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Abstract 

Diabetes mellitus and its complications pose a major threat to global health and affect the quality of life 
and life expectancy of patients. Currently, the application of traditional therapeutic drugs for diabetes 
mellitus has great limitations and can only temporarily control blood glucose but not fundamentally cure 
it. Mesenchymal stem cells, as pluripotent stromal cells, have multidirectional differentiation potential, 
high self-renewal, immune regulation, and low immunogenicity, which provide a new idea and possible 
development direction for diabetes mellitus treatment. Regenerative medicine with mesenchymal stem 
cells treatment as the core treatment will become another treatment option for diabetes mellitus after 
traditional treatment. Recently, human umbilical cord mesenchymal stem cells have been widely used in 
basic and clinical research on diabetes mellitus and its complications because of their abundance, low 
ethical controversy, low risk of infection, and high proliferation and differentiation ability. This paper 
reviews the therapeutic role and mechanism of human umbilical cord mesenchymal stem cells in diabetes 
mellitus and its complications and highlights the challenges faced by the clinical application of human 
umbilical cord mesenchymal stem cells to provide a more theoretical basis for the application of human 
umbilical cord mesenchymal stem cells in diabetes mellitus patients. 
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Introduction 
Diabetes mellitus (DM) is the most prevalent 

metabolic disorder caused by the inability of the 
pancreas to secrete insulin adequately or the body’s 
inability to use insulin effectively. According to the 
9th edition of the International Diabetes Federation 
(IDF) Atlas of Diabetes, approximately 7.002 million 
adults aged 20–79 years will have DM worldwide by 
2045 (1). Type 1 diabetes mellitus (TIDM) and type 2 
diabetes mellitus (T2DM) are the two most common 
types of DM. Patients with T1DM are primarily 
treated with insulin replacement therapy to alleviate 
absolute insulin deficiency, but may be at risk for 
hypoglycaemia and tumourigenesis. Human islet 
transplantation is an effective treatment for T1DM, 

with a combination of impaired hypoglycaemic 
awareness and severe hypoglycaemic episodes (2). 
However, islet transplantation may be greatly limited 
in clinical application due to a shortage of donor islets 
and immune rejection. Drug therapy is an important 
treatment modality for patients with T2DM (3), but its 
side effects (such as diarrhoea, nausea, vomiting, and 
anaemia) and drug prices remain to be investigated. 
Meanwhile, persistent hyperglycaemia can cause 
chronic damage or dysfunction of the eyes, kidneys, 
heart, blood vessels, and nerves, and intervention in 
DM and its complications and reduction of mortality 
are imminent (4, 5). 

Mesenchymal stem cells (MSCs) are widely used 
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in various cell therapies because of their many 
advantages, such as self-renewal capacity, multi-
spectral differentiation ability, tissue damage repair, 
and lack of co-stimulatory molecules (6). The 
abundant source of human umbilical cord 
mesenchymal stem cells (HUC-MSCs), low ethical 
controversy, low infection risk, high proliferation and 
differentiation ability, and very low immunogenicity 
make them uniquely advantageous for DM therapy. 
Recently, studies related to the treatment of DM with 
HUC-MSCs have rapidly developed. This review 
describes the advantages and mechanisms of 
HUC-MSCs in treating DM and the application and 
research progress of HUC-MSCs in DM-related 
complications, providing more options for managing 
DM and its complications. 

Source of HUC-MSCs 
Umbilical cord blood (UCB) is a valuable stem 

cell source. MSCs can be isolated from neonatal 
umbilical cords by enzymatic digestion and show a 
positive expression of classical MSC surface markers. 
The umbilical cord comprises the umbilical artery, 
umbilical vein, Wharton's jelly (WJ), and external 
amniotic epithelium surrounding the mucus 
connective tissue (7). MSCs can be isolated from 
different umbilical cord parts, including the blood, 
sub-umbilical vein endothelium, and the WJ. 
Researchers have successfully isolated and cultured 
MSCs from the perivascular layer of Wharton 
collagenous vessels of the human umbilical vein (8). 
MSCs can also be isolated from non-perivascular 
areas (sub-amniotic membranes) (9). Platelet-derived 
growth factor (PDGF) produced by human amniotic 
cells may induce cell migration from the vascular 
system to the amnion (10). The human umbilical cord 
is a rich MSC source. 

Advantages of HUC-MSCs 
HUC-MSCs have compelling advantages in 

treating DM, including (1) abundant sources, easy 
collection, and easy preservation and transportation 
(11); (2) easy isolation, high purity, and 
non-tumorigenic (12); (3) high amplification potential 
(13); (4) functional stability after lyophilisation and 
recovery (14); (5) no adverse effects of collection on 
the donor, and ethical issues are circumvented (15); 
and (6) low probability of infection and transmission 
of pathogenic microorganisms. In contrast, bone 
marrow-derived MSCs (BM-MSCs) have a high risk of 
viral infection and a significant decrease in cell 
number and proliferation/differentiation capacity 
with age (16, 17). (7) More primitive and proliferative 
differentiation capacity. Compared with BM-MSCs, 
HUC-MSCs have higher pancreatic differentiation 

potential and proliferative capacity (18). Compared 
with dental pulp-derived mesenchymal stem cells 
(PU-MSCs) and adipose tissue-derived mesenchymal 
stem cells (AD-MSCs), HUC-MSCs have the strongest 
efficacy in ameliorating glucose and lipid metabolism 
disorders in T2DM (19). (8) Very low immunogenicity 
(20). In summary, HUC-MSCs are an ideal source of 
cells for cell therapy in DM. 

