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Abstract

Background: Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high mortality
and morbidity worldwide, but the underlying biological mechanisms of molecules and tumor infiltrating-
immune cells (TIICs) are still unknown.

Methods and Results: We obtained mRNAs, IncRNAs, and miRNAs expression profiles of 546 HNSCC
from The Cancer Genome Atlas (TCGA) database to develop a ceRNA network. CIBERSORT was employed
to estimate the fraction of 22 types of TIICs in HNSCC. Univariate and multivariate Cox regression and lasso
regression analyses were used to develop prognostic signatures. Then, two novel risk signatures were
constructed respectively based on six ceRNAs (ANLN, KIT, PRKAA2, NFIA, PTX3 and has-miR-148a-3p) and
three immune cells (naive B cells, regulatory T cells and Neutrophils). Kaplan-Meier (K-M) analysis and Cox
regression analysis further proved that these two signatures were significant prognostic factors independent of
multiple clinicopathological characteristics. Two nomograms were built based on ceRNAs-riskScore and
TIICs-riskScore that could be used to predict the prognosis of HNSCC. Co-expression analysis showed
significant correlations between miR-148a-3p and naive B cells, naive B cells and plasmas cells.

Conclusion: Through construction of the ceRNA network and estimation of TIICs, we established two risk
signatures and their nomograms with excellent utility, which indicated the potential molecular and cellular
mechanisms, and predicted the prognosis of HNSCC.

Key words: head and neck squamous carcinoma; ceRNA network; immune infiltration; prognostic signature;
nomogram

Introduction

Head and neck squamous cell carcinoma  HNSCC has no significant improvement [6].

(HNSCC) ranks the sixth common malignancy, with
more than 500 000 new cases diagnosed worldwide
each year [1].

HNSCC mainly arises from larynx, oropharynx,
oral cavity and hypopharynx. Smoking, drinking
alcohol and infection with human papillomavirus
(HPV) are the main identified risk factors for HNSCC
patients [2-5]. Most patients of HNSCC are in the
mid-late stage due to the anatomic factors and weak
consciousness of self-care. Although the development
of treatment strategies including surgical operation,
radiotherapy, chemotherapy and targeted therapy,
the 5-year overall survival rate of locally advanced

Therefore, it is in a desperate need to look for new
molecular and cellular biomarkers to better guide
diagnosis and treatment of HNSCC.

In 2011, Salmena et al. presented the ceRNA
hypothesis, in which microRNAs (miRNAs) act as
“sponges” sharing common miRNA recognition
elements (MREs) with both coding and non-coding
RNAs to regulate their respective expression level [7].
Long non-coding RNAs (IncRNAs) are endogenous
RNA molecules greater than 200 nucleotides in length
and lack protein-coding ability [8]. Importantly,
IncRNAs competitively bind to miRNAs, so as to
regulate the expression level of mRNAs and involve
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in the regulation of biological behaviors of tumor
cells. Many studies have demonstrated that IncRNAs
play an essential part in the occurrence and
progression of various malignancies [9-11]. As critical
negative regulators of gene expression, miRNAs are
small, non-coding RNAs, with approximately 22
nucleotides [12]. Numerous studies showed that
miRNAs affect gene expression by guiding RNA-
induced silencing complex (RISC) to target mRNA,
leading the degradation or translation inhibition of
RNA [13].

Recently, tumor immune-infiltrating cells (TIICs)
have attracted widespread attention, especially in
light of significant progress in immunotherapy.
HNSCC is abundant with TIICs, and the majority of
patients respond positively to immunotherapy [14].
Some studies have shown that different composition
and localization of TIICs were firmly related to the
prognosis of HNSCC [15]. However, in the past,
researchers used traditional methods such as
immunohistochemistry and flow cytometry to explore
the composition of immune cells in tumors, which set
limit on the number of cells that could be
synchronously examined. CBERSORT is a new
method based on machine learning, which enables
estimation of 22 immune cell types” abundances from
gene expression profiles of various bulk tissues [16].
For the superior performance of CIBERSORT,
numerous studies performed it to analyze the fraction
of immune cells in multiple cancers.

