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Abstract 

Chronic psychological stress affects many body systems, including the skeleton, through various mechanisms. 
This review aims to provide an overview of the factors mediating the relationship between psychological stress 
and bone health. These factors can be divided into physiological and behavioural changes induced by 
psychological stress. The physiological factors involve endocrinological changes, such as increased 
glucocorticoids, prolactin, leptin and parathyroid hormone levels and reduced gonadal hormones. Low-grade 
inflammation and hyperactivation of the sympathetic nervous system during psychological stress are also 
physiological changes detrimental to bone health. The behavioural changes during mental stress, such as altered 
dietary pattern, cigarette smoking, alcoholism and physical inactivity, also threaten the skeletal system. 
Psychological stress may be partly responsible for epigenetic regulation of skeletal development. It may also 
mediate the relationship between socioeconomic status and bone health. However, more direct evidence is 
required to prove these hypotheses. In conclusion, chronic psychological stress should be recognised as a risk 
factor of osteoporosis and stress-coping methods should be incorporated as part of the comprehensive 
osteoporosis-preventing strategy. 
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Introduction 
Osteoporosis is a skeletal degenerative disease 

characterised by deterioration of bone micro-
architecture and mass, which subsequently leads to 
fractures. Worldwide, 8.9 million osteoporotic 
fractures occur annually, which translate to a fracture 
every 3 seconds [1]. Approximately 20 million 
Europeans aged over 50 years old suffered from 
osteoporosis, and 2.7 million experienced an 
osteoporotic fracture in 2017. This number is projected 
to increase by 23% in 2030. Financially, osteoporotic 
fractures incur substantial healthcare costs, 
amounting to 37.5 million euros in 2017 and is 
estimated to increase by 27% in 2030 [2]. The 
increasing prevalence of osteoporotic fractures calls 
for the need to identify high-risk individuals so that 
early intervention could be implemented. 

Psychological stress occurs when an individual 
perceives an environment demand exceeding his/her 
ability to adjust. It can be measured as self-perceived 
stress and the effects of negative events. Chronic 

psychological stress is damaging to health because it 
produces long-term physiological, emotional, and 
behavioural changes that alter disease susceptibility 
[3]. Chronic psychological stress is an emerging public 
health issue. In the United States, around $150 billion 
of revenue is lost annually due to stress-related 
behaviours, such as low productivity, absenteeism, 
poor decision making, stress-induced mental illness, 
and substance abuse [4]. Besides, chronic 
psychological stress is a risk factor for various health 
conditions, such as heart diseases, asthma, obesity 
and diabetes [3]. This review will focus on the effects 
of chronic psychological stress on bone health. 

Affective disorders are the sequela of chronic 
psychological stress. Many studies have reported the 
association between affective disorders and bone 
health. Schweiger et al. first discovered the 
relationship between depression and osteoporosis, 
suggesting that affective disorders are associated with 
bone loss [5]. Since then, the association between 
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affective disorders and osteoporosis continues to be 
examined. Two meta-analyses have demonstrated 
that depression is associated with decreased bone 
mineral density (BMD) and increased fracture risk [6, 
7]. Catalano et al. reported that postmenopausal 
women with higher anxiety scores have lower BMD 
T-score [8]. Populations with post-traumatic stress 
disorder also have a higher risk of developing 
osteoporosis in a longitudinal study [9]. However, 
studies on the relationship between chronic 
psychological stress and osteoporosis remain limited 
[10]. This gap is probably due to the assumption that 
these affective disorders are an extension of excessive 
psychological stress. However, individuals without 
affective disorders also experience psychological 
stress. Erez et al. found that even though the strength 
of the association between perceived stress and BMD 
is lower compared to depression in postmenopausal 
women, psychological stress still affects their bone 
health significantly [11]. 