Possible mechanisms of HUC-MSCs for 
DM treatment 

MSCs for DM are cell-based therapeutic 
approaches that have shown remarkable therapeutic 
effects in DM because of their self-renewal, 
differentiation potential, and immunosuppressive 
properties. Numerous studies have shown that 
HUC-MSCs are a novel strategy to treat DM, and their 
possible mechanisms (21) include: 1) homing to the 
damaged pancreas and acting through local nutrition 
and secretion of paracrine factors; 2) differentiation 
into insulin-producing cells (IPCs); 3) reversal of 
beta-cell (β-cell) dedifferentiation, thereby alleviating 
β-cell dysfunction and protecting islet β-cells; 4) 
promotion of islet β-cell regeneration; 5) secretion of 
anti-inflammatory cytokines and macrophage 
phenotype regulation, thereby reducing islet β-cell 
inflammation; and 6) enhancing insulin sensitivity in 
target tissues and improving insulin resistance (Fig. 
1). 

Homing effect of HUC-MSCs 
One advantage of MSCs for DM mitigation is 

their ability to home to damaged tissues and then 
directly proliferate and differentiate to replace 
damaged cells and repair damaged tissues. Homing is 
potentially important for recruiting MSCs to the 
injury and regeneration sites (22). MSCs homing 
includes both non-systematic and systemic homing. 
In non-systematic homing, MSCs are locally 
transplanted into the target tissue and then directed to 
the injury site via a chemokine gradient. In systemic 
homing, the molecular mechanisms of MSCs homing 
include initial tethering by selectins, activation by 
cytokines, blockade by integrins, exudation or 
migration using matrix remodelling agents, and 
extravasation toward chemokine gradients (23). In 
2017, HUC-MSCs labelled with 1,1'-dioctadecyl- 
3,3,3',3'-tetramethylindocarbocyanine perchlorate 
(DiI) were detected in the pancreas of T1DM mice, 
suggesting that HUC-MSCs may target and migrate to 
damaged organs to exert therapeutic effects (24). Yin 
et al. pre-labelled HUC-MSCs with cell membrane-Dil 
(CM-Dil) to demonstrate their migration in various 
tissues, thus confirming the implantation of MSCs in 
the pancreatic islets of T2DM mice. This suggests that 
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homing of HUC-MSCs may be closely related to tissue 
damage (25). Overall, HUC-MSCs may play a role in 
treating DM by homing to damaged islets. However, 
the homing rate of MSCs is low, and MSCs may exert 
protective effects through other mechanisms. 

Paracrine effects of HUC-MSCs 
The paracrine properties of MSCs make them a 

key tissue repair option, and the paracrine effect of 
MSCs is achieved through the secretion of soluble 
factors and release of extracellular vehicles (EVs), 
such as exosomes and microvesicles (26). All the 
factors secreted by MSCs are called the secretome and 
comprise various cytokines, chemokines, angiogenic 
factors, and growth factors. Moreover, up to 80% of 
the therapeutic effects of MSCs are mediated by 
paracrine signalling (27). HUC-MSCs secrete soluble 
molecules such as keratinocyte growth factor (KGF), 
hepatocyte growth factor (HGF), vascular endothelial 
growth factor (VEGF), fibroblast growth factor (FGF), 
placental growth factor (PGF), monocyte chemo-
attractant protein 1 (MCP-1), insulin-like growth 
factor 1 (IGF-1), epidermal growth factor (EGF), 
prostaglandin E2 (PGE2), indoleamine 2,3-deoxy-
genase (IDO), interleukin-10 (IL-10), interleukin-6 
(IL-6), transforming growth factor-β1 (TGF-β1), nitric 
oxide (NO), human leukocyte antigen-G5 (HLA-G5), 
tumour necrosis factor-α stimulated gene 6 (TSG-6), 
and neurotrophic factors (12, 28-30). These factors 
play a role in promoting tissue regeneration, 
participating in angiogenesis, promoting ulcer tissue 

healing, wound healing, modulating immunity, 
anti-inflammation, anti-apoptosis, and cytoprotection. 
Recently, there has been intense interest in the 
synthesis and release of EVs by MSCs via paracrine 
secretion. Human umbilical cord mesenchymal stem 
cell-derived exosomes (HucMSC-exs) are nanometer- 
sized and are capable of rapid diffusion across 
biological barriers and cell membranes. Numerous 
studies have shown that HucMSC-exs have 
anti-inflammatory, anti-apoptotic, tissue repair, 
neuroprotective, and immunomodulatory properties, 
suggesting that HucMSC-ex may be a potential DM 
therapy. HucMSC-ex alleviates T2DM by activating 
the regenerative capacity of islets (31), improving 
insulin sensitivity (32), reversing peripheral insulin 
resistance, and attenuating β-cell destruction (33). 
Human umbilical cord mesenchymal stem cell- 
derived small extracellular vesicles (HUC-MSC-sEVs) 
attenuated structural damage in the pancreas, kidney, 
and liver of T2DM rats (34). HucMSC-ex protects 
β-cells from hypoxia-induced apoptosis by carrying 
miR-21 to attenuate endoplasmic reticulum (ER) 
stress and inhibit p38 MAPK phosphorylation (35). 
Exosome-loaded immunomodulatory biomaterials 
can attenuate the local immune response induced by 
grafts in DM mice (36). The above studies revealed the 
potential value of HucMSC-ex and miRs in DM. 
Overall, HUC-MSCs play a protective role against DM 
by secreting soluble factors and EVs. 

