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Abstract 

Risk assessment has high prognostic value in patients with colorectal cancer (CRC), and the use of proper 
models is an effective approach frequently used to evaluate cancer progression for further treatment 
plans. Alterations in metabolism are confirmed to be a significant feature of tumor cells and have been an 
intense focus in disease research. Here, we mined the genes that were differentially expressed in CRC 
tissues compared to paired normal samples from a public database and then constructed a novel 
assessment system for the prognosis of patients based on the value of a risk score considering the 
expression status of metabolism-related genes after screening. The score successfully stratified patients 
by risk and was externally verified in our study. Moreover, we built a nomogram combining the score and 
clinical parameters to predict patient survival using a visual method. The results suggested that the risk 
score was well fit and could provide assistance for the individual treatment of CRC patients in the clinic. 
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Introduction 
Colorectal cancer (CRC), a malignant tumor of 

the digestive tract, commonly occurs worldwide. 
According to the estimated global cancer statistics, 
CRC ranked third in terms of incidence and second in 
terms of mortality in 2018 [1]. Treatment and 
prognosis vary widely for patients with different 
cancer stages and biological features. Based on tumor- 
node-metastasis (TNM) staging, approximately one in 
five CRC patients diagnosed with stage I has a 
five-year survival rate over 90%, while the survival 
declines to 12% for stage IV CRC, which is of clinical 
significance for patients and decision-makers to 
consider [2]. Suitable methods and tools to predict 
survival prognosis are being explored and developed. 
The measurement of carcinoembryonic antigen levels 
in blood is recommended as a routine test at the time 
of diagnosis and postoperative period, and elevated 
concentrations may indicate a poor prognosis [3]. 
However, due to the complexity of the disease, the 
results of a single test tend to have low accuracy. 
Therefore, a more comprehensive method for risk 

stratification is of clinical significance. 
Alterations in nutrient and energy metabolism 

are closely involved in fueling tumor growth and 
division [4]. Glucose, lipids and proteins in the 
processes of transformation or transportation affect 
the maturation and differentiation of invasive tumor 
cells. The rules of metabolism in tumor tissues may 
significantly differ from those in normal tissues, such 
as the Warburg effect, because of adaptative 
reprogramming [5,6]. In addition to metabolites, 
several related signaling pathways have been 
indicated to participate in the intervention of 
proliferation and are associated with activated 
oncogenes in tumors [7]. By measuring the dynamic 
changes in metabolites from samples such as blood 
and tumor tissues, metabolomics is able to determine 
the pathophysiological state of CRC patients to a 
certain extent, and currently, some biomarkers have 
been identified to have potential prognostic value 
[8,9]. Reprogramming metabolism as a promising 
target for initial prevention and selected treatment 
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along with the detection of metabolic alterations for 
risk assessment in CRC patients have been 
prospectively proposed [10]. 

In this study, we aimed to construct a prediction 
model for CRC patients concentrated on the 
expression of metabolism-related genes. We obtained 
the expression of genes from public databases and 
screened out potential genes with significant clinical 
value. Using these genes, we developed a prognostic 
scoring system to predict the risk of CRC patients and 
verified the accuracy with external data. Through 
statistical approaches, a novel model combining a 
metabolic risk score and clinical parameters was 
established. This model of CRC can guide genetic risk 
assessment and provide prognostic information for 
patients as well as lead to new strategies for 
therapeutic intervention. 

Materials and Methods 
Data extraction 

For CRC patients, expression profiles including 
RNA-sequencing data from The Cancer Genome Atlas 
(TCGA) and two microarray datasets (GSE17538 and 
GSE39582 based on platform GPL570) from the Gene 
Expression Omnibus (GEO) database as well as 
corresponding clinical data were available [11,12]. 
Only patients with a definite diagnosis of CRC and no 
less than 30 days of overall survival (OS) were 
included in the construction of the model. 
Furthermore, patients without extractable clinical 
parameters on age, sex and TNM stage were removed 
from the correlation testing of clinical factors. 
Calibrations to the same level and log2 
transformations were performed for all expression 
data using an R package. The lists of 
metabolism-related genes were retrieved from Kyoto 
Encyclopedia of Genes and Genomes (KEGG) gene 
sets in the Molecular Signatures Database according 
to metabolism-related pathways [13]. The data were 
identified and downloaded on January 15, 2020. In the 
TCGA dataset, 439 CRC patients were included for 
survival analysis, among which 426 patients had full 
clinical parameters. 229 cases of GSE17538 and 522 of 
GSE39582 met the requirement for validation. 

