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Abstract 

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy 
worldwide, and the prognosis of HNSCC remains bleak. Numerous studies revealed that the tumor 
mutation burden (TMB) could predict the survival outcomes of a variety of tumors. 
Objectives: This study aimed to investigate the TMB and immune cell infiltration in these patients and 
construct an immune-related genes (IRGs) prognostic model. 
Methods: The expression data of 546 HNSCC patients were obtained from The Cancer Genome Atlas 
(TCGA) database. All patients were divided into high- and low- TMB groups, and the relationship 
between TMB and clinical relevance was further analyzed. The differentially expressed genes (DEGs) 
were identified using the R software package, limma. Functional enrichment analyses were conducted to 
identify the significantly enriched pathways between two groups. CIBERSORT algorithm was adopted to 
calculate the abundance of 22 leukocyte subtypes. The IRGs prognostic model was constructed via the 
multivariate Cox regression analysis. 
Results: Missense mutation and single nucleotide variants (SNV) were the most predominant mutation 
types in HNSCC. TP53, TTN, and FAT1 were the most frequently mutated genes. Patients with high TMB 
were observed with worse survival outcomes. The functional analysis of TMB associated DEGs showed 
that the identified DEGs mainly involved in spliceosome, RNA degradation, proteasome, and RNA 
polymerase pathways. We observed that macrophages, T cells CD8, and T cells CD4 memory were the 
most commonly infiltrated subtypes of immune cells in HNSCC. Finally, an IRGs prognostic model was 
constructed, and the AUC of the ROC curve was 0.635. 
Conclusions: Our results suggest that high TMB is associated with poor prognosis in HNSCC patients. 
The constructed model has potential prognostic value for the prognosis of these individuals, and it needs 
to be further validated in large-scale and prospective studies. 

Key words: Head and neck squamous cell carcinoma (HNSCC), Tumor mutation burden (TMB), Immune cell 
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Introduction 
Head and neck squamous cell carcinoma 

(HNSCC) mainly including nasopharyngeal 
carcinoma, oropharyngeal carcinoma, hypo-

pharyngeal carcinoma, and larynx carcinoma, is the 
sixth most common malignancy worldwide [1]. More 
than 600,000 new cases of HNSCC are diagnosed each 
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year, and the mortality of HNSCC is staggering at 
40%, accounting for 3.6% of cancer-related deaths [1, 
2]. Although significant improvements have been 
made in screening, diagnosis, and precise 
management in recent years, the prognosis of HNSCC 
remains bleak, with an approximately 5-year survival 
rate of 60% for patients with locoregionally advanced 
disease [3, 4]. 

In recent years, the clinical application of 
immune checkpoint inhibitors (ICIs) has 
demonstrated promising response rates in various 
malignant tumors, approving that it could play an 
antitumor role by reversing immunodeficiency and 
activating the immune cells [5-10]. Although 
numerous studies have shown that recurrent and 
metastatic HNSCC patients could benefit from 
immunotherapy [11-15], most of them are resistant to 
ICIs, with a 13-18% overall response rate [16]. As 
recent studies suggested, limited immune cell 
infiltration in the tumor microenvironment (TME), 
reduced tumor immunogenicity, and co-expression of 
inhibitory immune-related genes were involved in the 
resistance phenomenon of immunotherapy in various 
malignant tumors, including HNSCC [4, 16]. 
Furthermore, accumulating evidence indicates that 
the emerging biomarkers such as tumor mutation 
burden (TMB), neoantigens, and microsatellite 
instability (MSI) are associated with immunotherapy 
response [17, 18]. 

With the rapid development of transcriptome- 
sequencing analysis and the extensive application of 
bioinformatic datasets, a growing number of studies 
paid close attention to the prognostic role of TMB, 
immune cell infiltration, and immune-related genes 
across different types of malignancy. However, only 
limited data are available in HNSCC. Therefore, we 
conducted the present study to comprehensively 
explore the prognostic value of TMB and the 
association with immune cell infiltration in HNSCC 
and to construct immune-related genes prognostic 
model using The Cancer Genome Atlas (TCGA) 
dataset. 

