LC group were higher than 
those from the BLL group, but the difference was not 
significant. The MLR model combination of 
diethanolamine, cytosine, lysine, and Tyr had a good 
distinguishing ability for distinguishing between BLL 
and LC (AUC = 0.729) [104]. 

4.4 Exhaled breath (volatile organic 
compounds) 

Volatile organic compounds (VOCs) are a 
collective term for a class of organic matter present in 
the air at room temperature in the form of vapor, and 
the products that are excreted after trans-pulmonary 
metabolism are called endogenous VOCs, which are 
the products of human metabolism; thus, dynamic 
changes in its concentration, as well as in its 
composition, can reflect changes in the human body 
in terms of physiology, with relevance to cancer or 
other diseases [105]. As early as 1971, Linus Pauling, a 
Nobel laureate, conducted a preliminary study of 
VOCs in respiration. The gas exhaled through the 
lungs is a complex mixture of approximately 250 
VOCs [106]. Breathing is also closely associated with 
lung function. It can collect metabolic information that 
reflects a variety of lung diseases, including lung 
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cancer. Moreover, it is a fast, convenient, and 
completely noninvasive sample collection method, 
and patients or volunteers are more willing to 
cooperate. 

Sakumura et al. used GC-MS to analyze the 
incorporation of lung cancer patients and healthy 
controls, and performed subsequent statistical 
analysis based on multiple combinations of lung 
cancer-associated VOCs to diagnose lung cancer. 
Using GC-MS analysis, 68 different VOCs were 
detected, including methanol, CH3CN, isoprene, and 
1-propanol. The support vector machine algorithm 
was used to optimize and select a set of combinations 
containing five VOCs. This combination is sufficient 
to achieve a screening accuracy of 89.0%; therefore, it 
can be used to design and develop a breath sensor 
analysis system for lung cancer diagnosis [107].  

4.5 Bronchoalveolar lavage fluid (BAL) 
BAL is an important test for the diagnosis of 

respiratory and pulmonary diseases. Although BAL is 
a nearly noninvasive test, saline lavage often induces 
cough and other discomforts; therefore, 2% lidocaine 
is usually injected for tracheal local anesthesia. 
Bronchoalveolar lavage fluid is rich in metabolically 
related biochemical substances and has a unique 
value in the diagnosis of respiratory diseases, 
including lung cancer [108]. 

Leblic et al. collected bronchoalveolar lavage 
fluid from lung cancer patients and screened these 
samples for presence of different metabolites by 
GC-MS analysis combined with bioinformatics 
analysis. The results show that glycerol and 
phosphate can be used not only in the diagnosis of 
lung cancer, but also in the prognosis of the disease 
[43].  

4.6 Skin 
The skin is the largest organ of the human body 

and also the most superficial. As an unconventional 
specimen type in metabolomics research, sampling of 
skin surface specimens is often overlooked by 
researchers. Changes in the composition of substances 
such as sweat, sebum, and stratum corneum emitted 
by the skin can reflect alterations and abnormalities in 
metabolic pathways in the body, making the 
metabolic substances on the skin surface an external 
manifestation of the body's physiological or 
pathological state [109, 110]. The generation of sweat 
is easily disturbed by internal or external factors. For 
example, factors such as the temperature of the 
environment in which the subject is located or the 
subject's own exercise status can have unstable effects 
on sample collection. Therefore, it is necessary to 
unify these conditions as much as possible when 

collecting sweat samples [111]. 
There are various ways to collect sweat, one of 

which is the use of hydrogel micro-patches, which are 
patches made of polytetrafluoroethylene with internal 
cavities to absorb sweat [112, 113]. Overall, sweat 
collection is a non-invasive, easy-to-collect, and 
highly compliant sampling method. As an 
unconventional sample, sweat metabolomics research 
has great research space and prospects [109] 