 

 
Figure 1. This figure illustrates the possible mechanism of HUC-MSCs for the treatment of DM. HUC-MSCs exert beneficial effects on diabetes by differentiating into IPCs, 
promoting islet β-cell regeneration, reversing β-cell dedifferentiation, reducing islet β-cell inflammation, and improving insulin resistance. IPCs insulin-producing cells. 
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Differentiation of HUC-MSCs into IPCs 
HUC-MSCs ameliorate hyperglycaemia and 

weight loss in DM rats by differentiating them into 
IPCs (37-39). HUC-MSCs induced to differentiate into 
IPCs (40, 41) express pancreatic β-cell differentiation- 
related genes (e.g. nestin, pancreatic duodenal 
homeobox-1 (PDX-1), neurogenin3 (NGN3), paired 
box 6 (PAX6), paired box 4 (PAX4), nk2 homeobox 2 
(NKX2.2), nk6 homeobox 1 (NKX6.1), glucose 
transporter 2 (GLUT-2), and insulin (INS) genes) (42, 
43), and promote the secretion of serum C-peptide 
and INS in DM rats (44, 45). Additionally, HUC-MSCs 
promote the survival, function, and number of 
islet-like cell clusters (46). Co-culture of HUC-MSCs 
with T1DM rat pancreatic cells promotes survival, 
proliferation, and induced differentiation of HUC- 
MSCs into IPCs (47). Furthermore, the differentiation 
of IPCs is a very complex process, and the initial stage 
of nestin preselection, appropriate induction reagents 
(48), and extracellular matrix (49) are necessary for the 
in vitro culture of IPCs from HUC-MSCs. PDX-1 (50, 
51), inhibition of Notch signalling (52) and laminin 
411 (53) effectively regulate the differentiation of 
MSCs into IPCs. Under hypoxic conditions, 
UCB-MSCs also efficiently differentiate into IPCs (54, 
55). Additionally, factors that effectively promote the 
efficacy of IPC action include Port-A catheter 
transplantation (56), suspension culture (57), and 
addition of the histone deacetylase (HDAC) inhibitor 
TMP269 (58). Overall, HUC-MSCs can replace 
damaged islet β cells by inducing differentiation into 
IPCs, which are ideal seed cells to treat DM. 

HUC-MSCs can effectively improve islet β-cell 
function  

β-Cell dedifferentiation is thought to be an 
important contributor to β-cell dysfunction in T2DM 
(59). Pro-inflammatory cytokines can lead to β-cell 
dysfunction and de-differentiation. MSCs reduce 
endogenous interleukin-1b (IL-1b) production in 
T2DM islets by secreting IL-1Ra, thereby reducing 
islet injury and reversing β-cell dedifferentiation (60). 
Additionally, it has been shown that the interleukin-1 
receptor antagonist (IL-1Ra) can also regulate the 
phenotypic transition of macrophages (61). In db/db 
mice, early infusion of HUC-MSCs reduced β-cell 
dedifferentiation markers, such as aldehyde 
dehydrogenase 1 family member A3+ (ALDH1A3+), 
and increased the proportion of Ins+ β cells and 
Pdx1+/Ins+ cells (62). This suggests that MSCs 
transplantation may be a therapeutic strategy for 
protecting and restoring β-cell function in patients 
with T2DM. Additionally, the potential mechanisms 
for the therapeutic effects of MSCs on DM may 
involve islet regeneration, including direct differen-

tiation into functionally competent β-cells. Pax4, in 
concert with Pdx1, Ngn3, and MAF bZIP transcription 
factor A (MafA), can induce the differentiation of 
HUC-MSCs into pancreatic β-like cells (pβLCs) 
functional pancreatic β cells (63). MSCs participate in 
the repair process by secreting various cytokines and 
growth factors with paracrine and autocrine activities, 
which may contribute to endogenous β-cell 
regeneration and islet structural recovery (21). Wei et 
al. found that HUC-MSCs protect islets from 
hypoxia-induced dysfunction (64) and secrete IGF-1 
to exert a trophic effect on islets (65). Bao et al. found 
that HUC-MSCs overexpressing tissue inhibitors of 
matrix metalloproteinase (TIMP)-1 induced weight 
loss and hypoglycaemia and improved islet function 
and survival in T1DM mice (66). Lu et al. found that 
HUC-MSC transplantation is safe and effective in 
T1DM patients and may better protect residual β-cells 
(67). Hu et al. found that the combination of 
HUC-MSCs and selegiline was effective in improving 
hyperglycaemia, promoting islet β-cell regeneration, 
and inhibiting islet alpha cell (α-cell) production in 
T2DM rats (68). Although the exact mechanism needs 
to be further explored, this study may provide a new 
therapeutic approach for DM. 

Interaction of HUC-MSCs with various 
immune cells and cytokines 

HUC-MSCs and macrophage polarization 
DM is characterised by mild chronic inflam-

mation, which is often accompanied by inflammatory 
cell infiltration in islets. Macrophage infiltration of 
islets and autoimmune destruction of β-cells are 
important features of the chronic inflammatory 
process in T1DM. Macrophages may be a major 
contributor to the development of chronic 
inflammation and insulin resistance in patients with 
T2DM (3). UC-MSC transplantation induces an 
increase in M2 macrophages in pancreatic islets, 
adipose tissue, liver, and skeletal muscle. HUC-MSCs 
produce anti-inflammatory mediators and growth 
factors that suppress inflammation and improve 
insulin sensitivity and β-cell regeneration (25). 
HUC-MSCs reduce insulin resistance by secreting IL-6 
(69) and IL-10 (70) to promote M2 macrophage 
polarization. MCP-1 secreted by HUC-MSCs 
synergistically regulates macrophage polarisation 
with IL-6 (71). Additionally, low-dose decitabine may 
prolong the antidiabetic effects of MSCs and promote 
sustainable β-cell recovery by polarising macrophages 
to the M2 phenotype (72). Overall, HUC-MSCs can 
reduce islet β-cell inflammation by polarising 
macrophages to the M2 anti-inflammatory phenotype, 
thereby alleviating islet dysfunction in patients with 
DM.    
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HUC-MSCs and other immune cells  
MSCs not only act on innate immune cells but 