The roles of ceRNA networks and TIICs in
HNSCC have been studied respectively [17, 18]. Up to
now, no comprehensive study integrating the
function of both ceRNAs and TIICs in HNSCC has
been published. In the current study, we identified
differentially expressed ceRNAs of HNSCC using
transcriptome profiles retrieved from the TCGA
database. Through CIBERSORT, we analyzed the
proportion of 22 immune cells in HNSCC.
Furthermore, two prognostic risk signatures based on
survival-related ceRNAs and significant TIICs were
established. ~Most strikingly, we performed
co-expression analysis between ceRNAs and TIICs to
identify underlying immune-related biomarkers.

Materials and methods

Data collection

Transcriptome profiling (level 3) of 546 HNSCC
samples was collected from TCGA-GDC database
(https:/ /portal.gdc.cancer.gov/) (workflow Type:
HTSeq-Counts, Project: TCGA-HNSC), including
RNA-seq and miRNA-seq data. Corresponding
clinical information was obtained from the database
as well. Patients with follow-up time under 30 days

and incomplete follow-up data were eliminated.
Transcriptome profiles of 502 tumor samples and 44
normal samples were obtained. And 519 patients with
follow-up data were used for further survival
analysis. All data was preprocessed by Perl language
and R software. All data were downloaded from the
TCGA database; no additional approval by the Ethics
Committee was claimed.

Analysis of differentially expressed mRNAs
(DEGs), miRNAs (DEMs) and IncRNAs (DELs)

Ensemble database (http://asia.ensembl.org/
index.html) was used to annotate mRNA and
IncRNA. MiRBase database (http://www.mirbase.
org/) was applied to annotate miRNA[19]. All
transcriptome profiling data was normalized by
Voom standardized method. Differential expression
analyses of mRNA, miRNA and IncRNA between
HNSCC and adjacent tissues were realized by
“DESeq2” package with R software. All P values were
adjusted by false discovery rate (FDR). Setting
adjusted P -value < 0.01 and |log (Fold change) | >1
as the filter criteria. We then drew heatmaps and
volcano figures for DEGs, DEMs and DELs with the R
package “ggplot2”. Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of DEGs were realized via R
software with clusterProfiler, enrichplot and ggplot2
packages, and both p- and g-value < 0.05 were
considered significantly enriched.

Construction of the ceRNA network

“GDCRNATools” package [20] in R software
was utilized to establish a ceRNA network. We chose
Starbase (http://mirtarbase.mbc.nctu.edu.tw/) to
predict the interactive relationship between DEGs and
DEMs or DELs and DEGs, which comprehensively
identify the RNA-RNA and protein-RNA interaction
networks based on 108 CLIP - Seq datasets of 37
independent studies [21]. Afterwards, we chose
miRNA regulated both mRNAs and IncRNAs with
significant results in hypergeometric test and
correlation analysis to establish a ceRNA network.
The network was then visualized by Cytoscape v.3.5.1
[22].

Construction and evaluation of
ceRNAs-related prognostic signature

We performed the least absolute shrinkage and
selection operator (LASSO) analysis to control
overfitting using “glmnet” package in R software.
Multivariate Cox regression analysis was applied for
selecting optimal biomarkers to construct a
ceRNAs-related signature. This signature employed
stepwise selection and selected an optimal model by
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Akaike information criteria (AIC). Mann-Whitney U
test and Kruskal-Wallis test were utilized to analyze
the relationship  between  clinicopathological
characteristics and the risk score. Then we employed
K-M method to explore the survival variations
between high-risk group and low-risk group.
Afterwards, univariate and multivariate Cox analyses
were performed to further explore the prognostic
value of the riskScore independent of other clinical
features involving age, gender, grade and TNM stage.
Next, a nomogram was established to predict the
survival possibility of each patient. Through
calibration, ROC (receiver operating characteristic)
and K-M curves, we evaluated the accuracy and
discrimination of the nomogram.

Estimation of TIICs fractions

CIBERSORT (http:/ /cibersort.stanford.edu/) is
a deconvolution algorithm to precisely estimate
proportions of multiple immune cells in gene
expression profiles from bulk tumors. The continuous
development of CIBERSORT raised a growing focus
on the studies of cellular heterogeneity [23, 24]. To
explore the cellular reasons for biological mechanisms
of the significant genes in the ceRNA network, our
current study estimated 22 types of TIICs in HNSCC
and adjacent tissues via CIBERSORT algorithm. Only
when the samples with P-value of CIBERSORT less
than 0.05 could be used for further survival study. The
bar plot and the heatmap were used to describe the
proportion of 22 TIICs in each sample. Then,
Wilcoxon rank-sum test was applied to assess the
difference of TIICs between tumor and normal tissues.
The results were visualized via violin plot.