Calderon et al. established a model based on 
sweat metabolites to distinguish between lung cancer 
patients and healthy individuals. The researchers 
collected sweat samples from 41 lung cancer patients 
and 55 healthy controls. Notably, among the healthy 
controls, 24 were active smokers and 31 were 
non-smokers. The liquid chromatography-mass 
spectrometry platform was used to detect the 
concentration of metabolites in the two groups of 
sweat samples. The research team used PanelomiX to 
develop two models. The first model aimed for high 
specificity and was composed of three metabolites: 
suberic acid, a tetrahexose, and a trihexose. Analysis 
showed that this model had a specificity of 80% and a 
sensitivity of 69%.  The second model aimed for high 
sensitivity and was composed of three metabolites: 
nonanedioic acid, a trihexose, and the monoglyceride 
MG(22:2). Analysis showed that this model had a 
sensitivity of 80% and a specificity of 69%. This 
experiment demonstrated the potential of sweat, an 
unconventional sample, for lung cancer diagnosis 
[114]. 

4.7 Tissue 
Compared with other methods, obtaining tissue 

samples is undoubtedly a more invasive method. 
However, tissue specimens also have unique 
advantages. Due to the differences in diet, living 
habits, and other aspects of various individuals, 
blood, urine, and other specimens are affected by 
many non-experimental factors. Tissue specimens can 
be collected from the same cancer tissue and adjacent 
tissue (or normal tissue), significantly reducing the 
influence of interference factors [21, 115]. 

In a study published in 2017, Chen et al. collected 
cancer tissue samples and para-cancer normal tissue 
samples from 32 cancer patients and analyzed the 
metabolomic signatures of cancer tissues using 
nuclear magnetic resonance spectroscopy. Multi-
variate statistical analysis showed that lipid, aspartate 
and choline metabolites in tumor tissues changed 
significantly at different time points. The authors 
believe that this technique will be useful in the 
diagnosis and staging of cancer [116].  

According to a paper published in 2022, You et 
al. collected cancer and paracancerous tissues from 
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131 lung cancer patients and performed non-targeted 
metabolomics analysis based on LC-MS. Statistically, 
fatty acids, amino acids and most lysophospholipids 
were significantly increased in lung cancer tissues. 
However, 6-phosphogluconate, 3-phosphoglycerate, 
phosphoenolpyruvate, and citrate levels were 
decreased in lung cancer tissues. In addition, pathway 
enrichment analysis of lung cancer patients showed 
that energy, amino acid, and lipid metabolism were 
significantly disturbed [39]. That same year, Mo et al. 
compared lung adenocarcinoma, benign pulmonary 
nodules and healthy tissue samples, using LC-MS to 
detect the three groups of samples and analyze their 
differential metabolites. The concentrations of 
metabolites such as creatine, glycerol and adenosine 3' 
-monophosphate were significantly different among 
the three groups. Further pathway analysis revealed 
that metabolites involved in central carbon 
metabolism pathway were most significantly altered 
in lung adenocarcinoma tissues, while disorders of 
protein digestion pathway were the main altered 
features of benign lung tumors [21].  

4.8 Cell 
In contrast to other samples taken from humans, 

the cells were grown in a controlled environment, 
meaning that non-experimental factors such as sex, 
age, lifestyle habits, and living environment were 
avoided. Therefore, by studying the metabolite 
differences between lung cancer cells and normal 
cells, the differential metabolites can be more 
accurately determined and the mechanism can be 
further investigated. 

 In the scholarly literature published by Filipiak 
et al. in 2019, the authors investigated the metabolites 
extracted from adherent cells of a lung cancer cell line. 
By utilizing CE-MS technology, the researchers were 
able to analyze metabolic processes such as the 
pentose phosphate pathway (PPP) and glycolytic 
metabolic pathway in lung cancer cell lines. Through 
this analysis, the study revealed that some 
intermediate metabolites within these metabolic 
pathways were significantly higher in concentration, 
while the concentration of some tricarboxylic acid 
(TCA) cycle intermediate metabolites was reduced. 
This method of analyzing metabolic pathways in 
cancer cell lines provides valuable insights into the 
pathogenesis of cancer and can lead to further 
discoveries in understanding the disease [117].  