also interact with other immune cells, thus regulating 
multiple effector functions (73). MSCs regulate 
antigen presentation by dendritic cells (DCs), 
cytotoxicity of natural killer (NK) cells and neutrophil 
activation. MSCs induce peripheral tolerance in T cells 
and exert effective tissue protection through the 
release of anti-inflammatory, anti-apoptotic, and 
trophic molecules (74). Li et al. found that regulatory 
T cells (Treg)/T helper cell 17 (Th17) and Treg/T 
helper cell 1 (Th1) cell ratios increased significantly 
after 4 weeks of transplantation of HUC-MSCs, while 
the Th17/Th1 cell ratio remained unchanged (75), 
suggesting that HUC-MSCs ameliorate immune 
disorders in T2DM by repairing Treg cells. HUC- 
MSCs can reduce blood glucose, increase C-peptide 
levels, and Treg production in T2DM patients (76), 
suggesting that HUC-MSCs with powerful 
immunomodulatory ability are safe and effective in 
T2DM patients, and microencapsulated HUC-MSCs 
reduce effector Th1 cells and repair the Treg/Th17 
ratio (77), suggesting that HUC-MSCs may treat 
T1DM by modulating immunity. In addition, HUC- 
MSCs have shown efficacy in other autoimmune 
diseases, such as T1DM combined with Sjogren 
syndrome (SS) (78, 79). Overall, MSCs may represent 
a new strategy to treat immune-mediated diseases. 

HUC-MSCs improve insulin resistance 
Insulin resistance (IR) is one of the most common 

and important pathological features of T2DM. MSCs 
can exert immunomodulatory and anti-inflammatory 
effects through paracrine effects, thereby increasing 
insulin sensitivity and improving insulin resistance in 
T2DM rats (80). Umbilical cord mesenchymal stem 
cell-conditioned medium (UC-MSC-CM) may 
improve IR in C2C12 cells by improving glucose 
transporter 4 (GLUT4) translocation, insulin 
signalling pathways, and mitochondrial content and 
function (81). HUC-MSCs also improve IR by 
modulating the balance between PTEN-mediated 
PI3K/Akt and ERK/MAPK signalling pathways (82). 
UC-MSCs infusion and fasting-mimicking diet (FMD) 
synergistically modulate the systemic inflammatory 
microenvironment and improve hyperglycaemia and 
lipid metabolism disorders in T2DM mice (83). 
Glucagon-like peptide-1 (GLP-1) gene modification of 
HUC-MSCs improves fasting glucose, IR, and β-cell 
function in T2DM mice (84). HUC-MSCs combined 
with liraglutide can downregulate the TLR4/NF-kB 
inflammatory pathway and oxidative stress while 
improving glucose metabolism and inhibiting islet 
β-cell apoptosis in an ASK1/JNK/BAX pathway- 
dependent manner in T2DM rats (85, 86). In 

conclusion, HUC-MSCs act as an effective treatment 
for T2DM by improving IR, thereby providing a 
potential avenue for developing novel clinical T2DM 
therapies. 

HUC-MSCs and other types of diabetes 
Recently, with advances in regenerative 

medicine research, HUC-MSCs may provide a new 
treatment option for other types of DM. Hu et al. 
found that HUC-MSCs therapy could restore the 
function of residual islet β cells in patients with 
new-onset T1DM over a longer period. This suggests 
that implantation of HUC-MSCs is expected to be an 
effective strategy for treating new-onset T1DM (87). 
Yang et al. found that HUC-MSCs reduced 
inflammatory responses and attenuated pancreatic 
injury in rats with severe acute pancreatitis (SAP) (88). 
Kong et al. found that HUC-MSCs ameliorated 
chronic pancreatitis in rats via the AKT-mTOR-S6K1 
signalling pathway, which provides a basis for the 
clinical application of HUC-MSCs in treating 
pancreatitis (89). In 2019, HucMSC-ex delivered 
exogenous miR-145-5p to inhibit pancreatic ductal 
adenocarcinoma progression, suggesting a thera-
peutic role of HUC-MSCs in pancreatic exocrine 
diseases (90). Additionally, transplantation of 
HUC-MSCs can effectively alleviate weight loss 
symptoms, reduce blood glucose levels, and improve 
offspring survival in gestational diabetes mellitus 
(GDM) patients (91). However, it has been shown that 
GDM adversely affects the proliferative capacity and 
viability of HUC-MSCs (92). Therefore, to address this 
situation, it is crucial to identify conditions that 
improve the survival of HUC-MSCs, reduce 
apoptosis, and promote proliferation. 

In conclusion, MSC therapy presents a novel 
approach for treating DM, displaying substantial 
efficacy in both basic and clinical trials. HUC-MSCs 
exhibit the capacity to migrate towards damaged 
pancreatic islets, facilitated by homing and paracrine 
effects, thus assuming a reparative role. Additionally, 
they induce differentiation into IPCs, replacing 
impaired islet β-cells and enabling the secretion of C 
peptide and insulin. Furthermore, they counteract 
β-cell de-differentiation, thereby safeguarding 
pancreatic β-cells, and facilitate regeneration of islet 
β-cells along with structural revitalization, conseq-
uently enhancing islet β-cell functionality. Their 
impact extends to immune cells, encompassing 
macrophages, DCs, NK cells, neutrophils, and T cells, 
thereby exerting immunomodulatory and anti- 
inflammatory properties. This therapeutic modality 
also ameliorates insulin resistance by targeting 
insulin-responsive organs. In summary, the collective 
mechanisms through which HUC-MSCs operate 
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synergistically culminate in an amelioration of 
diabetic symptoms (Table. 1). Nevertheless, the 
homing rate of MSCs remains limited, prompting the 
need for further investigations to enhance their 
homing rate, bolster their survival rate post- 
transplantation, and optimize overall efficacy and 
safety. Notably, contemporary research endeavors 
have augmented the efficacy of diabetes mellitus 
treatment via preemptive treatments of MSCs, 
including hypoxic pre-conditioning. While current 
studies yield promising clinical outcomes, the full 
spectrum of optimal efficacy warrants deeper 
exploration.  