Several studies have demonstrated that 
psychological stress is associated with osteoporosis 
[12-16]. Fink et al. demonstrated that the number of 
stressful life events correlated positively with the risk 
of concurrent accelerated hip bone loss in older men 
[15]. Besides, osteoporosis was found to be prevalent 
among UK veterans who participated in the Gulf War, 
probably due to chronic stress, including behavioural 
changes due to psychological stress during or after the 
war [17]. Pedersen et al. also reported a positive 
association between the risk of osteoporotic fracture 
and perceived stress [18]. Hahn et al. reported that 
lower BMD at the lumbar spine, femoral neck, and 
total femur was associated with moderate to severe 
perceived stress in men, but not for premenopausal or 
postmenopausal women [13]. Given the existing 
evidence, one would ask how psychological stress 
induces bone loss. This review attempts to answer this 
question by providing a brief overview of the possible 
mechanisms involved. 

Factors mediating the relationship 
between psychological stress and 
osteoporosis 

Psychological stress impacts bone health 
adversely through two prominent mechanisms, i.e. 
physiological changes and the attainment of 
unhealthy behaviours. It is important to note that the 
mechanisms discussed in this review affect the 
skeletal system inter-dependently, and their 
interactions should not be neglected. 

Physiological factors 
Bone loss occurs due to the imbalance in bone 

remodelling when the rate of osteoclast-mediated 

bone resorption exceeds osteoblast-mediated bone 
formation. The bone remodelling process is mediated 
by the receptor activator of nuclear factor kappa-Β 
(RANK)/RANK ligand (RANKL)/osteoprotegerin 
(OPG) axis. RANKL released by the osteoblast lineage 
cells binds to its receptor, RANK, on the osteoclast 
precursor cells. The RANK-RANKL binding then 
stimulates the differentiation of osteoclast precursor 
cells into preosteoclasts, which fuse to form mature, 
multinucleated osteoclasts. Osteoblasts also secrete 
OPG, a decoy receptor for RANKL, which inhibits 
RANK-RANKL interaction and thus reduces 
osteoclastogenesis. Therefore, the ratio of RANK and 
OPG is indicative of the bone resorption rate [19]. 

Psychological stress is associated with the 
dysregulation of the endocrine system. 
Hypersecretion of cortisol, a key feature in chronic 
psychological stress, occurs due to dysregulation of 
the hypothalamus-pituitary-adrenal (HPA) axis 
[20-22]. Cortisol binds to the glucocorticoid receptor, 
which undergoes conformational changes and 
translocates rapidly to the nucleus to bind to 
glucocorticoid response element and stimulate 
transcription of certain genes [23]. Cortisol 
upregulates RANKL [24] and downregulates OPG 
expressions in osteoblasts [24-27]. In murine cell 
culture studies, cortisol dose-dependently impairs 
osteoclastogenesis and osteoblastogenesis, and 
increases osteoblast and osteocyte apoptosis in 
cortical bone [28]. In contrast, glucocorticoids 
promote the survival of osteoclasts [29]. Overall, the 
increased glucocorticoid level may lead to negative 
bone turnover and subsequently bone loss. This 
mechanism explains the report of Henneicke et al., 
whereby even chronic mild stress upregulates 
glucocorticoid signalling, which subsequently causes 
bone loss, in a site- and gender-specific manner [14]. 

Furthermore, studies have shown that sustained 
psychological stress may originate from a pronounced 
and enduring hyperactivation of the sympathetic 
nervous system [30]. Osteoblasts and osteoclasts 
possess receptors for neuropeptides and 
noradrenaline [31], implying the direct role of the 
sympathetic nervous system in bone homeostasis. 
Yirmiiya et al. demonstrated that stress-induced bone 
loss was associated with an elevated noradrenaline 
level in bone. They also reported that propranolol, a 
β-adregenic antagonist, may ameliorate stress- 
triggered osteoporosis. These observations suggest 
that hyperactivation of the adrenergic system might 
mediate the relationship between stress and bone loss 
[32]. The level of neuropeptide Y, another 
neurotransmitter of the sympathetic nervous system, 
is reported to increase during mental stress and is 
associated with resilience to stress [33]. 
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Overexpression of neuropeptide Y inhibits bone 
formation and enhances bone loss [34]. The action of 
neuropeptide Y on bone is mediated by hypothalamic 
Y1 and osteoblastic Y2 receptors [35]. Neuromedin U 
is another neuropeptide synthesised in the 
hypothalamus, pituitary and small intestine, and is 
associated positively with stress behaviour and 
stress-related hormones in preclinical studies [36]. 
Neuromedin U knocked-out mice were found to have 
increased bone mass due to increased bone formation. 
Further studies showed that neuromedin acted on 
bone cells through central nervous system but not 
directly [37]. These neuropeptides may work together 
during chronic stress to induce bone loss. 