Materials and methods 
Raw data download and analysis 

The gene expression profile, clinical profile, and 
somatic mutation data of 546 HNSCC patients (tumor 
samples, 502 cases; normal samples, 44 cases) were 
obtained from the TCGA database (https://tcgadata. 
nci.nih.gov/tcga/). The R software package, maftools, 
was used to summarize and visualize the Masked 
Somatic Mutation data [19]. 

Calculation of TMB value 
TMB was defined as the total number of somatic 

gene coding errors, base substitutions, insertions, or 
deletions detected per megabyte bases of tumor tissue 
[20]. According to the previous study, the estimated 
TMB value for each sample was defined as the total 
mutation frequency/the length of the human exon (38 
Mb) [21]. Besides, all synonymous mutations were 
excluded for calculation of TMB. 

Relationship between TMB value and 
prognosis and clinical features 

The HNSCC samples were divided into low- and 
high-TMB groups by the median value (2.079) of 
TMB. We further merged the TMB value with their 
corresponding survival variables by matching id 
number of each patient, and the Kaplan–Meier 
analysis in R package was adopted to evaluate the 
relationship between TMB and prognosis in HNSCC. 
Subsequently, the R package was used to assess the 
relationship of TMB values with clinical 
characteristics. 

Differentially expressed genes and functional 
pathways analysis 

The differentially expressed genes (DEGs) were 
identified using the R software package, limma. |log2 
FC| > 1.0, and false discovery rate (FDR) < 0.05 were 
used as a filter. Besides, the R software package, 
pheatmap was adopted to generate heatmap plot to 
visualize the difference. Then, the R software 
packages, clusterProfiler, org.Hs.eg.db, enrichplot, 
and ggplot2 were applied to conduct the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses [22]. 
The significantly enriched pathways were considered 
with both p- and q-value of < 0.05. Gene set 
enrichment analysis (GSEA) was conducted using 
TMB level as the phenotype label. We chose 
c2.cp.kegg.v6.2.symbols.gmt gene sets as reference 
gene sets and GSEA 4.0 software was applied to data 
analysis. NOM p < 0.05 and FDR q < 0.25 were used as 
the criteria of significant enrichment pathways. 

Immune cell infiltration 
The R software package, CIBERSORT, was 

adopted to calculate the abundance of 22 leukocyte 
subtypes in 502 tumor samples, and a threshold of 
P-value <0.05 was considered as cut-off criteria [23]. 
Furthermore, Wilcoxon rank-sum test was performed 
to analyze the difference of immune cells infiltration 
in low- and high- TMB groups, with the R software 
package, vioplot was used to visualize the difference. 

Construction of immune-related genes 
prognostic model 

A total of 2,498 immune-related genes (IRGs) 
were downloaded from the immunology database 
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and analysis portal (Immport) (https://www. 
immport.org/home), and the differentially expressed 
immune-related genes (DEIRGs) were identified 
using the R software package, VennDiagram. We then 
merged the identified DEIRGs with their 
corresponding survival information by matching id 
number. The R software package, survival, was 
applied to perform univariate and multivariate Cox 
regression analyses. The hazard ratios (HRs) and 95% 
confidence intervals (95%CIs) of IRGs in the 
prognostic model were calculated. Besides, the 
survival difference between the low- and high- 
expression groups of IRGs was compared via 
Kaplan-Meier analysis. A P-value < 0.05 was 
considered with a statistical difference. We then 
conducted a multivariate Cox regression analysis to 
obtain the risk score of each patient and the 
coefficients of identified hub IRGs. The risk score was 
calculated based on the following formula [24]: 

Survival risk score (patient) = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 (𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 

In the formula, ‘k’ represents the total number of 
the immune genes in the prognostic model. ‘Gene i’ 
represents the ith selected immune gene, and ‘coefficient 
(gene i)’ represents the coefficient of the immune gene 
in multivariate Cox analysis. Furthermore, according 
to the median value of risk score, the HNSCC patients 
were classified into low- and high- risk groups, and 
the Kaplan-Meier analysis was performed to compare 
the survival differences between the two groups. 
Finally, the Receiver Operating Characteristic (ROC) 
curve was performed to evaluate the accuracy of the 
constructed IRGs prognostic model. 