HUMSCs and complications of T2DM 
Diabetic nephropathy 

 Diabetic nephropathy (DN) is one of the most 
serious complications of DM and a major cause of 
end-stage chronic kidney disease. HUC-MSCs act 
mainly by promoting paracrine mechanisms, such as 
mitogenic, anti-fibrotic, anti-inflammatory, antioxi-
dant, anti-apoptotic, cytoprotective and immuno-
modulatory. HUC-MSC transplantation is expected to 
be an effective therapeutic approach for preventing 
and treating DN. An et al. found that HUC-MSCs 
lowered blood glucose, improved renal function and 
renal histopathological changes in DN nonhuman 
primates (93). Fang et al. found that IGF-1 secreted by 

HUC-MSCs promoted renal tubular cell proliferation 
and reduced apoptosis, thus exerting a protective 
effect on the kidneys (94). Additionally, HUC-MSCs 
inhibited the levels of inflammatory factors IL-6, 
IL-1β, tumour necrosis factor-alpha (TNF-α), TGF-β, 
MCP-1, and nuclear factor-κB (NF-κB) and down-
regulated the expression of fibronectin alpha-smooth 
muscle actin (α-SMA) and collagen IV, suggesting 
that HUC-MSCs benefit podocytes under high 
glucose (HG) by suppressing inflammation and 
fibrosis while delaying the progression of DN (95-97). 
Nie et al. found that HUC-MSCs decreased 
malondialdehyde levels and 4-hydroxynonenal 
(4-HNE) protein expression and increased the 
antioxidant enzymes catalase (CAT) and glutathione 
peroxidase (GPX) (98). HUC-MSCs attenuated the 
expression of TGF-β1, α-SMA, collagen I, and heat 
shock protein 47 (HSP47) mRNA and increased the 
expression of E-cadherin and bone morphogenetic 
protein 7 (BMP-7) mRNA, suggesting that HUC- 
MSCs can prevent renal injury in DN rats via 
paracrine humoral factors (99, 100). Notably, 
HUC-MSCs improved renal function in mice, mainly 
due to immunomodulatory effects rather than direct 
implantation and trans-differentiation into renal cells 
(101). Overall, HUC-MSCs can improve DN through 
the above-mentioned mechanisms, and may be a 
promising DN therapeutic strategy. 

 

Table 1. The possible modes of action of MSCs in the treatment of diabetes are discussed in the table. 

Mode of action of HUC-MSCs 
Mode of action Mechanism References 
Homing effects Systemic homing Initial tethering by selectins 

Activation by cytokines 
Blockade by integrins 
Exudation or migration using matrix remodelling agents 
Extravasation toward chemokine gradients 

(22, 23) 

Non-systematic homing Directed to the injury site via a chemokine gradient. 
Paracrine effects Secrete soluble molecules (KGF, HGF, VEGF, FGF, PGF, MCP-1, IGF-1, 

EGF, PGE2, IDO, IL-10, IL-6, TGF-β1, NO, HLA-G5, TSG-6, and 
neurotrophic factors) 

Promoting tissue regeneration and angiogenesis 
Promoting ulcer tissue healing and wound healing 
Modulating immunity, anti-inflammation, anti-apoptosis, 
and cytoprotection. 

(12, 28-30) 

Release of EVs, such as exosomes and microvesicles  Activating the regenerative capacity of islets   
Improving insulin sensitivity   
Reversing peripheral insulin resistance 
Attenuating β-cell destruction 

(31-33) 

Differentiation into 
IPCs 

Induced to differentiate into IPCs Replace some damaged islet β-cells to secrete C peptide and 
INS 

(40, 45) 

Improve islet β-cell 
function  

Protection of pancreatic islet beta cells Secreting IL-1Ra to reduce islet injury and reverse β-cell 
dedifferentiation  

(60, 62) 

Promoting the regeneration of pancreatic islet beta cells Induced to differentiate into pβLCs functional pancreatic β 
cells 

(63) 

Immunomodulatory 
effects 

Macrophage Suppress inflammation and improve insulin sensitivity by 
secreting IL-6  and IL-10 to promote M2 macrophage 
polarization. 

(25, 69-71) 

DCs, NK cells, neutrophil, and T cells Regulate antigen presentation by DCs 
Regulate cytotoxicity of NK 
Regulate neutrophil activation 
Induce peripheral tolerance in T cells 

(74) 

Improve insulin 
resistance 

Liver, fat and skeletal muscle Improve IR in C2C12 cells and improve lipid metabolism 
disorders in T2DM mice 

(81, 83) 

HUC-MSCs, Human umbilical cord mesenchymal stem cells; KGF, Keratinocyte growth factor; HGF, Hepatocyte growth factor; VEGF, Vascular endothelial growth factor; 
FGF, Fibroblast growth factor; PGF, Placental growth factor; MCP-1, Monocyte chemoattractant protein 1; IGF-1, Insulin-like growth factor 1; EGF, Epidermal growth factor; 
PGE2, Prostaglandin E2; IDO, Indoleamine2,3-deoxygenase; IL-10, Interleukin-10; IL-6, Interleukin-6; TGF-β1, Transforming growth factor-β1; NO, Nitric oxide; HLA-G5, 
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Human leukocyte antigen-G5; TSG-6, Tumor necrosis factor α stimulated gene 6; EVs, Extracellular vehicles; β-cell, Beta cell; IPCs, Insulin-producing cells; INS, Insulin; 
IL-1Ra, Interleukin-1 Receptor antagonist; PβLCs, Pancreatic β-like cells; DCs, Dendritic cells; NK cells, Natural killer cell; IR, Insulin resistance; T2DM, Type 2 diabetes 
mellitus. 