4.9 Summary on sample types 
In general, the different sample types mentioned 

above had distinct characteristics. Collecting urine 
samples and VOCs in exhaled breath has significant 
advantages from a less invasive and painless 

perspective. Because the concentration of urine varies 
greatly throughout the day, a fixed time for urine 
collection should be imposed, and the same amount of 
water should be consumed. Urine samples should be 
collected before drinking water in the morning. 
Preservation of breath samples is difficult; therefore, 
testing should be performed immediately after 
sample collection. Tissue samples are more preferred 
from the perspective of reducing interference factors. 
Metabolomics studies using tissue samples usually do 
not require additional volunteers to act as control 
groups because tissues from lung cancer patients can 
be directly compared with those from healthy 
individuals. However, it is often difficult to access the 
patient’s tissue. The collection of BAL and exhaled 
VOCs may be beneficial to finding more specific 
markers for lung cancer. Both sample types taken 
directly from the lungs and respiratory tract may 
detect metabolic markers more relevant to lung 
disease compared with blood, a biological fluid that 
permeates multiple systems in the body. In addition, 
unconventional sample types such as saliva and skin 
sweat have unique characteristics, which are 
convenient to collect and easy to be accepted by 
patients. The study of these samples also contributes 
to the early diagnosis of lung cancer (Table 1). 

To integrate the advantages of various sample 
types, some scholars have collected multiple samples 
for metabolomic analysis. Ahmed et al. developed a 
new non-invasive detection method for lung cancer to 
search for novel biomarkers. Blood, urine and 
respiratory condensate were collected from lung 
cancer patients. The metabolite changes in lung cancer 
patients before and after surgery were detected and 
analyzed using NMR and mass spectrometry. The 
authors believe that the changes of metabolic 
substances in patients with lung cancer before and 
after surgical resection have potential clinical 
application value in lung cancer screening [118]. Xu et 
al. considered polyamines as one of the most 
important biomarkers in cancer research. Plasma and 
urine samples were collected from patients with lung 
cancer and liver cancer, and these biological fluids 
were analyzed by UHPLC-MS. The concentration was 
then transformed into an independent variable by 
binary logistic regression analysis to determine the 
characteristics of patients. Significant independent 
variables were considered potential biomarkers and 
further verified by cluster analysis. Results showed 
that the ratio of putrescine to spermidine in plasma 
samples and the ratio of s-adenosine-l-methionine to 
n-acetylspermidine in urine samples could be 
successfully applied for the identification of patients 
with lung cancer and liver cancer [44]. From this point 
of view, collecting multiple sample types in one study 
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can help identify more sensitive and specific 
biomarkers to more reliably diagnose lung cancer and 
differentiate it from other diseases. 

5. Summary and prospects 
Metabolomics is concerned with the increase and 

decrease of small-molecule metabolites in various 
matrix samples, which is the final result of the joint 
action of human genes and the environment, and 
contains abundant physiological and pathological 
information. Such studies usually include several 

steps such as sample collection and processing, 
instrumental analysis and detection, data processing 
and metabolic analysis (Figure 1). Metabolomics 
techniques can contribute to the search and 
development of biomarkers for various tumor 
diseases, including lung cancer. These biomarkers are 
promising tools for disease screening [40, 119], 
diagnosis [120, 121], exposure factors [122, 123], 
treatment [124, 125], prognosis [126] and mechanistic 
studies (Table 3).  

 
 

Table 1. Comparison of instrument platform characteristics and collection methods of each sample type 

Sample type Features Collection method  Analytical 
technique 

Ref 

Blood ●Minimally invasive 
●Sample collection is relatively easy 
●Contains comprehensive metabolic 
information 

Serum: 
① Take blood samples from patients before breakfast. 
② Centrifuge the blood samples at 3,500 rpm for 10 minutes at 4°C to obtain 
serum. 
③ Freeze the serum sample at −80°C. 

1H-NMR [42] 

Plasma (EDTA used as anticoagulants): 
① In the morning, draw 8 ml of blood from volunteers after an overnight fast 
into evacuated tubes containing EDTA as anticoagulant. 
② Immediately separate plasma by centrifuging the blood samples at 4,500 rpm 
for 10 minutes at 4°C. 
③ Freeze the plasma at −80°C. 