Inflammation is one of the important secondary 
risk factors for osteoporosis, as observed in various 
inflammatory conditions [38, 39]. Chronic 
psychological stress, as observed in the caregivers of 
ill patients, is associated with increased 
pro-inflammatory markers (PICs) [40]. In preclinical 
studies, excessive inflammation of the brain impairs 
memory and learning, and induces depressive 
symptoms [41-43]. Although both acute and chronic 
psychological stress are associated with increased in 
PICs [44, 45], prolonged exposure to PICs as in 
chronic stress poses a greater risk to health, including 
bone health. In bone remodelling, PICs promote 
RANK expression on monocytes, increase RANKL 
but reduce the production of OPG by osteoblast 
lineage cells, thereby increasing osteoclast formation 
[19, 46-49]. In particular, tumour necrosis alpha-α is a 
more potent osteoclastogenic factor than the other 
PICs since it can amplify RANKL signalling in 
osteoclasts [19, 46-48], thereby enhancing osteoclasto-
genesis and bone resorption. Thus, low-grade chronic 
inflammation induced by chronic psychological stress 
might induce bone loss through increased bone 
resorption. 

Many hormones secreted by the pituitary have 
direct and indirect actions on bone health [50]. 
Prolactin is a pleiotropic peptide hormone produced 
by the lactotrophs in the anterior pituitary [51]. Its 
primary function is to initiate and maintain lactation, 
but it also plays a significant role in stress response. 
Prolactin can stimulate the synthesis of 
catecholamines and sensitise the HPA axis [52]. A 
wide range of different stressors, including ether [53], 
restraint [54-56], foot shock [57, 58] and noise [59], has 
been shown to elevate circulating prolactin levels in 
preclinical models. Osteoblasts but not osteoclasts 
express prolactin receptors [60]. Prolactin exposure 
upregulates secretion of PICs (e.g. tumour necrosis 
factor-α and interleukin (IL)-1) in the osteoblasts and 
increases RANKL/OPG ratio, thereby favouring 
osteoclast formation and bone resorption [61, 62]. The 

bone formation markers reduce in pups exposed to 
high prolactin level [63]. However, in another study 
using co-culture of synovial fibroblasts and osteoclast 
progenitors, prolactin suppressed the formation of 
mature osteoclasts by inhibiting the secretion of 
RANKL by synovial fibroblasts [64]. Thus, the effects 
of prolactin on osteoclast differentiation might 
depend on the adjacent cell types. On the other hand, 
increased prolactin level is associated with reduced 
BMD in humans [65, 66]. Therefore, further studies 
are required to delineate the associations between 
psychological stress, prolactin level and bone health. 