Construction and evaluation of TIICs-related
prognostic signature

Univariate Cox analysis was performed to find
prognostic TIICs. Lasso regression was utilized to
shrink TIIC candidates. Then significant TIICs were
put into multivariate model to construct a
TIICs-related prognostic signature. Univariate and
multivariate Cox analyses were utilized to explore
independent prognostic factors for HNSCC. ROC and
K-M curves were used to evaluate the predictive and
prognostic value of the signature. Then, we
constructed a nomogram to predict the prognosis of
HNSCC. And the calibration curve was utilized to
access the accuracy. Pearson correlation analysis was
applied for investigating the association between each
type of TIICs and significant ceRNAs.

Statistical analysis

All statistical analyses were performed with R
software (v4.0.2) (package: GDCRNATools, ggplot2,
DEseq?2, clusterProfiler, survminer, survival, glmnet,

timeROC, rms, preprocessCore, pheatmap, corrplot
and vioplot).

Results
Identification of DEGs, DEMs and DELs

The flow chart of our work is shown in Figure 1.
We integrated gene expression profiles of 502 tumor
samples and 44 normal samples from TCGA into this
study. And 2219 DEGs (1106 up-regulated, 1113
down-regulated) and 115 DELs (89 up-regulated, 26
down-regulated) were acquired between normal
samples and tumor samples. In order to construct a
MRNA-MmiRNA-IncRNA ceRNA network, we also
integrated miRNA expression profiles of 569 samples
of HNSCC patients. As a consequence, 166 DEMs (83
up-regulated, 83 down-regulated) were retrieved with
the same cut-off value (Fig. 2A-G).

GO and KEGG Enrichment Analysis

Results from GO enrichment analysis manifested
that the DEGs almost mapped to extracellular matrix
organization, extracellular structure organization,
leukocyte migration, organelle fission and positive
regulation of cell adhesion (Fig. 3A). The KEGG
enrichment analysis displayed the enrichment of
Human papillomavirus infection, PI3K-Akt signaling
pathway, Cytokine-cytokine receptor interaction,
Focal adhesion, Regulation of actin cytoskeleton and
other tumor-related signaling pathways (Fig. 3B).

The ceRNA network construction and survival
analysis

A total of 4 DELs, 11 DEMs, 98 DEGs and 180
edges were included in the network (Fig. 4A).
Subsequently, we chose IncRNA KCNQ1OT1 and its
linked mRNAs and miRNAs and then built a
sub-network, which contained 1 DELs, 7 DEMs, 42
DEGs and 92edges (Fig. 4B). Then K-M method was
performed to identify prognostic RNAs in the
constructed ceRNA network. The results indicated
that ITGA5, has-miR-148a-3p, GNA12, PTX3,
KDELC1, PRUNE2, CALU, CDCA4, SATB1, ACSL1,
AC093010.3, KIRREL1, PDE4B, FZD6 and
has-miR-29¢-3p were significantly associated with
survival (Fig. 5A-O).

Construction of ceRNAs-related prognostic
signature

Univariate Cox analysis was applied employing
the coxph function of the “survival” package with the
cut-off criteria of P-value < 0.05. In order to prevent
the signature from overfitting, lasso regression was
performed (Fig. 6A). And 12 genes were identified
with the optimal adjustment parameters determined
by 10-fold cross-validation (Fig. 6B). Ultimately, by
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multivariate Cox regression, 6 key biomarkers in the = was utilized to stratify patients into high- or low-risk
ceRNA network including ANLN, KIT, PRKAA2,  group based on the median risk score. K-M analysis
NFIA, PTX3 and hsa-miR-148a-3p were incorporated  demonstrated that the high-risk group showed worse
into the ceRNAs-related signature for further study = prognosis compared to the low-risk group (P < 0.001)
(Fig. 6C). The risk score was calculated by the (Fig. 6D), which suggested the ceRNAs-related risk
following formula. Risk score =  signature has great prognostic prediction ability. The
0.21*ANLN-0.15*KIT+0.08*PRKAA2-0.20*"NFIA+0.12*  high-risk group also had higher risk score and
PTX3-0.17*has-miR-148a-3p (Table 1). The risk score  mortality rate compared with the low-risk group (Fig.
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Figure 1. A flow chart of the analytical process.