GC-MS [24] 

Plasma (heparin used as anticoagulants): 
① Collect venous blood from the forearm and place it in a 10-ml Strek tube or a 
10-ml heparin vacuum tube. 
② Invert the tube 3-4 times, and centrifuge it at 450 g for 10 minutes at room 
temperature. 
③ Drain the supernatant, and transfer the sample to a 0.5-ml storage tube. Store 
the tube at −80°C. 

LC-MS [92] 

Urine ●Noninvasive, pain free 
●Sample collection is convenient and 
easy 

① Collect fasting morning urine from patients. 
② Centrifuge urine samples at approximately 3,500 rpm for 15 minutes at 4°C 
within 2 hours, and isolate the supernatant. 
③ Centrifuge the supernatant at approximately 3,000 rpm for 8 minutes at 4°C. 
Then transfer 1-2 ml of the supernatant to a 2-ml cryotube. 

LC- MS [98] 

① Collect morning urine samples from patients after an overnight fast in a 
sterile cup. 
② Obtain 1 ml aliquot of the sample, and store it at −80°C freezer. 
③ Before testing, the sample is thawed and centrifuged at high speed. 

1H-NMR [97] 

Saliva ●Noninvasive, pain free 
●Sample collection is convenient and 
easy 

① Participants were asked not to eat or drink for at least 1.5 hours prior to saliva 
collection. 
② Participants rinsed their mouths with water and were instructed to spit saliva 
into 50-cc Falcon tubes kept in paper cups filled with crushed ice.   
③ Store the saliva sample at −80°C until further analysis. 

CE-MS [104] 

Volatile organic compounds 
(VOCs) 

●Noninvasive, pain free 
●Metabolic information directly 
reflecting lung disease 

① Before sample collection, instruct volunteers not to eat or smoke for several 
hours and remain in the room for at least 10 minutes. 
② In a consultation room, have volunteers exhale their respiratory tract air into a 
1-L Analytic Barrier Bag. 
③ Immediately after exhaling, have them blow their alveolar breath into the 
same bag. 

GC-MS [107] 

Bronchoalveolar lavage 
fluid (BAL) 

●Unique value in diagnosing 
respiratory diseases 

① Collect BAL samples from the lungs and bronchial lavage.Place each sample 
in a 1 ml Eppendorf tube. 
② Store the Eppendorf tubes at −80°C. 

GC-MS [43] 

Skin (sweat) ●Unique unconventional sample types 
●Simple collection and high patient 
compliance 

① Use a sweat inducer to heat the skin for 5 minutes. 
② Cover the skin with a sweat collector to collect sweat for 15 minutes. 
③ The collected sweat is stored at -80 ° C. 

LC–MS [114] 

Tissue ●Cancer tissue and normal tissue can be 
collected simultaneously from the same 
individual, thereby greatly reducing the 
influence of interfering factors 

① After surgical resection, rapidly excise each cancer tissue sample. 
② Immediately freeze the cancer tissue sample in liquid nitrogen. 
③ Store the tissue sample at −80°C until further analysis. 

1H-NMR [116] 
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Table 2. Comparison of instrument platforms 

Instrument platform Advantages Disadvantages 

 
GC-MS 

●Higher sensitivity and 
good separation 
●Suitable for less polar substances 
●Suitable for volatile substances 

●Require tedious derivatization 
●Not suitable for volatile samples 

 
LC-MS 

●Higher sensitivity and 
good separation 
●Applicable to many types of samples 
●No need for derivatization 

●No standard metabolite database 
●Chromatographic mobile phase 
must be configured in advance. 
●Some chromatographic mobile 
phases may be harmful to humans or 
the environment. 