Relationship between copy number variation 
of the IRGs and immune cell infiltration 

Tumor IMmune Estimation Resource (TIMER) 
web server is a comprehensive resource for 
systematically analyzing immune infiltrates in 
various malignancies. The abundances of six immune 
cells infiltration (B cells, CD4+ T cells, CD8+ T cells, 
Neutrophils, Macrophages, and Dendritic cells) were 
estimated by the TIMER algorithm [25]. We further 
investigated the relationship between copy number 
variation (CNV) of the IRGs in the prognostic model 
and immune cell infiltration using the TIMER 2.0 web 
server (https://cistrome.shinyapps.io/timer/). 
Wilcoxon rank-sum tests were used to compare the 
differences of immune cell subsets in each mutation 
status and normal infiltration level. Furthermore, box 
plots were adopted to show the distribution of 
immune cell subsets among each mutation groups in 
HNSCC patients. A P-value < 0.05 was considered 
with statistic significant. 

Statistical analysis 
All statistical analysis was performed using R 

software (version 3.6.1) and Bioconductor (https:// 
www.bioconductor.org/). The R software package, 
limma, was used to differential analysis. The 
‘survival’ package was adopted to the Cox regression 
model construction. The survival difference was 
evaluated and visualized using Kaplan‐Meier 
survival curves, and the association was tested via 
log-rank tests. One-way ANOVA, unpaired two- 
tailed t-test, and Tukey’s multiple-comparison 
post-hoc test were utilized to evaluate the relationship 
of TMB levels and clinical characteristics of HNSCC as 
appropriate. Wilcoxon rank-sum test and Kruskal- 
Wallis test were used to non-parametric statistical 
tests as appropriate. The ROC curve was adopted to 
assess the predictive ability of the prognostic model, 
with an AUC value > 0.60 was considered as 
acceptable for predictions, and an AUC > 0.75 was 
regarded as has the excellent predictive ability [26, 
27]. 

Results 
Mutations in HNSCC patients 

We obtained the mutation profile of HNSCC 
patients from the TCGA database, and the R software 
package, maftools, was applied to present the results. 
It showed that 94.47% (478) of patients occurred 
somatic mutation, with missense mutation and single 
nucleotide variants (SNV) being the most 
predominant mutation types (Figure 1A, B, C). 
Besides, C > T transversion was the most primary 
type of single nucleotide variants (SNV) in HNSCC 
(Figure 1D). Furthermore, we observed that TP53 
(66%), TTN (35%), FAT1 (21%), CDKN2A (20%), 
MUC16 (17%), CSMD3 (16%), NOTCH1 (16%), 
PIK3CA (16%), SYNE1 (15%), and LRP1B (14%) were 
the top 10 mutated genes in HNSCC (Figure 1G). We 
also summarized the coincident and exclusive 
relationships among the mutated genes in Figure 2A, 
with turquoise representing co-occurrence mutation 
and brown representing mutually exclusive mutation. 
Besides, we also used the Genecloud plot to show the 
mutated frequencies of other genes (Figure 2B). 

Analysis of TMB and clinical relevance in 
HNSCC 

We then calculated the estimated TMB value of 
each sample and divided them into low- and high- 
TMB groups according to the median value of TMB. 
The result of Kaplan–Meier survival analysis 
indicated that high- TMB status was significantly 
associated with decreased overall survival (OS) in 
HNSCC patients (P= 0.030) (Figure 3A). We further 
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investigated the relationship of TMB value and 
clinicopathological characteristics in HNSCC, and it 
revealed that high- TMB levels significantly correlated 
with the advanced clinical stage (P = 0.019) (Figure 
3E) and higher AJCC-T stage (P < 0.001) (Figure 3F). 

However, we did not observe significant association 
between TMB and age (Figure 3B), gender (Figure 
3C), grade (Figure 3D), AJCC-N stage (Figure 3G), 
AJCC-M stage (Figure 3H), and smoking history 
(Figure 3I). 

 

 
Figure 1. The landscape of mutation profiles in HNSCC patients. (A) Waterfall plot of the top 30 mutated genes in the TCGA HNSCC Cohort; (B, C, D) 
Classification of mutation types according to different categories; (E, F) TMB in specific samples; (G) the top 10 mutated genes in HNSCC. HNSCC, head and neck squamous 
cell carcinoma; TCGA, The Cancer Genome Atlas; TMB, tumor mutation burden. 
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Figure 2. Summary of the mutation information with statistical calculations. (A) The coincident and exclusive associations across mutated genes; (B) Genecloud plot 
of the mutated frequencies. 