Variation in the lipophilic sex hormones that 
could penetrate the blood-brain barrier is suggested to 
affect the stress response of the brain. Women 
between puberty and menopause generally show 
lower HPA and autonomic axis activation during 
psychological stress than men, but the difference 
diminishes after menopause [67]. Oestrogen 
supplementation after menopause attenuates HPA 
response of women during stress test [68]. Despite 
this, Study of Women’s Health across the Nation did 
not observe a significant increase in perceived stress 
and depressive symptoms during the menopausal 
transition [69, 70]. However, Seattle Midlife Women’s 
Health Study observed a significant increase in 
women’s overnight cortisol levels during the 
menopausal transition, and the cortisol correlated 
significantly with sex hormones [71]. On the other 
hand, menopause in women and testosterone 
deficiency syndrome in men are known risk factors 
for osteoporosis [72, 73]. Gonadal hormones are 
essential in the maintenance of bone mass [74]. Both 
oestrogen and testosterone play distinct roles in bone 
homeostasis in both sexes, and their actions are 
site-specific. In both men and women, oestrogen 
maintains 80% of the cortical bone mass. In women, 
oestrogen is the primary regulatory hormone of bone 
homeostasis for cancellous bone, while in men, 
testosterone maintains the cancellous bone mass [74]. 
Oestrogens suppress osteoblast apoptosis and 
improve osteoblast survival. They also inhibit 
osteoclastogenesis by reducing serum RANKL level 
and promote osteoblastic production of OPG. 
Oestrogens also induce the production of Wnt/B- 
catenin, which promotes osteoblast maturation and 
increases OPG production through increasing 
transforming growth factor-β [74]. Meanwhile, some 
actions of testosterone on bone health are attributed to 
its conversion to oestrogens by the aromatase 
enzymes [73, 75]. Chronic stress reduces the serum 
level of both testosterone and oestrogen [76, 77]. Thus, 
a reduction in gonadal hormones is partially 
responsible for psychological stress-induced bone 
loss. 
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Figure 1. Physiological mechanisms linking stress and low bone mineral density. Abbreviation: ACTH, adrenocorticotropic hormone; CRH, corticotropin; NMU, neuromedin 
U; NPY, neuropeptide Y; OPG, osteoprotegerin; PICs, pro-inflammatory cytokines; RANK, receptor activator of nuclear factor kappa-B; RANKL, receptor activator of nuclear 
factor kappa-B ligand; SNS, sympathetic nervous system. 

 
Leptin is a peptide hormone synthesised by 

adipocytes to regulate food intake via the 
hypothalamus. Psychological stress-induced elevation 
in cortisol level increases the leptin level by 
stimulating leptin resistance [78, 79], though this 
action may be sex-dependent [80]. Studies suggested a 
complex role of leptin in regulating bone remodelling. 
Leptin and leptin receptor-deficient hypogonadal 
mice showed increased trabecular bone volume at the 
spine but reduced bone mass at the femur [81-83]. 
Intracerebroventricular infusion of leptin in wildtype 
mice and ewes reduced trabecular bone volume [83, 
84]. Takeda et al. demonstrated that antiosteogenic 
action of leptin was inhibited by gold thioglucose, 
which distorts the structure of ventromedial 
hypothalamic nucleus, demonstrating the 
involvement of the central nervous system in the 
action of leptin [85]. Thus, increased leptin level 
during chronic stress could reduce bone mass through 
the central nervous system. On the other hand, 
systemic infusion of leptin generally protects against 
bone loss in animal models of osteoporosis [86-88]. 
This observation probably explains the bone 
protective effects of obesity apart from increased 
mechanical loading since leptin level increases with 
increased fat mass. Therefore, the net skeletal effects 
of leptin during chronic psychological stress depend 
on the balance between the direct effects of leptin and 
its indirect effects through the central nervous system. 

Parathyroid hormone (PTH) is an essential 

regulator and minute-to-minute determinant of both 
extracellular and intracellular calcium homeostasis in 
the blood [89]. Using a murine model of restraint 
stress, Terzioqlu et al. demonstrated that 
psychological stress increases plasma PTH level by 
upregulating the calcium-sensing receptor on the 
chief cells in the parathyroid glands [90]. The actions 
of PTH in the body are bi-directional [91]. While 
intermittent exposure to higher than average PTH 
concentration exerts anabolic effects on the bone, 
sustained exposure to high PTH concentration can 
upregulate RANKL expression and inhibit OPG 
expression by the osteoblasts [92, 93]. Therefore, 
sustained chronic stress may enhance bone loss via 
enduring, increased PTH concentration. 

A summary of the physiological response 
towards psychological stress and its effect on bone is 
shown in Figure 1. 