 
NMR 

●Nondestructive testing without 
destroying the sample 
●Simple sample preparation 
●Can be used for liveness detection 

●Lower sensitivity 
●Limited dynamic range 

 
In future studies, if conditions permit, the 

sample size can be expanded and non-experimental 
factors (such as age, sex, underlying diseases, diet, 
and other living habits) can be controlled to reduce 
the influence of these interfering factors on the 
experimental results. The accurate identification and 
characterization of metabolites from massive data in 
the untargeted metabolomics stage have always been 
difficult [127]. The improvement of various 
metabolomics databases and the development of 
machine learning schemes, as well as the continuous 

improvement of the performance of various detection 
instruments, may provide more reliable means to 
accurately and efficiently find differential metabolites. 
Following untargeted metabolomics analysis, the 
addition of targeted metabolomics studies can enable 
further validation of the selected differential 
metabolites [128]. Of course, differential metabolites 
are not equal to disease biomarkers, and rigorous 
medical validation is needed prior to their application 
in clinical practice.  
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Figure 1. Schematic diagram of the metabolomics workflow.  

 
 
In the latest research, with the continuous 

intersection of genomics, transcriptomics, proteomics, 
and metabolomics, multi-omics joint analysis has 
become a new research hotspot [69, 129]. In addition, 
the emergence of spatial metabolomics has allowed 
researchers to more accurately understand the spatial 

location of metabolic changes in diseases [130, 131]. 
Researchers can conduct joint analyses by integrating 
spatial metabolomics and multi-omics data to obtain 
more comprehensive and abundant biological 
information, and then conduct more in-depth 
mechanistic research on the disease. 
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Table 3. Metabolites in lung cancer 

Year of 
publication 

Sample 
type 

Grouping Analytical 
technique 

Main findings Ref 

2018 Serum 43HC,39 NSCLC  1H-NMR (+)Proline, lactic acid, phenylalanine, alanine, tyrosine, glutamic acid, glycoprotein, and tryptophan  
(−) Glucose, glycine, glutamine, taurine, phosphocreatine, and threonine 

[42] 

2020 Serum 142 NSCLC, 
159 HC 

LC-MS (+)C16-Sphinganine, Phytosphingosine, Sphinganine, Capric acid, and Arachidate  
(−) lysoPC(18:2), acyl-carnitine C10:1, and Inosine were decreased 

[69] 

2021 Serum 79NSCLC, 
79HC 

1H-NMR (+) ADP, Diphospho-glycerate, Fructose-6-phosphate 
(−) ATP,NADP, 1,7-Dimethyl-xanthine 

[70] 

2023 Serum 193 NSCLC, 
243HC 

LC-MS (+) 11,12-Epoxy-(5Z,8Z,11Z)-icosatrienoic acid, Cholic acid, 11- 
Deoxyprostaglandin, Glycocholic acid, and Docosahexaenoic acid ethyl ester 
(−) 2,4-Dihydroxybenzoic acid, Salicylic acid, and Piperine  

[71] 

2018 Plasma 43LC LC-MS Compared with the progressive disease group, the elevated metabolites in the partial response group 
were as follows: tryptophan, pyroglutamic acid, citric acid, succinic acid, phenylalanine, α-ketoglutaric 
acid, 2-hydroxyglutaric acid, and tyrosine 

[73] 

2021 Plasma 132PLC,47SLC, 
77HC 

1H-NMR (+) Glucose, citrate, acetate, 3-hydroxybutyrate, and creatinine 
(−) Pyruvate, lactate, alanine, tyrosine, and tryptophan 
 

[74] 

2021 Plasma 57LC,59 HC GC-MS (+) 2-Hydroxybutyric acid  
(−) Cholesterol, oleic acid, inositol, and 4-hydroxybutyric acid 

[38] 

2016 Plasma 
and urine 

50LC, 
50 Liver cancer 

LC-MS The ratio of putrescine and spermidine concentration levels in plasma can be used to discriminate 
between liver and lung cancer. 