 

 
Figure 3. Correlation of TMB with prognosis and clinicopathological characteristics in HNSCC. (A) Kaplan–Meier curves of overall survival of the high- and 
low-TMB groups; (B) Wilcox test for HNSCC patients stratified by age; (C) Wilcox test for HNSCC patients stratified by gender; (D) Wilcox test for HNSCC patients stratified 
by grade; (E) Wilcox test for HNSCC patients stratified by stage; (F) Wilcox test for HNSCC patients stratified by AJCC-T stage; (G) Wilcox test for HNSCC patients stratified 
by AJCC-N stage; (H) Wilcox test for HNSCC patients stratified by AJCC-M stage; (I) Wilcox test for HNSCC patients stratified by smoking history. TMB, tumor mutation 
burden; HNSCC, head and neck squamous cell carcinoma. 
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Figure 4. Comparisons of gene expression profiles in high- and low-TMB samples. (A) Top 40 DEGs were shown in the heatmap plot; (B) Functional analysis of the 
top 10 enriched biological processes (BPs), cell composition (CC), and molecular function (MF) of GO analysis; (C) KEGG enrichment diseases analysis. TMB, tumor mutation 
burden; DEGs, differentially expressed genes. 

 

Comparison of gene expression profiles and 
functional enrichment analysis between low- 
and high-TMB groups 

All HNSCC patients were divided into two 
groups according to the TMB value, and a total of 429 
TMB associated DEGs were identified using |log2 
FC| > 1.0 and FDR < 0.05 as cut-off criteria. Of these, 
136 were up-regulated genes, and 293 were 
down-regulated genes. Figure 4A presented the top 
20 DEGs of each group using a hierarchical clustering 
heatmap. We further performed GO and KEGG 
enrichment analyses to explore the most common 
biological processes and pathways involved in these 

DEGs. The results of GO enrichment analysis showed 
that these DEGs were primarily enriched in muscle 
system process, muscle contraction, and muscle organ 
development (Figure 4B), and the results of KEGG 
enrichment analysis indicated that these DEGs were 
primarily enriched in cardiac muscle contraction, 
dilated cardiomyopathy (DCM), and hypertrophic 
cardiomyopathy (HCM) (Figure 4C). Furthermore, 
we performed the GSEA enrichment analysis 
according to the TMB level, and it showed that high- 
TMB can activate spliceosome, RNA degradation, 
proteasome, and RNA polymerase pathways 
(Figure 5). 
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Figure 5. GSEA enrichment analysis of TMB-related DEGs. DEGs, differentially expressed genes. 

 

Immune cell infiltration in HNSCC 
The CIBERSORT algorithm was used to estimate 

the abundance of 22 subtypes of immune cells in 502 
HNSCC patients, and a threshold of P-value <0.05 
was considered as cut-off criteria. There were 421 
patients selected to perform the immune cell 
infiltration analysis, and the relative abundance of 22 
immune cells was summarized in Figure 6A. We 
compared the distribution of these immune cells 
between low- and high- TMB groups in HNSCC. The 
results showed that T cells CD4 memory activated, 
NK cells resting, and Eosinophils were significantly 
infiltrated in the high-TMB group, while T cells CD4 
memory resting were significantly infiltrated in 

low-TMB groups (Figure 6B). 