Behavioural factors 
In the basic stress model, stress can stimulate 

psychological (e.g. anxiety) and physical reaction (e.g. 
increased blood pressure) reactions, causing an 
individual to implement certain health behaviours to 
attenuate the reactions [94]. Some of the common 
stress-coping behaviours include unhealthy eating 
habits [95], alcohol drinking [96] and cigarette 
smoking [97]. In the Korea National Health and 
Nutrition Examination Survey (2007-2012), high 
calorie and alcohol intake, as well as cigarette 
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smoking were associated with psychological stress 
and distress in both men and women [98]. 

Psychological stress has been proposed as a 
factor for smoking initiation and relapse, especially 
among women [99]. Increasing stress due to income 
was associated with nicotine dependence in the 
lower-income group of Pennsylvania Adult Smoking 
Study [100]. Despite some conflicting findings, 
smoking is generally agreed as a risk factor of 
osteoporosis [101]. Nicotine, as the principal active 
ingredient in tobacco smoke [102], is reported to exert 
dual effects on osteoblast proliferation and function 
[103]. Low-dose nicotine increases human mesen-
chymal stem cells proliferation and differentiation to 
osteoblasts, but high dose inhibits both processes 
[104]. Nicotine also increases promote the secretion of 
PICs from osteoblast cultures [105], and in animal 
models [106]. Of note, nicotine upregulates 
osteoblastic tumour necrosis alpha-α expression [105], 
which acts synergistically with RANKL to promote 
osteoclast formation [107]. Non-toxic doses of nicotine 
could increase bone resorption activity of porcine 
osteoclasts in culture directly [108]. In non-osteoblast 
suppressive doses, nicotine and cotinine (a metabolite 
of nicotine) inhibit catalase and glutathione reductase 
activity, leading to accumulation of ROS [109]. 
Nicotine also suppresses sirtuin 3-mitochondrial 
superoxide dismutase 2 axis, leading to mitochondrial 
oxidative damage in osteoblasts [110]. Apart from 
nicotine, tobacco smoke contains other chemicals. 
Exposure of mesenchymal stem/stromal cells to 
tobacco smoke suppresses osteogenic differentiation 
by increasing superoxide radicals and depleting 
intracellular glutathione [109]. 

Cigarette smoking is also associated with 
changes in hormone levels. Smoking status indicated 
by cotinine level has been associated negatively with 
thyroid-stimulating hormone level, but the 
relationship with thyroid hormones is not certain 
(triiodothyronine and thyroxine) [111, 112]. TSH is 
associated with increased bone mass independent of 
triiodothyronine and thyroxine levels [113], so the 
decrease might impact bone health. However, a 
meta-analysis showed that smoking increased the risk 
of Graves’ disease [114]. Overt thyroid toxicosis is 
known to reduce bone mass through high 
remodelling [115]. Smoking is also associated with 
higher cortisol in the morning and throughout the day 
in a cohort of elderly [116]. The adverse effects of 
cortisol on bone have been elaborated earlier. In the 
Tromsø Study, higher serum PTH, lower vitamin D 
and calcium absorption were reported among 
smokers than the non-smokers of both sexes [117]. 
Reduce calcium absorption will cause the body to 
mobilise the calcium reserve in the bone, resulting in 

bone loss. Lastly, smoking is associated with lower 
androgen levels in men [118], lower ovarian 
hormones in women with regular menses [119], and 
higher sex hormones in postmenopausal women 
[120]. Therefore, the impact of smoking on bone 
mediated by sex hormones may depend on sex and 
menstrual status. 