 

Diabetic retinopathy 
 Diabetic retinopathy (DR) is a common cause of 

visual impairment and blindness in working-age 
individuals. Microangiopathy and inflammatory 
responses are key components of DR. Recently, MSCs 
have received increasing attention for their tissue 
damage repair therapy, anti-inflammatory effects, and 
pro-angiogenic effects, and they offer potential 
options for the treatment of DR. HUC-MSCs play an 
anti-inflammatory role and inhibit retinal neuronal 
apoptosis by upregulating the expression of 
adiponectin (APN) and neurotrophin-4 (NT-4) and 
downregulating the expression of myocardial 
infarction-associated transcript (MIAT), IL-1β, IL-6, 
and high-sensitivity C-reactive protein (hs-CRP) (102, 
103). HUC-MSCs increase the number of surviving 
retinal ganglion cells (RGCs) and improve neuro-
protection through a BDNF-dependent mechanism, 
suggesting that HUC-MSCs may slow DR progression 
through paracrine humoral factors (104, 105). 
Additionally, numerous studies have shown that 
HucMSC-ex have anti-inflammatory, anti-apoptotic, 
tissue repair, neuroprotective, and immunomodu-
latory properties. Moreover, EVs are nanometer-sized 
and can diffuse rapidly through the retina (106). Fu et 
al. found that HucMSC-ex effectively prevented early 
retinal vascular damage and retinal thickening, and 
alleviated DM-induced structural damage to the 
retina (107). Li et al. found that HucMSC-derived 
exosomes shuffled microRNA-17-3p ameliorated the 
inflammatory response and oxidative damage in DR 
mice by targeting STAT1, providing new insights into 
novel targeted therapies for DR (108). In 2021, 
HucMSC-derived exosomes shuffled microRNA-18b 
exerted anti-apoptotic and anti-inflammatory effects 
in DR rats by mediating the MAP3K1/NF-κB axis, 
suggesting that miR-18b is critical for HucMSC-ex 
treatment of DR (109). Zhang et al. found that 
HucMSC-ex overexpressing miR-126 was able to 
reduce hyperglycemia-induced retinal inflammation 
by targeting and regulating high mobility group box 1 
(HMGB1) (110). Overall, these studies have laid a 
solid foundation for HUC-MSCs in DR treatment. 

Diabetic central nervous system complications 
DM is a risk factor for acute stroke and can lead 

to a higher risk of ischaemic stroke and a worse 
prognosis (111-113). Cerebral haemorrhage, 
neurological deficits, and white matter (WM) damage 
can be severe after stroke in DM mice (114). 
Inflammatory and immune responses play important 
roles in ischaemic stroke prognosis, and human 

umbilical cord blood cells (HUCBCs) are widely 
accepted to repair the central nervous system (115). 
Stem cell-rich HUCBCs can survive, migrate, 
differentiate, and restore neurological function in the 
ischaemic brain microenvironment of stroke rats 
(116). Lin et al. found that CD34-immunosorted 
human umbilical cord blood haematopoietic stem 
cells (HUCB34) after hypoxic preconditioning 
promoted neuronal progenitor cell (NPCs) homing to 
the ischaemic brain and enhanced neuronal synapse 
regeneration (117). Chen et al. found that HUCBCs 
promote vascular and WM remodelling by 
upregulating miR-126 expression while promoting 
M2 macrophage polarisation and inducing neural 
repair by decreasing vascular cell adhesion 
molecule-1 (VCAM-1) and MCP-1 expression (118). 
HUCBCs increase the density of oligodendrocyte 
progenitors and oligodendrocytes, increase angio-
poietin 1 (Ang-1), expression, and decrease the 
expression of ischaemic border zone (IBZ) RAGE, 
matrix metalloproteinase 9 (MMP-9), and toll-like 
receptor 4 (TLR4), suggesting that HUCBCs have a 
therapeutic effect on nerve repair in DM rats with 
stroke (119, 120). Therefore, MSCs therapy may be a 
promising therapeutic option for diabetic patients 
with central nervous system complications. 

Diabetic autonomic neuropathy 
Diabetic autonomic neuropathy (DAN) is a 

serious and common complication of DM that has 
significant adverse effects on patient survival and 
quality of life (121). Diabetic cystopathy (DC) is 
considered a manifestation of diabetic neuropathy, 
and its pathogenesis may be related to long-term 
hyperglycaemia, bladder wall remodelling induced 
polyuria, and oxidative stress leading to smooth 
muscle cell and neuronal damage (122). Wu et al. 
found that HUC-MSCs overexpressing nerve growth 
factor (NGF) could secrete neurotrophic factors and 
cytokines in the rat spinal cord and could also 
differentiate into NeuN neurones and glial fibrillary 
acidic protein (GFAP)-positive astrocytes to 
effectively prevent bladder hypertrophy and 
remodelling, thereby reversing the progression of DC 
and restoring bladder function (123). Shin et al. found 
that HUC-MSC transplantation improved urinary 
function in DM rats, which provides a rationale for 
HUC-MSC treatment of DM-related detrusor 
underactivity (DUA) (124). Wu et al. found that 
HUC-MSC transplantation may improve diabetic 
erectile dysfunction in rats by increasing the 
production of paracrine growth factors (VEGF), 
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endothelial nitric oxide synthase (eNOS), IGF1, and 
basic fibroblast growth factor (bFGF) (125). In 
conclusion, transplantation of HUC-MSCs may be a 
new potential therapeutic option for DAN. 