Construction of IRGs prognostic model for 
HNSCC 

A total of 58 differentially expressed IRGs were 
identified via the R software package, VennDiagram 
(Figure 7A). Besides, we merged these immune- 
related genes and their corresponding survival 
information by matching id number. First, we used 
univariate Cox regression analysis to identify 
potential targeted IRGs, and four IRGs (SFTPA1, 
CD40LG, IGHG2, and CHGB) were identified as 
candidate genes for prognostic model construction. 
Ultimately, we obtained three optimal IRGs (SFTPA1, 
CD40LG, and CHGB) for inclusion in the prognostic 
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model via multivariate Cox regression analysis. Of 
these, the high expression of CD40LG and SFTPA1 
were significantly correlated with favorable prognosis 
in HNSCC, while the high expression of CHGB was 
associated with poor prognosis (Figure 7B, C, D). We 
further calculated the risk score of each patient using 
the estimated coefficient of each IRGs in the 
prognostic model to evaluate the significance of these 
IRGs in predicting the prognosis of HNSCC patients. 
The risk score was calculated based on the following 
computational formula: 
Survival risk score = (0.0751×expression of SFTPA1)+(-0.6628×expression of 

CD40LG)+(0.0019×expression of CHGB) 

Then, we divided the HNSCC patients into low- 
risk (n=245) and high-risk (n=245) groups according 
to the median value of the calculated risk score, and 
we conducted the Kaplan-Meier analysis to compare 
the survival difference between the two groups. It 
showed that patients in the high-risk group were 
associated with decreased OS (P < 0.001) (Figure 7E). 
We then performed a ROC curve to evaluate the 
predictive accuracy of the model for a one-year OS in 
HNSCC patients, and the AUC value was 0.635 in the 
prognostic model (Figure 7F). 

 

 
Figure 6. Comparisons of 22 subsets of immune cells infiltration between low- and high-TMB groups. (A) Summary of each type of immune cells in HNSCC 
samples; (B) Differential analysis of immune cells infiltration between high- and low-TMB groups. TMB, tumor mutation burden; HNSCC, head and neck squamous cell 
carcinoma. 
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Figure 7. Construction of IRGs prognostic model for HNSCC. (A) The identification of IRGs; (B, C, D) IRGs identified via multivariate Cox regression analysis; (E, F) 
Construction and assessment of IRGs prognostic model for HNSCC. IRGs, immune-related genes; HNSCC, head and neck squamous cell carcinoma. 

 

Association of CNV of the prognostic IRGs and 
immune cell infiltration 

We further investigated the association of CNV 
of the IRGs in the prognostic model and immune cell 
infiltration using the TIMER web server. The results 
revealed that compared with normal copy number, 
other forms of deletion or amplification of copy 
number may inhibit the infiltration of immune cells to 
varying degrees (Figure 8A, B, C). 

Discussion 
HNSCC is a heterogeneous malignancy of the 

upper aerodigestive tract, and it is also one of the 
most common causes of cancer-related death 
worldwide [1, 2]. Although significant advances have 
been made in the screening, diagnosis, and treatment 
of HNSCC in recent decades, especially the clinical 
application of immunotherapy, it remains a poor 
prognosis [3, 4]. Numerous studies have highlighted 
that immune cell infiltration, tumor immunogenicity, 
and immune-related genes were involved in the 
resistance phenomenon of immunotherapy in 
HNSCC [4, 16]. Previous studies demonstrated that 

oncological patients with high TMB are predisposed 
to have a promising response to immunotherapy [21, 
28]. However, a recent multicentre retrospective study 
revealed that high TMB was significantly associated 
with reduced overall survival (OS) in HNSCC 
patients treated with definitive chemoradiation [17]. 
Herein, we conducted the current study to explore the 
prognostic value of TMB and the association with 
immune cell infiltration in HNSCC and to construct 
immune-related genes prognostic model using the 
TCGA dataset. 

In the present study, we explored the landscape 
of TMB in HNSCC patients, showing that TP53, TTN, 
and FAT1 were the most predominant mutated genes. 
TP53 is one of the famous tumor suppressors 
inhibiting tumor occurrence and development by 
regulating proliferation, apoptosis, angiogenesis, and 
DNA repair [29]. Numerous studies suggest that TP53 
is frequently mutated in various cancers and is 
correlated with reduced OS [18]. Furthermore, it 
showed that HNSCC patients with TP53 mutations 
have bleak prognosis than TP53-wildtype HNSCCs 
[30]. P53 protein plays an essential role in tumor 
suppression and genome stability maintenance, and a 
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recent study revealed that the activation of P53 in 
TME could enhance antitumor immunity response 
[31]. FAT1 is a member of the Drosophila fat gene 
family, and it can inhibit cell proliferation and tumor 
growth by binding ß-catenin and subsequently 
decreasing ß-catenin translocation to the nucleus [32]. 
Furthermore, it promotes cell proliferation and 
migration by interacting with Ena/VAPS and Scribble 
[33]. Therefore, the role of FAT1 in carcinogenesis is 
controversial, being reported as both tumor 
suppressive and oncogenic [33, 34]. 