Perceived psychological stress has been 
associated with alternation of dietary habits. In a 
study involving Korean university students, higher 
perceived stress was associated with less frequent 
fruit and vegetable intake in both sexes and lower 
subjective judgement of healthy eating. Stress-related 
decrease eating was also apparent in these subjects 
[121]. Similarly, higher perceived stress was 
associated with increased past-week soda, coffee, 
energy drink, salty snack, frozen food, and fast food 
consumption in Caucasian university students [122]. 
In a study among Puerto Rican adults living in 
Boston, higher perceived stress predicted less fruit, 
vegetable and protein intake, but higher salty snacks 
[123]. Prolonged practice of unhealthy dietary trend 
will have an impact on bone health. Higher fruit and 
vegetable intakes have been associated with increased 
BMD and reduced fracture risk [124, 125]. This 
association could be mediated by the presence of 
vitamins and polyphenols in fruits and vegetables 
[126], as well as basic effects of the diet [127], which 
are beneficial to bone health. Vitamins and 
polyphenols act as antioxidants and 
anti-inflammatory agents, which promote osteoblasts 
survival and suppress osteoclast formation through 
mechanisms described in the earlier sections. High 
dietary salt intake is known to cause hypertension 
and increase urinary calcium excretion [128]. A recent 
preclinical study also found that high salt intake 
caused induction of T-helper 17 cells and suppression 
of T-regulatory cells. The altered T-cell population led 
to increased PIC and reduced anti-inflammatory 
cytokine levels, in conjunction with the destruction of 
bone microstructure of mice on high salt intake [129]. 

On the other hand, psychological stress can lead 
to either reduced or overeating [121, 122]. Long-term 
change of appetite could alter body weight. Multiple 
studies show that body weight is directly 
proportional to BMD [130], possibly via increasing 
mechanical loading of the body and synthesis of 
oestrogen by the adipose cells, which subsequently 
stimulate osteoblast activity [7]. At the same time, 
adipose tissue is a source of PICs, which are 
detrimental to bone health [131]. However, the 
association between chronic stress and body mass 
index remains unclear and confounded by age, 
gender, and race [132]. In contrast, centralised obesity 
measured by waist-to-hip ratio shows a more 
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consistent association with chronic stress [133]. 
Centralised obesity is associated with activation of the 
HPA axis and dysregulation of the sympathetic 
nervous system, which results in bone loss [134]. 
Thus, while increased BMI protects against bone loss, 
centralised obesity associated with psychological 
stress is detrimental to bone health. Underweight is 
consistently reported as a risk factor for osteoporosis 
due to reduced mechanical loading and malnutrition 
[135]. 

Alcoholism is prevalent among individuals with 
chronic stress due to the stress-relieving properties of 
alcohol. On the other hand, chronic alcohol use leads 
to altered stress-adaptive responses, triggering 
relapse and forms a vicious stress-alcohol use cycle 
[136]. Heavy consumption of alcohol is detrimental to 
health, including that of the skeletal system [137]. 
Alcohol affects bone health via many mechanisms, 
both direct and indirect [138, 139]. Firstly, alcohol 
downregulates the expression of insulin-like growth 
factor [140], which enhances osteoblast maturation 
and proliferation [141]. Secondly, chronic binge intake 
of alcohol upregulates the expression of PICs that 
stimulate bone resorption [142-144]. Thirdly, the level 
of circulating sclerostin secreted by osteocytes was 
reported to be higher in alcoholics [145]. Sclerostin 
inhibits Wnt signalling that regulates the osteoblast 
function, differentiation and survival, leading to 
decreased bone formation [145, 146]. Fourthly, 
ethanol exposure upregulates the expression of 
NADPH oxidase enzymes that generate reactive 
oxygen species [147]. These free radicals can enhance 
RANKL expression [148]. Other adverse effects of 
alcoholism include decreased production of the 
gonadal hormones [149-151], decreased vitamin D 
level, which results in malabsorption of calcium, [139] 
and centralised obesity [152]. All of these adverse 
effects can give rise to bone loss. 

Psychological stress is associated with sedentary 
lifestyles [153], which in turns, are linked with low 
BMD [154, 155]. Moreover, physical inactivity is 
associated with centralised obesity [156]. This 
observation suggests that physical inactivity is one of 
the underlying mechanisms between psychological 
stress and low BMD. Physical activities have an 
important role in ameliorating chronic stress [157] and 
osteoporosis [158]. 

The overall effects of stress-induced behaviours 
on bone heath are presented in Figure 2. 

Epigenetic basis for the relationship 
between psychological stress and bone 
health 

Epigenetic factors like DNA methylation also 
influence the development of skeletal diseases [159]. 