Construction of the risk score 
The CRC samples from TCGA were used as the 

training cohort, and the differentially expressed 
metabolic genes related to prognosis were selected 
with limma package at a threshold of log2 fold change 
(FC) of 1.5 and false discovery rate (FDR) of 0.05. The 
corresponding coefficients for different metabolic 
genes in the model were confirmed after statistical 
estimation with glmnet package. A formula for the 
risk score of the model was established to predict 

patients’ prognosis: risk score = Σ coefficient of gene i 
* expression value of gene i. 

Analysis of the prognostic genes 
CRC samples with mutation and copy-number 

alteration (CNA) data in TCGA PanCancer Atlas 
study were analyzed in the online database cBioPortal 
[14]. The validation utilized mRNA profile for 
comparison between the normal samples and tumor 
samples in another public database, Oncomine, and 
the threshold was set as follows: P-value, 1E−4; FC, 2; 
gene level, top 10% [15]. 

Validation of the risk score 
CRC patients with sufficient expression data and 

clinical information from the two GEO sets were used 
as the validation cohorts. The sva package was used 
for batch normalization. According to the median 
value of the risk score in the training cohort, the 
patients in the two cohorts were divided into two 
groups: high-risk and low-risk groups. Gene set 
enrichment analysis (GSEA, version 4.0.3) was 
performed to ascertain the correlation between the 
risk assessment and the metabolic genes, and the 
predictive value of the scores was tested based on 
survival curves, risk curves and receiver operating 
characteristic (ROC) curves with survival and 
survivalROC package. The process was carried out in 
accordance with the Transparent Reporting of a 
Multivariable Prediction Model for Individual 
Prognosis or Diagnosis (TRIPOD) statement (Table 
S1) [16]. 

Construction of the nomogram 
Independent risk factors were screened out 

using all patients from the training cohort and 
validation cohorts. Based on the identified variables, a 
nomogram was constructed for predicting one-, three- 
and five-year OS and visualizing the prognostic value 
with rms package. 

Statistical analysis 
All statistical analyses were performed in R 

(version 3.6.0). The Wilcoxon test was used to identify 
genes differentially expressed in tumor samples and 
normal samples. Univariate Cox proportional hazards 
regression was used to estimate hazard ratios (HRs). 
Coefficients of the prediction model were generated 
by least absolute shrinkage and selection operator 
(LASSO) regression. The survival curve was 
generated by the Kaplan-Meier method, and the 
difference in OS was evaluated by the log-rank test. 
Univariate Cox analysis and multivariable Cox 
analysis were carried out to determine independent 
risk factors for the prognosis of CRC patients. 
Confidence intervals (CIs) were set at 95%, and a 
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P-value <0.05 was considered significant in all 
statistical analyses. 

Results 
Screening of metabolism-related genes 

In total, 488 tumor samples and 42 normal 
samples from the training cohort were selected for 
gene expression analysis. We obtained 944 
metabolism-related genes from KEGG gene sets, and 
differentially expressed genes were filtered based on 
the expression profiles, of which 43 were upregulated 
and 29 were downregulated in tumor samples 
(P<0.05, Figure 1A). For further selection, 11 genes 
were shown to have prognostic significance according 
to the calculated HR values of CRC patients. All the 
genes were detected in both the training and 
validation cohorts. Among them, 3 genes (ADH1B, 
AOC3 and GPX3) might indicate worse prognosis 
than the other 8 genes (P<0.05, Figure 1B). 

 

 
Figure 1. Selection of candidate genes. (A) Differentially expressed genes 
between tumor tissues and normal tissues. The red point stands for the upregulated 
gene and the blue for downregulated gene. Gene without significance is marked in 
black. (B) Genes significantly associated with prognosis after secondary screening. 
The red point stands for the HR of corresponding gene higher than 1 and the blue 
point for HR less than1. FDR: false discovery rate; FC: fold change; HR: hazard ratio; 
CI: confidence interval. 

Table 1. Prediction model for survival 

Gene Name Coefficient 
GGT6 gamma-glutamyltransferase 6 -0.004 
ACAA2 acetyl-CoA acyltransferase 2 -0.001 
CKMT2 creatine kinase, mitochondrial 2 -0.004 
XDH xanthine dehydrogenase -0.004 
CA2 carbonic anhydrase 2 -0.001 
PAPSS2 3'-phosphoadenosine 5'-phosphosulfate synthase 2 -0.002 
GPX3 glutathione peroxidase 3 0.008 

 

Constructing the prediction model 
Above, we had already obtained candidate 

prognosis-related metabolic genes. In consideration of 
the selected genes, we performed LASSO regression 
to build the model and identify the coefficients. 
Finally, 7 genes were included in the model, and each 
coefficient numerically represented the weight of the 
expression. The individual risk score was calculated 
based on a combination of the expression status of the 
prognostic genes and their corresponding coefficients 
(P<0.05, Table 1). 

