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Abstract 

Adverse drug events due to drug-drug interactions can be prevented by avoiding concomitant use of causative 
drugs; therefore, it is important to understand drug combinations that cause drug-drug interactions. Although 
many attempts to identify drug-drug interactions from real-world databases such as spontaneous reporting 
systems have been performed, little is known about drug-drug interactions caused by three or more drugs in 
polypharmacy, i.e., multiple drug-drug interactions. Therefore, we attempted to detect multiple drug-drug 
interactions using decision tree analysis using the Japanese Adverse Drug Event Report (JADER) database, a 
Japanese spontaneous reporting system. First, we used decision tree analysis to detect drug combinations that 
increase the risk of rhabdomyolysis in cases registered in the JADER database that used six statins. Next, the 
risk of three or more drug combinations that significantly increased the risk of rhabdomyolysis was validated 
with in vivo experiments in rats. The analysis identified a multiple drug-drug interaction signal only for 
pitavastatin. The reporting rate of rhabdomyolysis for pitavastatin in the JADER database was 0.09, and it 
increased to 0.16 in combination with allopurinol. Furthermore, the rate was even higher (0.40) in combination 
with valsartan. Additionally, necrosis of leg muscles was observed in some rats simultaneously treated with 
these three drugs, and their creatine kinase and myoglobin levels were elevated. The combination of 
pitavastatin, allopurinol, and valsartan should be treated with caution as a multiple drug-drug interaction. Since 
multiple drug-drug interactions were detected with decision tree analysis and the increased risk was verified in 
animal experiments, decision tree analysis is considered to be an effective method for detecting multiple 
drug-drug interactions. 

Key words: multiple drug-drug interaction; decision tree analysis; spontaneous reporting system; statin; rhabdomyolysis; 
polypharmacy 

Introduction 
Adverse drug events (ADEs) due to drug-drug 

interactions (DDIs) can be prevented by avoiding 
concomitant use of causative drugs, unlike the side 
effects of single drugs [1-4]. Therefore, to prevent 
ADEs, it is important to identify drug combinations 
that lead to DDIs. However, it is not possible to detect 
all DDIs during the clinical trials of drug development 
due to the limited target patients and concomitant 
drugs [5]. In fact, many drugs such as solivudine, 

cerivastatin, mibefradil, cisapride, and terfenadine 
have been withdrawn from the market owing to the 
occurrence of ADEs due to DDIs post-marketing [6-8]. 
Therefore, it is important to detect DDIs using real- 
world databases such as the spontaneous reporting 
system (SRS) to identify ADEs in the early stage of 
post-marketing and to get feedback for clinical 
practice [9-14]. 
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On the other hand, the number of patients with 
polypharmacy is increasing in developed nations 
owing to the rising number of comorbidities per 
patient [15]. As patients with polypharmacy who use 
more than 5-6 drugs have higher rates of emergency 
hospitalization, re-hospitalization, death, and onset of 
ADEs [16-18], polypharmacy is recognized as a 
problem owing to the number of drugs. Therefore, 
studies have focused on reducing the number of 
prescribed drugs, i.e., deprescribing [19]. However, 
although DDIs caused by three or more specific drugs 
(i.e., multiple DDIs) may potentially underlie ADEs 
due to polypharmacy, the existence of multiple DDIs 
is poorly known. In Japan, which has been facing a 
serious problem of polypharmacy due to the aging 
population, the Japanese Adverse Drug Event Report 
(JADER) database was released in 2012 as an SRS, and 
its use for the detection of DDIs has been discussed. 
From the early release of this database, the detection 
of multiple DDIs has been a challenging issue [20]. 

To the best of our knowledge, the only previous 
study that detected multiple DDIs using the SRS 
database was by Yao et al. They used the SRS 
database to search for combinations of multiple DDIs 
that cause myopathy and detected a significant signal 
from a combination of seven drugs [21]. However, 
since this method comprehensively investigates all 
drug combinations, many small signals are detected, 
thus, making it difficult to interpret results. 