Prenatal exposure of glucocorticoids induced by 
psychological stress could be responsible for 
epigenetic regulation of bone health. Prolonged 
glucocorticoid exposure in pregnant animals reduced 
mRNA expression of placental 11β-hydroxysteroid 
dehydrogenase-2 [160], which regulates intrauterine 
exposure of the foetus to glucocorticoids. Restrain- 
induced stress in dams led to downregulation of gene 
expression of 11β-hydroxysteroid dehydrogenase-2 in 
the placenta, and altered gene expression of DNA 
methyltransferase of the brain in the foetus [161]. 
Increased plasma corticosterone induced by diet 
restriction in dams also downregulated placental 11β- 
hydroxysteroid dehydrogenase-2 and transplacental 
exposure of the foetus to glucocorticoids. The 
alteration of HPA axis of the offspring is dependent 
on life stages, i.e. it decreases at weaning, changes 
marginally at young adulthood and is chronically 
hyperactivated at old age [162]. These changes could 
alter skeletal development trajectory, but not many 
studies are available in the literature. In an animal 
study, mouse offspring born to dams subjected to 
restrain stress during pregnancy experienced 
increased corticosterone level, higher bone resorption, 
lower bone formation and significant deterioration of 
vertebral and femoral microstructures in adulthood 
[163]. However, the epigenetic basis of these changes 
is not studied in detail. It should be noted that in 
animal models of stress, physical stressors (like 
restraint stress) is used, which may not represent the 
complexity of human psychological stress. 
Understanding the epigenetic regulation of chronic 
stress on the skeletal system is important, so that steps 
to protect bone health can be initiated in utero. 

Socioeconomic status and osteoporosis: is 
psychological stress a mediator? 

The effects of psychological stress may provide a 
biological explanation of the relationship between 
socioeconomic status and bone health. A low 
economic status could lead to poor residential 
condition, community hazards, suboptimal access to 
medical support and malnutrition, which causes 
psychological stress and harms the general well-being 
of a person [164]. Indices of socioeconomic status, 
such as household income [165], education level [72], 
living condition [166], have been associated with 
variation of BMD. A systematic review suggested a 
strong relationship between living with others and 
reduced risk of osteoporotic fracture, while evidence 
for income and education level is conflicting [167]. 
Early-life exposure to income equality predicted life 
dissatisfaction and psychomotor symptoms among 
adolescents, especially among females [168]. Whether 
this stress related to socioeconomic status is partially 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

610 

responsible for a higher uptake of behaviours 
detrimental to bone health among adolescents from 
lower socioeconomic, such as smoking and alcohol 
[169, 170], deserve further study. However, direct 
evidence proving the role of psychological stress as a 
mediator in the relationship between bone health and 
socioeconomic status is limited and should be 
validated in future studies. 

Conclusion 
Psychological stress gives rise to complex 

physiological and behavioural changes which could 
affect bone health. These factors interact with each 
other to alter bone remodelling, resulting in a net bone 
loss (Figure 3). More comprehensive and 
well-planned epidemiological studies are needed to 
investigate the causal relationship between 
psychological stress and BMD or fracture. Future 
studies should take into consideration changes in 

biomarkers of inflammation, oxidative stress, 
hormones and neurotransmitters, to establish the 
relationship between psychological stress and bone 
health. The difference in the effects of acute/chronic 
stress, mild/moderate/chronic stress on the severity 
of bone loss should also be investigated. Lastly, stress 
management strategies should consider the 
multidimensional effects of health. Effective stress 
management should incorporate counselling and 
lifestyle interventions to prevent psychological stress 
to progress into affective disorders, and its related 
complications on other biological systems. For 
example, moderate exercise could have a positive 
impact in relieving psychological stress and 
improving bone health. A balanced and healthy diet 
will attenuate the enhancer of psychological stress 
such as neuroinflammation and oxidative stress, and 
promote optimal bone health. 

 

 
Figure 2. Behavioural factors linking psychological stress and osteoporosis. Abbreviation: IGF-1 insulin-like growth factors-1. 

 
Figure 3. The relationship between psychological stress and bone health. 
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