Analysis of the prognostic genes in risk score 
In the 526 samples of cBioPortal dataset, XDH 

and PAPSS2 had the most frequent mutation of 4% 
and the mutation of GPX3 was the lowest in 1.1% 
samples (Figure 2A). Additionally, we found that the 
alterations of genes in the training cohort and the 
validation cohorts were coincident with the 
Oncomine dataset. The expressions of six genes were 
at low levels in CRC except for CKMT2 (Figure 2B). 

Verification of the score 
To further confirm the reliability of the risk 

score, we simultaneously stratified the training cohort 
and the validation cohorts into high- and low-risk 
groups based on the median risk score in the training 
cohort. GSEA was performed to predict the pathways 
involved in the high-risk and low-risk groups, and the 
results showed that the risk score was significantly 
enriched in several metabolism-related biological 
processes (Figure 3). 

Compared with low-risk patients, the worse 
prognosis of patients in the high-risk group was 
confirmed in both the training cohort and the 
validation cohorts based on the distribution of risk 
scores in low-risk group and high-risk group (Figure 
4A, 5A and 6A) and the distribution of survival status 
of patients in low-risk group and high-risk group 
(Figure 4B, 5B and 6B). High-risk patients had a worse 
five-year OS than low-risk patients not only in the 
training cohort but also in the validation cohorts 
(P<0.05, Figure 4C, 5C and 6C). Additionally, the area 
under the curve (AUC) of the ROC curves of five-year 
survival for the training and validation cohorts were 
0.687, 0.621 and 0.624 respectively, which indicated 
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that the model had good effectiveness (Figure 4D, 5D 
and 6D). 

Evaluating the prognostic value of the risk 
score and constructing the nomogram for 
predicting survival 

After we pooled all the data in the three cohorts 
together, the metabolic risk score and clinical 
parameters (age, sex and TNM stage) were included 
in the univariate analysis of patient survival to 
evaluate the predictive value of the model for 
prognosis. The results indicated that the age, sex, 
TNM stage and risk score of CRC patients were all 

correlated with prognosis (P<0.05, Figure 7A). The 
results of the multivariable analysis showed that age, 
sex, TNM stage and risk score could be independent 
predictive factors for patients (P<0.05, Figure 7B). 

The independent predictive factors obtained 
from the multivariable analysis, including age, sex, 
TNM stage and risk score, were integrated to 
construct the nomogram for OS. A point scale was 
used to assign a value ranging from 0 to 100 for each 
variable, and the total points could be calculated to 
estimate the probability of survival at one, three and 
five years for CRC patients (Figure 7C). 

 

 
Figure 2. Analysis of genes in risk score. (A) Mutation and CNA data of CRC patients in cBioPortal database. The alteration rate for each gene is showed and different 
genetic alterations are marked with various colors. (B) Differential gene expressions in multiple cancer types from Oncomine database. The number in the cell represents the 
number of analyses meeting the threshold. Red represents a higher expression level of gene in tumor tissues comparing with normal tissues, and blue for the opposition. 
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Figure 3. GSEA analysis. Pathway enrichment in training cohort (A) and validation cohorts (B for GSE17538 and C for GSE87211). The point indicates enrichment score of 
different cases in concentrative function. 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

806 

 
Figure 4. Test of risk score in training cohort. (A) Distribution of risk scores in high-risk group and low-risk group. Red point indicates case in high-risk group and blue 
indicates low-risk case. (B) Distribution of survival status of patients in high-risk group and low-risk group. Blue point represents alive and red point for death. (C) Survival curve 
of OS. Red line depicts the survival of high-risk patients and blue line for low-risk patients. (D) ROC Curve for risk score. AUC: area under curve. 