Multiple logistic regression analysis is often used 
as a method to evaluate pairwise DDIs from the SRS 
[22]. However, to evaluate three or more DDIs with a 
generalized linear model, such as logistic regression 
analysis, a large number of interaction terms must be 
included in the regression equation. This results in the 
detection of many small signals because of which it is 
difficult to interpret the results. On the contrary, 
decision tree analysis, which is one of the nonlinear 
data mining methods, enables the division of the 
population with optimal variables without using 
predictive equations, and indicates complex 
interactions easily and clearly [23,24]. 

In the medical field, decision tree analysis is used 
to predict patient outcomes [25], and attempts have 
been made to including the drug as a predictor [22]. 
We considered that multiple DDIs could be detected 
using drug as a predictor of rhabdomyolysis. 
Although a sufficient number of samples are required 
for decision tree analysis, a large database, such as 
JADER, is a suitable resource for the analysis [26]. 

In this study, we applied decision tree analysis to 
the JADER database to identify multiple DDIs that 
increase the risk of occurrence of rhabdomyolysis, a 
characteristic ADE of the six statins prescribed in 
Japan. Additionally, according to the World Health 

Organization, signals detected from the analysis of 
SRS database require further validation [27]. 
Therefore, some recent reports on signal detection 
have attempted to increase the verifiability of signals 
by combining in vivo or in vitro studies [10,12]. In this 
study, we conducted in vivo experiments in rats to 
verify whether the detected drug combinations 
increase the risk of occurrence of rhabdomyolysis. 

Methods 
Database information 

The JADER database was downloaded from the 
website of the Pharmaceuticals and Medical Devices 
Agency. Cases reported from April 2004 to July 2017 
were studied. JADER database consists of the 
following four tables linked by a common identifi-
cation number: “patient demographic information 
(DEMO)”, “drug information (DRUG)”, “adverse 
events (REAC)”, and “primary disease information 
(HIST)”. The DEMO table contains basic patient 
information (e.g., age, sex), DRUG table contains drug 
information (e.g., drug name, start date, end date, 
route of administration), REAC table contains ADE 
information (e.g., ADEs, date of onset), and HIST 
table contains primary disease information. In this 
study, the DEMO, DRUG, and REAC tables were 
used. All ADEs in the JADER database are registered 
by preferred terms listed in the Japanese version of 
the International Conference on Harmonization’s 
Medical Dictionary for Regulatory Activities (version 
20.0) [17]. 

Extraction of cases 
The procedure for extracting cases from the 

JADER database is shown in Fig. 1. First, cases treated 
with the six statins prescribed in Japan, atorvastatin, 
simvastatin, rosuvastatin, fluvastatin, pravastatin, 
and pitavastatin, were extracted from the 
downloaded data. Next, cases treated with injectable 
medications were excluded from the study because 
injectable medications are more likely to be used for 
treatment of ADEs during hospitalization. 
Futhermore, cases with matching “sex,” “age,” and 
“registered drug names” were considered duplicate 
cases, and only the first registered case was included 
in the analysis. 

The JADER database also registers the drugs that 
were started after the onset of ADEs or finished before 
the onset of ADEs [19]. In this study, the drugs that 
were used at the time of ADE onset were included in 
the analysis in principle; thus, all drugs started after 
the onset of ADEs were excluded. However, the 
discontinued drugs were included in the analysis only 
if they were used within one week of the onset of 
ADEs because of the possibility of causing DDIs for a 
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certain period. On the other hand, drugs started 
before the onset of ADEs without the date of end of 
administration were included in the analysis only if 
they were started within 1 year of the onset of ADEs 
because they might have been used at the time of 
onset of ADEs. For cases not registered with the onset 
dates of ADEs, all registered drugs were included in 
the study. 

 

 
Figure 1. Flowchart of data cleaning. 