6E and F). The heatmap showed
that ANLN, PTX3, PRKAA2 were
up-regulated in the high-risk
group, while NF1A, miR-148a-5p
and KIT were up-regulated in the
low-risk group (Fig. 6G).

Clinical correlation analysis
and nomogram construction
based on ceRNAs-related
prognostic signature

As shown in Figure 7A-D,
the risk scores among different
grade exhibited statistical
significance, and a higher grade
was related to a higher risk score
(P = 0.003). Similar results were
observed in stage (P = 0.037),
tumor status (P = 0.028) and
lymph node metastasis degree (P
= 0.011), which suggested that
the ceRNAs-related signature
could potentially predict
malignant biological behavior of
HNSCC. Univariate (HR = 1.872,
95% CI: 1.579-2.219, P < 0.001)
and multivariate Cox regression
analysis (HR = 1.747, 95% CIL
1.458-2.094, P < 0.001) uncovered
that the ceRNAs-related
signature was an independent
prognostic factor in HNSCC (Fig.
7E-F). In order to predict the
prognosis of each sample, a
nomogram integrated
ceRNAs-related signature and
lymphatic metastasis degree was
established (Fig. 8A).
Furthermore, ROC and
calibration curves exhibited an
acceptable utility and
discrimination for the model
(AUC of 3-year was 0.694) (Fig.
8B-C).
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Figure 2. Differentially expressed genes between normal and tumor tissues. The heatmap (A) and the volcano plot (D) of 2219 DEGs; The heatmap (B) and the volcano plot (E)
of 115 DELs. The heatmap (C) and the volcano plot (F) of 166 DEMs; The composition of differentially expressed genes (G). LogFC > 1.0 or < -1.0 and FDR < 0.01.
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Figure 3. Functional enrichment analysis. GO analysis of DEGs in HNSCC (A); KEGG pathways of DEGs in HNSCC (B).

Table 1. Six prognostic ceRNAs identified from multivariate Cox
regression analysis

ceRNAs coef HR HR95L HR.95H p-value
ANLN 0.215 1.240 1.064 1.444 0.006
KIT -0.154 0.858 0.772 0.953 0.004
PRKAA2 0.078 1.081 1.018 1.149 0.012
NFIA -0.196 0.822 0.681 0.993 0.042
PTX3 0.116 1123 1.051 1.200 0.001
hsa-miR-148a-3p  -0.167 0.847 0.720 0.995 0.044

Profiles of TIICs in HNSCC

The fractions of 22 TIICs were assessed by
CIBERSORT algorithm, as shown in Figure 9A-B. To
explore significantly differential distribution of TIICs

in normal and tumor groups, Wilcoxon-rank sum test
was conducted. The results were visualized by violin
plot shown in Figure 9C. B cells naive, plasma cells, T
cells gamma delta, NK cells resting, NK cells
activated, monocytes, macrophages MO0, dendritic
cells activated and mast cells resting were obviously
altered between two groups.

Construction of TIICs-related prognostic
signature

K-M analysis was performed to identify
prognostic TIICs, as shown in Figure 10A-C, the
proportion of MO Macrophages, naive CD4 T cells and
follicular helper T cells significantly associated with
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survival (P < 0.05). Then 22 types of immune cell were
incorporated into univariate cox regression. The
results of the lasso regression indicated that the model
was not overfitting (Fig. 10D-E). After multivariate
Cox regression analysis, three TIICs including naive B
cells, T cells regulatory (Tregs) and neutrophils
constituted a new TIICs-related prognostic signature
(Fig. 10F). The risk curve and scatterplot indicated

that samples in high-risk group exhibited higher risk
scores and mortality rates (Fig. 10G-H). The fractions
of three immune cells between high-risk and low-risk
group were visualized by heatmap (Fig. 10I). In the
low-risk group, the fractions of naive B cells and Tregs
were higher than those in high-risk group. However,
the fraction of neutrophils behaved oppositely.