 

Discussion 
In existing evaluation systems, predictive 

models for tumor prognosis mainly depend on 
clinical parameters considering the ease of obtaining 
patient data and subsequent assessment [17,18]. With 
the development of gene detection technology, the 
sequencing of a panel of key genes or even whole 
genome sequencing can be implemented using 
patients’ peripheral blood or biopsy tissues in 
hospitals or specialized laboratories. This allows 

genomics research to be more closely linked to clinical 
applications for diagnosis and treatment and makes 
the data construction of gene-related prediction 
practical. The prognosis of patients can be predicted 
more accurately at the genetic level, particularly with 
indicators that are specifically related to disease, and 
doctors can adopt an individualized approach for 
each patient. The study of the genome shows complex 
networks in genetic regulation, and a gene-related 
disease model concerning certain functions is quite 
reasonable. 
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Figure 5. Test of risk score in validation cohort (GSE17538). (A) Distribution of risk scores in high-risk group and low-risk group. Red point indicates case in high-risk 
group and blue indicates low-risk case. (B) Distribution of survival status of patients in high-risk group and low-risk group. Blue point represents alive and red point for death. (C) 
Survival curve of OS. Red line depicts the survival of high-risk patients and blue line for low-risk patients. (D) ROC Curve for risk score. AUC: area under curve. 

 
Tumors have more complex metabolic changes 

termed metabolic reprogramming caused by 
mutations in oncogenes, which has been highlighted 
as a core hallmark of cancer [19]. Metabolism, 
including catabolic processes and anabolic processes 
involving molecules such as lipid, glucose and 
protein, is involved in oncogenic pathways and affects 
the growth and proliferation of cancer cells. 
Production and utilization constitute a giant set of 
biochemical transformations in the urgent state of 
discovery [20]. Considering the initiation and 
progression of CRC, metabolic markers can predict 
the response to individual therapy of patients and 
whether polyps will evolve into malignancy [21]. 

Characteristic alterations in the metabolic process can 
occur much earlier than general symptoms in the 
clinic. The sequencing results of patients with familial 
adenomatous polyposis confirmed that metabolic 
reprogramming occurred at the stage of adenoma, 
early in the process of carcinogenesis [22]. The 
application of metabolism-related genes has 
advantages in sensitivity and flexibility compared 
with whole genes or mRNA analysis [23]. The 
promising prognostic value of the metabolism 
fingerprint for CRC patient survival has also been 
confirmed in various studies, which provides a 
substantial basis for our modeling work [24-26]. 
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Figure 6. Test of risk score in validation cohort GSE87211. (A) Distribution of risk scores in high-risk group and low-risk group. Red point indicates case in high-risk 
group and blue indicates low-risk case. (B) Distribution of survival status of patients in high-risk group and low-risk group. Blue point represents alive and red point for death. (C) 
Survival curve of OS. Red line depicts the survival of high-risk patients and blue line for low-risk patients. (D) ROC Curve for risk score. AUC: area under curve. 

 
Here, we used public databases to identify 

metabolic genes related to CRC patient survival. A 
prediction model was constructed with the expression 
of 7 metabolism-related genes, and we assessed the 
applicability of this model with the external data. We 
validated the risk stratification with multiple methods 
and built a nomogram that utilizes clinical parameters 
for the visualization of survival prediction and is close 
to practical application. Almost all predictors 
incorporated into the model are associated with CRC 
according to our following findings from other 
independent studies. CKMT2, CA2 and GPX3 have 
been shown the association with the risk and survival 
of CRC patients, and CA2 has a significant hazard 
ratio in elderly individuals [27-29]. As an electron 

acceptor catalyzing the oxidation of purine, XDH was 
considered a key step in molecular mechanisms 
associated with purine metabolism in CRC through 
computational methods [30]. Originating from the 
study of differential expression in metastatic and 
nonmetastatic CRC cell lines, PAPSS2 was identified 
as a new molecular clone of 3'-phosphoadenosine 
5'-phosphosulfate (PAPS) synthetase [31]. 

The predictive model in our study might have 
several limitations that potentially affect the results 
and need improvement. First, our data were extracted 
from public databases, and more data from a 
prospective study should be used to confirm the 
performance of the model and expand the scale of 
clinical cases. Second, we used the median risk score 
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as the cutoff value for convenience, while the 
population-specific nature of the stratification must be 
considered for clinical application in practice, and the 
matched cutoff for specific patients should be fixed. 
The model needs adjustment for future applications. 
Third, the statistical method cannot discern the 
underlying mechanisms of interaction in selected 
genes and requires further exploration by molecular 
experiments. 

In conclusion, risk score was constructed based 
on the expression status of prognosis-related 
metabolic genes and was validated in different 
situations. The nomogram including the risk score 
and clinical parameters was a better prediction 
system. This assessment can be applied to CRC 
patients for individualized prevention and treatment. 
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