 

Data analysis 
The analysis procedure is shown in Fig. 2. The 

analysis was performed for each statin. First, we 
determined the initial rate (IR) of rhabdomyolysis (PT 
10039020) in each statin-using case (monotherapy 
cases were excluded) selected for the study. 
Thereafter, for each case, the presence or absence of 
rhabdomyolysis was transformed into a binary 
nominal scale and used as the objective variable in 
decision tree analysis. Further, all concomitant drugs 
except statins were transformed into a binary nominal 
scale for each case and used as an explanatory 
variable in decision tree analysis. The number of used 
drugs was also included as an explanatory variable. 
The number of cases in each hierarchy (decision 
nodes) was set to a minimum of 10 cases, and at each 
step, the hierarchy was branched by the concomitant 
drug that maximized the likelihood ratio of 
occurrence of rhabdomyolysis. Finally, a proportional 
test was used to compare the reporting rate of 
rhabdomyolysis to the IR for each decision node. 
Benjamini-Hochberg adjustment was used to correct 
for multiple comparisons. 

 

 
Figure 2. Flowchart for data analysis. 

 

Materials 
Pitavastatin calcium, allopurinol, and valsartan 

were purchased from TAKATA Pharmaceutical Co., 
Ltd. (Saitama, Japan). Rat myoglobin (MYO-2) 
enzyme-linked immunosorbent assay was obtained 
from Life Diagnostics, Inc. (West Chester, PA, USA). 
Multirotor II VLA was acquired from Central 
Scientific Commerce Inc. (Tokyo, Japan). Tissue-Tek® 
Mayer’s hematoxylin solution and Tissue-Tek® eosin 
solution were purchased from Sakura Finetek Japan 
Co., Ltd. (Tokyo, Japan). Heparin sodium was 
obtained from Mochida Pharmaceutical Co., Ltd. 
(Tokyo, Japan). Formalin neutral buffer solution 
(10%), xylene, and anhydrous ethanol were acquired 
from FUJIFILM Wako Pure Chemical Corporation 
(Osaka, Japan). Otsuka normal saline was purchased 
from Otsuka Pharmaceutical Factory, Inc. 
(Tokushima, Japan). 

Animals 
Female Wistar rats were purchased from Japan 

SLC, Inc. (Shizuoka, Japan). Rats were reared under 
normal environmental conditions (temperature: 25 °C 
± 2°C, humidity: 55% ± 5%, and lights on: 7:00 to 19:00 
h). Furthermore, the rats were provided tap water and 
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solid feed (Labo MR Stock, Nosan Corporation, 
Kanagawa, Japan), and they were acclimated for at 
least 1 week before the experiments. All animal 
experiments were approved by the Institutional 
Animal Care and Use Committee of Josai University 
(Approval No.: JU19011-2019/04/18). 

Drug administration and verification of 
rhabdomyolysis 

Fifty 6-week-old female Wistar rats were divided 
into the following groups based on the drug 
administered (n = 10 per group): pitavastatin (P) 
group; pitavastatin and allopurinol (PA) group; 
pitavastatin and valsartan (PV) group; allopurinol 
and valsartan (AV) group; and pitavastatin, 
allopurinol, and valsartan (PAV) group. Although the 
development of rhabdomyolysis with high-dose 
statins usually occurs within 14 days [28-30], no in 
vivo animal study has reported the development of 
rhabdomyolysis with pitavastatin. The only study we 
found reported some skeletal muscle involvement 
(atrophy, vacuolation, and necrosis) in some female 
rats treated with 50 mg/kg/day pitavastatin in 
repeated toxicity studies for 28 days (31). Therefore, 
we determined the dose of pitavastatin as 50 
mg/kg/day in this study. On the other hand, 
allopurinol and valsartan were administered at 24 and 
60 mg/kg/day, respectively, as the no observed 
adverse effect level [32, 33]. The drugs were 
suspended in pure water (Elix® UV, Merck Millipore, 
Tokyo, Japan) and administered orally once daily for 
14 days. 