Figure 4. Construction of the ceRNA network. The ceRNA network of DEGs, DEMs and DELs (A). The IncRNA KCNQI1OT]I sub-network (B). The rectangles indicate mMRNAs
in light blue, ellipses represent miRNAs in light red and diamonds represent IncRNAs in light purple.
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Figure 7. Clinical correlation analysis. Comparison of risk score among different grade (A), stage (B), tumor status (C) and lymph node metastasis degree (D). The univariate (E)
and multivariate (F) Cox regression analysis of risk score, age, gender, grade, and TNM stage.
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Clinical correlation analysis and nomogram
establishment based on TIICs-related
signature

As shown in Figure 11A-C, TIICs-riskScore
significantly linked to stage, lymph node metastasis
degree and tumor status (P < 0.05). Then univariate
and multivariate Cox regression analyses showed the
TIICs-related  prognostic  signature was an
independent prognostic factor in HNSCC (P < 0.001)
(Fig. 11D-E). K-M curve showed low-risk group had
better prognosis than high-risk group (Fig. 12A). A
nomogram integrated TIICs -related signature and
lymph node metastasis degree was constructed (Fig.
12C). The calibration and ROC curves of 3-years
exhibited acceptable accuracy and discrimination of
the TIICs-related signature (Fig. 12B, D).

Co-expression analysis

The possible correlation between each immune

cell was shown in Figure 13A. Macrophages MO
showed a significant negative correlation to CD8 T
cells (R = -0.52). Plasma cells showed a significant
positive correlation to naive B cells (R = 0.5).

The co-expression analyses between TIICs and
ceRNAs were realized by Pearson correlation analysis
(Fig. 13B). There were positive correlations between
the proportion of naive B cell and the expression level
of hsa-miR-148a-3p (R = 0.5, P < 0.001), KIT (R=0.33, P
< 0.001) and PRKAA2 (R = 0.21, P < 0.001). While
there was a negative association between the
proportion of Tregs and the expression level of ANLN
(R=-0.26, P <0.001) (Fig. 13C-F).

Discussion

HNSCC is regarded as a common malignancy
with high mortality and morbidity worldwide.
Although tremendous progress has made in
multidisciplinary = treatments, the prognosis of
HNSCC currently is still unfavorable [1]. Therefore,
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researchers are obliged to find novel biomarkers for
diagnosis, prognosis and therapy. Recently, emerging
evidence manifested that molecular spectrum of
tumors and landscape of TIICs play a vital role in
oncogenesis and progression and were frequently
considered as potential prognostic biomarkers [25,
26].

That rapid development of high-throughput
sequencing and bioinformatics enables researchers to
identify numerous aberrant expressions of RNAs and
differential fraction of immune cells between normal
Different

biological

from traditional
studies which

tissues.
and cell

and tumor
molecular
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emphasized a particular molecular interaction,
establishment of a ceRNA network offers a more
comprehensive sight of the mechanism of RNA
regulation in HNSCC. In this study, we first identified
prognostic ceRNAs and immune cells. Afterwards,
based on these results, we established two risk
signatures with great prognostic value and high
accuracy and discrimination. In addition, through
sub-network construction of IncRNA KCNQ1OT1 and
co-expression analysis of significant ceRNAs and
TIICs, we noticed a potential regulatory mechanism of
KCNQ1O0T1 (IncRNA), miR-148a-3P (miRNA), ITGA5
(mRNA) and naive B cell.
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Figure 10. Construction of TlICs-related risk signature for HNSCC. Kaplan-Meier curves showed Macrophages MO0, naive CD4 T cells and follicular helper T cells were
significantly associated with survival (A-C). The LASSO regression analysis showed five TIICs were significant for modeling (D-E). Multivariate Cox proportional hazards
regression model integrated three TIICs into the TIICs-related prognostic signature (F). The risk curve of each patient reordered by risk score (G). The scatter plot of all patient’s
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LncRNA is a novel class of non-coding RNA
defined as a transcript longer than 200 nucleotides,
and is closely linked to tumorigenesis and cancer
development in various cancers [27-29]. The ceRNA
hypothesis suggested a new modulation mechanism
that IncRNA may inhibit miRNA function via acting
as an endogenous sponge, consequently modulate the
expression of target mRNA [13]. In the current study,
we demonstrated 116 DELs, 166 DEMs and 2219
DEGs in HNSCC samples versus their normal tissues.
Through GO and KEGG analyses, we further

investigated the DEGs-related function and
pathways. The GO results exhibited that the functions
primary contained extracellular organization,
collagen fibril organization and leukocyte migration,
which were related to the malignant biological
behavior of HNSCC [30-32]. The KEGG results
showed that DEGs significantly enriched in human
papillomavirus  infection, PI3K-Akt signaling
pathway and cytokine-cytokine receptor interaction.
Human papillomavirus infection is now believed to
be the primary reason for the rising incidence of
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HNSCC [33]. PI3K/ AKT signaling has been proven to
play a crucial part in regulating multiple tumor
cellular functions covering proliferation, growth and