Diabetic foot disease 
Diabetic foot ulcers (DFU) are full-length lesions 

that occur in the skin of the foot of patients with DM, 
accompanied by infection and tissue destruction 
caused by neuropathy and/or peripheral artery 
disease (PAD) (126). DFU has a high disability and 
mortality rate, which severely affects the quality of life 
of patients, shortens life expectancy, and imposes a 
heavy socioeconomic burden (127, 128). In recent 
years, HUC-MSCs have achieved good therapeutic 
effects in the treatment of DFU. Zhao et al. found that 
HUC-MSCs specifically homed to ulcerated tissue and 
promoted epithelialisation of ulcerated tissue, 
possibly by stimulating the release of cytokeratin 19 
from keratin-forming cells and promoting 
extracellular matrix formation (129). Shi et al. found 
that HUC-MSCs promoted wound healing in DFU 
rats by transdifferentiating, regulating inflammation, 
and providing growth factors that promote angio-
genesis, cell proliferation, and collagen deposition 
(130). Xia et al. found that HUC-MSCs prevented or 
cured foot ulcers in DFU rats by reversing the 
neuronal structure and function by upregulating NGF 
and promoting significant angiogenesis in the femoral 
nerve-innervated gastrocnemius muscle (131). 
HUC-MSCs induce angiogenesis (132, 133), promote 
tissue repair and regeneration (134), and reduce 
muscle damage and apoptosis in the ischaemic hind 
limbs of DM mice (135). Transplantation of 
HUC-MSCs significantly improved skin temperature, 
ankle-arm pressure index, transcutaneous partial 
pressure of oxygen, and claudication distance in 
patients with postoperative diabetic foot disease. This 
is accompanied by a significant increase in 
neovascularization and complete or gradual ulcer 
healing (136). In conclusion, transplantation of 
HUC-MSCs may be a potential strategy for clinical 
application in DFU, although its long-term effects 
remain to be elucidated. 

Impaired wound healing in DM  
Impaired wound healing is a common DM 

complication. DM is associated with persistent 
inflammation and a defective tissue repair response. 
Impaired angiogenesis is an important factor in 
delaying chronic diabetic wound healing. Poorly 
healing wounds in DM mice exhibit a persistent 
inflammatory response, a deficiency of M2 
macrophages (137, 138), a prolonged accumulation of 
pro-inflammatory M1 macrophages, elevated levels of 

pro-inflammatory cytokines and proteases, and 
reduced levels of various growth factors (139-141). 
HUC-MSCs can self-renew, multi-directionally 
differentiate, and secrete multiple cytokines and 
growth factors, and their mechanisms to improve 
diabetic wound healing mainly include 1) promoting 
diabetic wound healing by differentiating into 
keratin-forming cells (142); 2) secreting molecules 
related to wound healing in a paracrine manner 
(VEGF, PDGF, KGF, TGF-β1, SMA, scavenger 
receptor class B type1 (SR-B1), and platelet endo-
thelial cell adhesion molecule-1 (PECAM-1/CD31)) to 
promote angiogenesis (143-146); 3) regulating the 
activity, function, and proliferative capacity of 
vascular endothelial cells by reducing oxidative stress 
and inflammatory response, thereby promoting 
angiogenesis (147, 148); 4) inducing functional 
recovery of vascular endothelial cells by modulating 
macrophage phenotype (149); and 5) stimulating 
diabetic fibroblast activity and promoting cell 
proliferation, collagen synthesis, and glycosamino-
glycan levels, thereby playing a role in skin wound 
healing play a role (150). Moreover, HUC-MSCs may 
be more effective than fibroblasts in stimulating 
diabetic wound healing (151, 152). Additionally, 
HUC-MSCs accelerate wound healing in diabetic rats 
by increasing epidermal and dermal thickness and 
density, accelerating epithelial and collagen 
regeneration, and increasing angiogenesis (153). Han 
et al. found that the Wnt signalling pathway 
activation promoted the proliferation and 
differentiation of HUC-MSCs, thereby facilitating the 
healing of diabetic skin wounds (154). Yue et al. found 
that c-Jun overexpression promotes the proliferation 
and migration of HUC-MSCs in vitro and accelerates 
diabetic wound closure, re-epithelialization, and 
angiogenesis in vivo (155). The development of new 
technologies has extensively improved the 
therapeutic efficacy of HUC-MSCs. HUC-MSCs can 
improve skin wound healing in diabetic mice by 
combining with Pluronic F127 hydrogel (156), 
tissue-engineered scaffolds (157, 158), or Cas9-AAV6 
engineering modification (159). Overall, HUC-MSC 
transplantation may have a therapeutic effect on 
impaired diabetic wound healing; however, its 
specific therapeutic modalities and safety need to be 
further explored. 

HUC-MSCs infusion is safe and effective 
for COVID-19 with diabetes 

Currently, coronavirus disease 2019 (COVID-19) 
is a serious global public health problem and is 
significantly associated with an increased risk of 
developing DM (160). At the same time, patients with 
DM are at a high risk of developing severe COVID-19 
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infections, have a complex disease process, and have 
significantly higher mortality rates (161, 162). Severe 
COVID-19 is thought to result from the hyper- 
inflammatory state and overactive immune response 
caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection, as well as 
cytokine storm and immune thrombosis. The SARS- 
CoV-2 spike glycoprotein binds to angiotensin- 
converting enzyme 2 (ACE2), and the serine protease 
transmembrane protease serine 2 (TMPRSS2) initiates 
S proteins that can facilitate viral entry into cells, viral 
replication, and cell-to-cell transmission (163). The 
activity of ACE2 is increased in DM mice (164, 165) 
and significantly increased in patients with DM 
treated with angiotensin-converting enzyme 
inhibitors (ACEI) and angiotensin receptor blockers 
(ARB) (166), suggesting that patients with DM may be 
at increased COVID-19 risk. 