On days 7 and 14 of drug administration, blood 
was collected from the tail vein, and blood creatine 
kinase (CK) was measured using a VetScan (Daiichi 
Chemical Co., Ltd., Tokyo, Japan). After 4 h from the 
final dose administration on day 14, blood was 
collected from the jugular vein of rats under 
anesthesia with pentobarbital, and plasma was 
separated by centrifuging the blood samples at 13,000 
rpm at 4 °C for 5 min. Drainage was performed 
immediately after blood collection via cardiac 
perfusion with 200 mL of saline containing heparin (5 
units/mL) for 10 min. Subsequently, tissue fixation 
was performed via cardiac perfusion using 200 mL of 
10% formalin neutral buffer solution for 10 min, and 
the lower leg muscles were excised. Myoglobin level 
in the collected plasma was measured using a rat 
myoglobin enzyme-linked immunosorbent assay kit 
(Life Diagnostics, West Chester, PA, USA). The 
excised lower leg muscles were embedded in paraffin, 
and they were sliced into 3-µm sections with a 
microtome. Next, the slides were immersed in xylene 
thrice and then in a series of ethanol concentrations 
(100%, 100%, 95%, and 95%). After rinsing with water, 

slides were stained with hematoxylin and eosin. 
Slides were dehydrated in a series of ethanol 
concentrations (95%, 95%, 100%, 100%), permeated 
three times with xylene, and sealed with glass slides. 

Analysis software 
JMP® 5.1.2 (SAS Institute Japan, Tokyo, Japan) 

was used for decision tree analysis whereas R 
software (R 3.2.2, Project for statistical computing) 
was used for other data analyses. 

Results 
Analysis of data from the JADER database 

Table 1 summarizes statistically significant drug 
combinations that increased the risk of 
rhabdomyolysis detected via decision tree analysis. 
Of the six investigated statins, pitavastatin was the 
only statin for which three or more drug 
combinations, i.e., multiple DDIs, were detected (Fig. 
S1). 

 

Table 1. Drug combinations that significantly increased the risk of 
rhabdomyolysis 

Statin Concomitant drugs Cases Cases (+) Rate 
Simvastatin - 353 44 0.12 (IR) 

- -  - 
Pitavastatin 
calcium 

- 739 69 0.09 (IR) 
Benzbromarone 13 5 0.38 
Allopurinol + Valsartan 10 4 0.40 

Fluvastatin 
sodium 

- 354 25 0.07 (IR) 
- -  - 

Pravastatin 
sodium 

- 1201 93 0.08 (IR) 
Bezafibrate 11 4 0.36 
Benzbromarone 21 5 0.24 
Carbocisteine 23 5 0.22 
Flunitrazepam 12 3 0.25 

Rosuvastatin 
calcium 

- 1185 91 0.08 (IR) 
Sitagliptin phosphate 
hydrate 

13 5 0.38 

Allopurinol 15 5 0.33 
Amlodipine besilate 22 6 0.27 

Atorvastatin 
calcium 
hydrate 

- 1905 144 0.08 (IR) 
Metformin hydrochloride 16 7 0.44 
Loxoprofen sodium 
hydrate 

11 5 0.45 

Doxazosin mesilate 12 4 0.33 
Pioglitazone 
hydrochloride 

14 4 0.29 

Allopurinol 28 7 0.25 
Flunitrazepam 19 4 0.21 
Isosorbide mononitrate 10 3 0.30 
Benidipine hydrochloride 12 3 0.25 