HNSCC.

motility in various malignancies including HNSCC

A

B

(@)

[34]. These may explain that the DEGs we found in
this study were significantly related to survival of
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The ceRNA network of HNSCC was constructed
based on “GDCRNATools” package for R, which
contained 4 IncRNAs, 11miRNAs and 98 mRNAs.
Then all RNAs in the ceRNA network were subjected
to univariate and multivariate Cox analysis.
Subsequently, a ceRNAs -related risk signature was
established. Multivariate Cox analysis demonstrated
that this signature was an independent prognostic
factor of HNSCC. K-M curve and ROC curve further
evaluated this signature with good predictive and
prognostic value. A nomogram was also built with
high accuracy evaluated by calibration curve.

In addition, according to differential expression
(Fig. S1), survival and co-expression analysis, and
RNA-RNA interaction prediction, we present a
possible regulatory axis KCNQ1OT1/hsa-miR-148a-
3p/ITGA5, which might closely link to the
development and prognosis of HNSCC. The role of
KCNQ1OT1 in various cancers was studied
extensively. In oral squamous cell carcinoma (OSCC),
Bao et al. found KCNQ1OT1 facilitated invasion and
inhibited apoptosis via regulating miR-185-5p/Rab14

axis [35]. In colorectal cancer, Duan et al.
demonstrated KCNQ1OT1 was overexpressed and
promoted cell growth, migration and invasion
through PI3K/AKT signaling [36]. In non-small cell
lung cancer, Kang et al. indicated KCNQ1OT1
facilitated cell proliferation and inhibited apoptosis
through modulating Mir-204-5P/ATG3 axis [37].
Downregulation of miR-148a-3p closely linked the
progression of several malignancies such as
pancreatic cancer and gastric cancer [38, 39]. Lindner
et al. reported miR-148a-3p was related to drug
resistance and aggressiveness of esophageal
squamous cell carcinoma [40]. ITGA5 was associated
with tumorigenesis, migration and invasion in breast
cancer [41], liver cancer [42], colorectal cancer [43] and
ovarian cancer cells [44]. In OSCC, ITGAS5 facilitated
tumor progression and regulated PI3K/ AKT pathway
[45]. All these studies about the roles of KCNQ1OT1,
miR-148a-3p and ITGAS in various cancers were in
line with our present analysis. Combined with the
results of functional enrichment analysis of DEGs, we
speculated that IncRNA KCNQ1OT1, as a sponge of
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miR-148a-3p, might regulate ITGAS5 expression and
modulate PI3K/Akt signaling in HNSCC. This
conjecture offers a comprehensive analysis of ceRNA
network and narrows the scope of research. In the
future, we will focus on the relevant experimental
validation in vitro and in vivo.

HNSCC is a locoregional disease that is inclined
to metastasize to regional lymph nodes. Hence,
comprehensive analysis of immune landscape can
yield greater insight into immunity. CIBERSORT is
considered to be the most accurate approach
available, which not only effectively distinguishes
TIICs in cancer, but also maintains consistency across
different genomic data sources [46]. In the current
study, we utilized CIBERSORT to assess the fraction
of 22 TIICs based on expression matrix of HNSCC. We
discovered that the fractions of naive B cells, Plasma
cells, Monocytes, resting Mast cells and activated NK
cells were significantly lower in tumor samples than
normal samples (P < 0.05). Inversely, a significantly
higher density of activated dendritic cells, resting NK
cells, and M0 macrophages was observed in tumor (P
< 0.05). We also determined that naive B cells are
positively associated with plasma cells (R = 0.5), while
MO macrophages are negatively associated with CD8
T cells (R = -0.52). Through assessing the correlation
between TIICs and OS, we found patients whose M0
macrophages and naive CD4 T cells density are higher
had a shorter OS time. On the contrary, patients with
higher proportion of follicular helper T cells exhibited
longer OS. After lasso regression and Cox regression
analysis, a TIICs-related signature composed of naive
B cells, regulatory T cells (Tregs) and neutrophils was
established. This signature possessed good prognostic
and predictive value based on K-M curve, ROC curve,
clinical correlation analysis and Cox regression
analysis. In order to offer a more individualized
prediction for each patient of HNSCC, a nomogram
was built on basis of TIICs-related risk signature. And
the calibration curve of this nomogram showed high
accuracy.