MSCs can achieve immunomodulation by 
secreting various cytokines through paracrine 
pathways or by interacting directly with the immune 
cells (167). ACE2 and TMPRSS2 were expressed at 
low levels in HUC-MSCs, suggesting that HUC-MSCs 
may have the ability to "evade" viral infection and 
thus exert immunomodulatory effects (168). 
HUC-MSCs reduced the levels of inflammatory 
molecules associated with the COVID-19 "cytokine 
storm", including interferon-γ (IFNγ), IL1β, IL-6, and 
TNFα, and regulated upon activation of normal T cell 
expressed and secreted factor (RANTES). 
Additionally, no serious adverse events related to 
HUC-MSC infusion have been observed (169, 170). 
HUC-MSCs improved respiratory distress and 
reduced inflammatory biomarkers in patients with 
critically ill COVID-19-induced automated resources 
directory service (ARDS) (171). Tao et al. found that 
UC-MSCs significantly increased pulmonary static 
compliance, maintained a stable partial pressure of 
oxygen (PaO2)/fraction of inspired oxygen (FiO2) 
ratio, and improved renal function in critically ill 
COVID-19 patients, suggesting that UC-MSCs 
transplantation may have a positive therapeutic effect 
in critically ill COVID-19 patients  (172). In conclusion, 
HUC-MSC therapy may be a potential treatment 
option for DM combined with COVID-19. 

Opportunities and challenges 
HUC-MSCs have shown impressive results in 

treating DM and its complications, but most studies 
are still in the preclinical stage. Improving the 
survival and efficacy of HUC-MSCs after transplanta-
tion in a challenging metabolic environment may be 
an interesting topic in the future, as elevated 
palmitate levels in the sera of obese and T2DM 
patients lead to a shift from an immunosuppressive to 

an immunostimulatory state in MSCs, suggesting that 
the metabolic disease environment alters the 
immunomodulatory efficacy of healthy donor MSCs 
(173). Boland et al. found that culturing HUC-MSCs in 
xeno-free conditions attenuated palmitate-induced 
impairment of the immunomodulatory function of 
HUC-MSCs (174). Additionally, the mode of MSCs 
administration affects therapeutic efficacy, with 
intravenous delivery methods being more effective 
than intraperitoneal grafts (175). Local delivery causes 
MSCs to cluster into "spheroids", thereby altering 
gene expression and phenotype. In 2020, researchers 
found that budesonide could act synergistically with 
prostaglandin E2 (PGE2) produced by spheroid MSCs 
to inhibit T cell proliferation at the PGE2 receptors 
EP2 and EP4 (176). Moreover, IPCs may be 
immunogenic and trigger immune responses after 
transplantation into the host owing to changes in the 
immune microenvironment and immune cell 
infiltration, thus reducing cell survival and further 
differentiation (177). However, encapsulation of IPCs 
with alginate has been shown to avoid graft rejection, 
which greatly improves the efficacy of allogeneic or 
xenogeneic MSCs in the treatment of DM (178). 

Stem cell banking is the most important life 
resource for human beings, which can provide 
high-quality seed cell resources for stem cell therapy. 
By establishing a standardized production process of 
MSCs, it can improve stem cell preparation quality 
and promote the sustainable development of stem cell 
clinical applications. Actively promoting the clinical 
translation of stem cell therapy and improving the 
survival rate and efficacy of HUC-MSCs after 
transplantation will become the top priority of stem 
cell technology research nowadays. With the 
development of technology, the field of stem cell 
research has become a frontier hotspot. The 
implantation of the bioartificial pancreas (179), the 
labelling of nanoparticles (NP) (180), and the 
co-microencapsulation of HUC-MSCs/human 
pancreatic islet-derived progenitor cells (hIDC) (181) 
may provide new tools for cellular therapy of DM. 
Carboxylic acid-functionalized single-walled carbon 
nanotubes (f-SWCNT-COOH) (182) and some 
cytokines (183) can increase the viability and ex vivo 
expansion of hematopoietic stem cell (HSC) and/or 
hematopoietic stem progenitor cell (HSPC). These 
studies provide new perspectives for developing DM 
cell transplantation therapies based on HUC-MSCs. 
We believe that the effectiveness of HUC-MSC 
therapy will be greatly improved by applying 
advanced technologies such as gene modification, 
nanotechnology, magnetic targeting technology, and 
tissue engineering technology. We believe that soon, 
HUC-MSCs may provide a better solution for the 
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clinical treatment of DM and its complications, and 
thus can bring new hope to a greater extent in DM 
patients worldwide. 

Conclusions 
The DM epidemic and its complications pose a 

major threat to global health, accompanied by high 
morbidity and mortality. Currently, there are many 
ways to treat DM, such as traditional oral 
hypoglycaemic therapy and insulin injections, but 
they can only temporarily control blood glucose levels 
and cannot cure diabetes, and have insufficient 
control over diabetic complications, in addition to 
long-term use of hypoglycaemic drugs or insulin 
injections, which significantly reduces patient 
compliance. Recently, regenerative medicine with 
MSCs treatment as the core has provided new ideas 
and possible development directions for DM 
treatment. The characteristics of HUC-MSCs, such as 
abundant source, less ethical controversy, lower risk 
of infection, higher proliferation and differentiation 
ability, and very low immunogenicity, make them 
stand out among MSCs of different tissue sources. We 
mainly describe the application of HUC-MSCs in DM 
and its complications. HUC-MSCs transplantation is 
expected to be an efficient and ideal treatment for DM 
and its complications, and its application area will 
gradually expand (Fig. 2). Currently, HUC-MSCs 
therapy is still in the exploration stage, and further 

research is needed to improve the homing rate, 
survival rate, efficacy, and safety of MSCs after 
transplantation. With the gradual maturation of 
technology and theory, the fundamental treatment of 
diabetes will usher in a greater breakthrough. We 
believe that HUC-MSCs transplantation can provide 
more options for the management of DM and its 
complications and bring longer-term benefits to 
patients. 
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