IR: Initial rate; Decision tree analysis revealed drug combinations that increased the 
reporting rate of rhabdomyolysis. The ratios indicated that the drug combinations 
indicated in this table significantly increased the risk of rhabdomyolysis (false 
discovery rate was set at 0.05 after adjustment using Benjamini-Hochberg 
correction). “Cases” represent the number of cases stratified based on concomitant 
drugs. “Cases (+)” represent the number of rhabdomyolysis events in “Cases” 
identified after stratification. “Rate” represents the reporting rate of 
rhabdomyolysis cases identified after stratification. The first row of each table 
shows the IR of rhabdomyolysis in each statin-use case. It also shows the ratio of 
the number of patients with rhabdomyolysis to the total number of patients 
included in the analysis. 
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Figure 3. Blood levels of creatine kinase following administration of pitavastatin. Data are expressed as mean ± standard error of the mean (SEM) on (A) day 7 and 
(B) day 14 of drug administration. P, pitavastatin; PA, pitavastatin + allopurinol. PV, pitavastatin + valsartan; AV, allopurinol + valsartan; PAV, pitavastatin + allopurinol + valsartan. 
Dunnett’s multiple comparison test was used to identify statistically significant differences vs. P group (* p < 0.05). 

 

Among the drug combinations listed in Table 1, 
eight drugs, metformin, loxoprofen, doxazosin, 
pioglitazone, allopurinol, flunitrazepam, isosorbide 
nitrate, and benidipine, significantly increased 
atorvastatin’s risk of rhabdomyolysis. Similarly, three 
drugs, sitagliptin, allopurinol, and amlodipine, 
increased the risk of rhabdomyolysis for rosuvastatin; 

four drugs, bezafibrate, benzbromarone, 
carbocisteine, and flunitrazepam, increased the risk 
of rhabdomyolysis for pravastatin, and only 
benzbromarone increased the risk of 
rhabdomyolysis for pitavastatin except multiple 
DDIs. No combination with fluvastatin and 
simvastatin increased the risk of developing 
rhabdomyolysis. 

Verification by animal experiments 
There was one death in the PV group on day 13 

of drug administration and one death in the PAV 
group on day 14 of drug administration. No deaths 
occurred in the remaining groups (Table 2). 
Therefore, pathological evaluation of CK, 
myoglobin levels, and lower leg muscles was 
performed on day 14 in rats that survived until the 
timepoint immediately before cardiac perfusion. 

On day 7 of drug administration, the CK level 
in all groups was similar to that in P group. 
However, on day 14, the CK level in PAV group was 
significantly higher than that in P group (Fig. 3, 
Table S1). Moreover, no significant difference was 
observed in the myoglobin concentration on day 14, 

but it tended to increase only in the PAV group (Fig. 4, 
Table S1). Pathological evaluation of lower leg 
muscles verified necrosis of the lower leg muscles in 
two of the nine surviving rats in PAV group only 
(Table 2, Fig. 5). 

 
Figure 4. Plasma myoglobin levels following administration of pitavastatin. 
Data are expressed as mean ± standard error of the mean (SEM). P, pitavastatin; PA, 
pitavastatin + allopurinol; PV, pitavastatin + valsartan; AV, allopurinol + valsartan; PAV, 
pitavastatin + allopurinol + valsartan. Dunnett’s multiple comparison test was used to 
identify statistically significant differences vs. P group. Significance was set at P < 0.05 (No 
significant difference). 
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Figure 5. Pathological specimens of lower leg muscles. (A) P, pitavastatin; (B) PA, pitavastatin + allopurinol; (C) PV, pitavastatin + valsartan; (D) AV, allopurinol + 
valsartan; (E) PAV, pitavastatin + allopurinol + valsartan. 

 
 

Table 2. Pathological evaluation of necrosis in lower leg muscles 

Group Necrosis/survived 
P 0/10 
PA 0/10 
PV 0/9 
AV 0/10 
PAV 2/9 
P, pitavastatin; PA, pitavastatin + allopurinol; PV, pitavastatin + valsartan; AV, 
allopurinol + valsartan; and PAV, pitavastatin + allopurinol + valsartan. 