As is known to all, T-cell immune response plays
a dominant role in antitumor immunity, especially in
HNSCC [47]. A recent study showed that HNSCC
with high tumor infiltration level of FoxP3+ Tregs
more often exhibited better disease-free survival [48].
A meta-analysis also provided evidence that high
infiltration of FoxP3+ Tregs was significantly related
to worse outcomes in most malignancies, including
breast, renal, cervical cancers and melanomas et al,
while it correlated with favorable outcomes in
esophageal, head and neck, and colorectal cancers
[49]. In Cox regression analysis, Neutrophil was a
significant independent risk factor (P < 0.001).
Neutrophils are the most abundant immune cells and

are viewed as the first line of anti-infection and
anti-inflammation, which also inducing tumor
progression in plentiful malignhancies including
HNSCC [50]. Neutrophils can release neutrophil
elastase, matrix metalloprotease 8 (MMPS), matrix
metalloprotease 9 (MMP9), vascular endothelial
growth factor (VEGF), cathepsin G and proteinase-3
to degrade the extracellular matrix (ECM) and
promote tumor invasion [51]. Neutrophils are also
capable of facilitating tumoral motility, migration and
invasion. For example, HNSCC cells were verified to
irritate neutrophils to release pro-inflammatory
factors, which strengthened the tumor cells migration
in the form of feedback [52]. In tongue squamous cell
carcinomas, high neutrophil infiltrating level
indicated higher lymph node metastasis degree, more
advanced stage and greater vulnerability to tumor
recurrence [53]. B cells play a pivotal role in the
humoral immunity of the adaptive immune system,
and respond to infected cells or tumor cells. B cells
could also differentiate into memory B cells or plasma
cells, which secrete immunoglobulin to bind target
antigens [54]. Tumor-infiltrating CD20+ B cell was
demonstrated to be related to favorable outcomes in
different malignancies such as breast, colorectal,
gastric, non-small cell lung and head and neck cancer
[565-59]. The results of our study were in line with the
above previous experiments.

The co-expression analysis showed that naive B
cells were positively related to miR-148a-3p (R =0.5, P
< 0.001). According to the results of Pearson
correlation analysis and hypergeometric testing of
ceRNA network, consequently, we speculated that
interactions among miR-148a-3p, KCNQ1OT1, ITGA5
and naive B cells were closely related to the
development of HNSCC. Whereas, the specific
mechanism warrants further study.

We have to admit some limitations in the current
study. First, this is a retrospective study based on
public database, of which clinical information was
incomplete. Secondary, all data in the database derive
from Western countries, so the results should be
cautiously applied in Asian countries. Third, in
CIBERSORT analysis, only the proportion of TIICs
was considered while the location of TIICs was not
considered, which may produce a certain deviation.
Last but not least, this study is a bioinformatics
analysis and has not been verified by cell and animal
experiments. However, despite its limitations, our
study firstly constructed two nomograms to predict
prognosis of HNSCC based on the ceRNA network
and TIICs, and applied co-expression analysis
between ceRNAs and TIICs. Besides, we innovatively
proposed that KCNQ1OT1, miR-148a-3p, ITGA5 and
naive B cell might closely link to the tumorigenesis

http://www.medsci.org
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and progression of HNSCC. Further biological
researches should be performed to validate our
results. Notably, we are considering if exosomes
secreted by tumor cells contain ceRNAs, which
interact with TIICs and promote tumorigenesis and
progression in HNSCC.

Conclusion

In this study, we established two prognostic
signatures and their nomograms with excellent
prognostic value and utility based on the ceRNA
network and TIICs. These two prognostic signatures
may provide comprehensive clinical information for
clinicians to make individualized treatment decisions.
Particularly, with co-expression analysis between
ceRNAs and TIICs, we speculated that the
interactions among KCNQI1OT1, hsa-miR-148a-3p,
ITGAS5 and naive B cells might closely correlate with
the initiation and progression of HNSCC.

Supplementary Material

Supplementary figure S1.
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