[44] 

2019 Serum 
and tissue 

93LC,29HC 1H-NMR (+) Lactate, glutamate, and glycerophosphocholine [35] 

2021 Urine and  
serum  

29 urine samples and 
32 serum samples 
(Sampling before and 
after surgery) 

1H-NMR (+)N6-methyladenosine 
(−)Leucyl proline and isopentenyladenine 
The variation range of urine metabolites before and after operation was greater than that of serum in 
patients with lung cancer 

[99] 

2014 Urine 469 NSCLC, 
536 HC 

LC-MS (+)N-acetylneuraminic acid, creatinine riboside [96] 

2019 Urine 275 female LC, 278 
female HC 

1H-NMR (−) 5-methyl-2-furoic acid 
Air pollution increases the risk of lung cancer 

[97] 

2020 Urine 68HC,72LC LC- MS (+) Glycyl-glycine, 4-pyridoxic acid, crithmumdiol, 1-methylhistidine, tryptophan, and glutamine  
(−) 8-Hydroxynevirapine and indoxyl sulfate 

[98] 

2020 DBS 37SCLC,37HC LC-MS (+) Ceramide and sphingomyelin  
(−) Glutamate, riboflavin, serotonin, hypoxanthine, cholic acid, arachidonic acid, ethanolamine, and 
L-aspartic acid 

[82] 

2017 VOCs 107LC,29HC GC-MS The combination of CHN, methanol, CH3CN, isoprene, and 1-propanol can diagnose lung cancer, but it 
does not indicate the increase or decrease in the level of a single substance. 

[107] 

2016 BAL 24LC,31HC GC-MS (+) Acetic acid, palmitic acid, and stearic acid 
(−) Lactic acid, glycerol, L-glycine, L-aspartate, L-proline, L-glutamine, benzoic acid, fructose, 
phosphoric acid, isocitric acid, inositol, and galactose 
Inosine, oleic acid, and cholesterol 

[43] 

2013 Tissue 9LC CE-MS (+) Lactic acid, phosphofructokinase, and pyruvate kinase. Most amino acids, especially branched-chain 
amino acids 

[19] 

2017 Tissue 32LC 1H-NMR (+) Lipids, aspartate, and choline-containing [116] 
2020 Tissue 131LC LC-MS (+)Almost all amino acids and most lysophospholipids, fatty acids 

(−) 3-Phosphoglyceric acid, 6-phosphogluconic acid, phosphoenolpyruvate and citric acid 
[39] 

2020 Tissue 10 AdLC , 
10HC 

LC-MS Differential metabolites such as glycerol, creatine and 3-monophosphate can be used for the diagnosis 
and prognosis of lung cancer 

[21] 

2019 Cell Lung cancer adherent 
cell line 

CE-MS The concentration of some intermediate metabolites in pentose phosphate pathway (PPP) and glycolytic 
metabolic pathway in lung cancer cell lines was significantly higher, and the concentration of some 
intermediate metabolites in tricarboxylic acid (TCA) cycle was decreased 

[117] 

2015 Skin 
(sweat) 

41LC, 55HC LC-MS nonanedioic acid, suberic acid, a trihexose, a tetrahexose and the monoglyceride MG(22:2) can be used to 
distinguish between healthy and lung cancer patients 

[114] 

2021 Saliva 89 early-stage LC, 
11 advanced-stage 
LC,  
50 HC 

TELDI-MS Screening out 23 metabolites mainly related to amino acid and nucleotide pathways [103] 

2022 Saliva 41 LC, 21 benign lung 
lesions  

CE-MS Diethanolamine, cyclosine, lysine, and tyrosine can be used to distinguish between lung cancer and 
benign lung lesions 

[104] 

Abbreviations in this table:  
(+) Elevated markers (compared with healthy controls), (−) reduced markers 
HC, healthy control; LC, lung cancer; PLC, primary lung cancer; SLC, secondary lung cancer; SCLC, small-cell lung cancer; NSCLC, non-small-cell lung cancer;  SqLC, 
squamous cell carcinoma of the lung; AdLC, adenocarcinoma of the lung; LCCL, lung cancer cell line; DBS, dried blood spot; VOCs, volatile organic compounds; BAL, 
bronchial lavage fluid; NADP, nicotinamide adenine dinucleotide phosphate 
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