 

Discussion 
In this study, multiple DDIs were identified with 

pitavastatin, allopurinol, and valsartan. Although 
cytochromes P450 (CYPs) are involved in the 
metabolism of many statins, pitavastatin is rarely 

metabolized by CYPs and it is considered a statin with 
low risk of CYP-related DDIs [34]. Therefore, 
pitavastatin is the preferred drug for polypharmacy 
patients at high risk of DDIs. However, in the present 
study, only pitavastatin was found to have multiple 
DDIs. 

Musculoskeletal ADEs have been reported for 
allopurinol [35], and rhabdomyolysis is distributed as 
a severe ADE in the Japanese package insert [14]. 
However, no study has reported ADEs due to DDIs 
associated with the concomitant use of pitavastatin 
and allopurinol. Both pitavastatin and valsartan are 
taken up in the liver by OATP1B1 and are excreted 
into the bile [36,37]. Our study findings suggested that 
the mechanism of multiple DDIs of “pitavastatin + 
allopurinol + valsartan” identified in the decision tree 
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analysis of JADER database is an additive action 
between the combination of pitavastatin and 
allopurinol on rhabdomyolysis and a decrease in the 
excretion of pitavastatin and valsartan due to 
competition for uptake into the liver. Further studies 
are required to clarify the mechanism of multiple 
DDIs to improve the level of evidence for the detected 
signals. 

In this study, we also identified pairwise DDIs. 
Several drugs listed in Table 1 such as bezafibrate, 
pioglitazone, sitagliptin, which significantly increased 
the risk of statin-induced rhabdomyolysis, have been 
reported to be associated with rhabdomyolysis 
[38-40]. Furthermore, the combination of statins with 
amlodipine or sitagliptin has been reported to 
increase the risk of rhabdomyolysis [41-43]. Therefore, 
the results of this study using decision tree analysis 
reflect previous findings and may be useful for 
detecting not only multiple DDIs but also pairwise 
DDIs. 

We have previously reported that the number of 
days of statin administration in patients developing 
rhabdomyolysis is reduced by concomitant drugs 
[44]. We believe that the number of days of 
administration is an important factor in DDIs, for 
example, in determining whether multiple DDIs 
further reduce or do not change the number of days of 
administration before the onset of rhabdomyolysis. 
Therefore, we considered it necessary to include the 
number of days of administration in the analysis of 
multiple DDIs in this study, and attempted to analyze 
them. However, in the PAV combination group, the 
number of days of administration could be calculated 
in only one case, making analysis difficult. 

JADER is an SRS that can perform time-to- 
onset analysis because it registers the start date of 
administration of each drug and the onset date of each 
ADE [17]. However, the deficiency rate of JADER is 
approximately 30% [45], and the accumulation of 
cases with no deficiency is necessary to increase the 
number of available cases for decision tree analysis. 

Limitations 
Statins rarely cause rhabdomyolysis; however, 

they pose a risk of developing rhabdomyolysis in a 
dose-dependent manner [46]. Therefore, the statin 
dose used in animal experiments to evaluate the risk 
of rhabdomyolysis is usually high [28-30]. As a result, 
although the animal experiments in this study 
supported the results of decision tree analysis, they do 
not reflect the actual clinical doses. 

Moreover, as the JADER database population 
consists of patients with ADEs, the incidence of 
rhabdomyolysis cannot be calculated using data from 
the database alone. The reporting rate of rhabdo-

myolysis obtained in this study should be used only 
for the relative comparison of concomitant risk for the 
cases registered in JADER, and it should not be 
extrapolated to the incidence in daily clinical practice. 

Conclusions 
A decision tree analysis of cases registered in the 

JADER database detected multiple DDIs with the 
combination of pitavastatin, allopurinol, and 
valsartan. Furthermore, animal studies supported the 
DDI signals obtained from decision tree analysis of 
JADER database, indicating that the risk of 
rhabdomyolysis increased with the combination of 
these three drugs. Our results suggested that decision 
tree analysis using the JADER database provided a 
method for detecting multiple DDIs, which has been 
expected to be utilized in the SRS database and will 
contribute useful findings to the advancement of 
theoretical deprescribing. 
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