We further explored TMB and its clinical 
relevance in HNSCC. The finding of our study 
indicated that HNSCC patients with high- TMB status 
were significantly correlated with the poor OS, which 
was compatible with the result of a multicentre 
retrospective study conducted in Germany [17]. 
Zhang et al. also reported that high- TMB was an 

unfavorable prognostic factor in clear cell renal cell 
carcinoma [35]. However, most previously published 
studies indicated that high- TMB was associated with 
favorable survival outcomes in different types of 
malignancies, including melanoma, non-small cell 
lung cancer (NSCLC), bladder cancer, and HER2- 
positive refractory metastatic breast cancer [21, 36, 
37]. Subsequently, we ferreted out TMB-associated 
DEGs and investigated their potential biological 
functions using GO, KEGG, and GSEA enrichment 
analyses. We observed that high TMB-associated 
DEGs mainly involved in spliceosome, RNA 
degradation, proteasome, and RNA polymerase 
pathways. The spliceosome is a powerful molecular 
machine consisting of several nuclear protein 
complexes that cycle on and off of pre-mRNA during 
intronic splicing [38]. Alternative pre-mRNA splicing 
plays a vital role in establishing and maintaining 

 

 
Figure 8. Analysis of CNV of the IRGs and immune cell infiltration via TIMER. (A). CD40LG; (B) CHGB; (C) SFTPA1. CNV, copy number variation; IRGs, 
immune-related genes. 
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human cell types by permitting the expression of 
multiple transcript isoforms from a single gene [39]. 
However, dysregulation of alternative splicing is 
related to the initiation, progression, and therapeutic 
response of cancer [39]. The proteasome regulates cell 
cycle, transcription, signaling, trafficking, and protein 
quality control by degrading most cellular proteins 
[40]. The degradation of the proteasome is pivotal in 
all cells and organisms, and the misregulation of 
proteasome function is associated with diverse 
human diseases, including cancer [40]. 

The tumor-infiltrating immune cells in TME are 
relatively associated with carcinogenesis, progression, 
angiogenesis, and metastasis across different types of 
cancer. We further investigated the infiltration 
abundance of 22 subsets of immune cells in HNSCC 
samples using the CIBERSORT algorithm. In the 
present study, we observed that macrophages (M0, 
M1, and M2), T cells CD8, and T cells CD4 memory 
(resting and activated) were the most commonly 
infiltrated subtypes of immune cells in HNSCC 
regardless of TMB status. Similar results were 
reported in a bioinformatic study conducted by Song 
et al. [41]. Macrophages are essential components of 
the immune system and present different genotypes 
and functions in different TME. Tumor-associated 
macrophages (TAMs) are essential regulators of 
carcinogenesis, and TAMs frequently exhibit an M2 
phenotype that is associated with worse prognosis by 
promoting angiogenesis and invasion in tumors [42]. 
T cells CD8 plays an antitumoral role under hypoxia 
conditions by differentiating into lytic effector cells 
[43]. The high abundance of CD8 T cell infiltration is 
positively associated with favorable survival outcome 
in HNSCC, and it could predict the future survival 
rates of patients [4]. However, CD4 T cells in TME 
have different subsets and may have different 
functions. The results of a previous study revealed 
that cancer cells induce interleukin-22 (IL-22) 
production from T cells CD4 memory via 
interleukin-1 (IL-1) to promote tumor growth [44]. To 
the best of our knowledge, no study investigated the 
relationship between immune cell infiltration and 
TMB in HNSCC so far. In our study, we identified 
that T cells CD4 memory activated, NK cells resting, 
and Eosinophils were primarily infiltrated in the 
high-TMB group, while T cells CD4 memory resting 
were primarily infiltrated in the low-TMB group. It 
suggests that TMB is closely related to the TME. 

In the present study, we further identified 58 
differentially expressed IRGs and constructed an IRGs 
prognostic model via univariate and multivariate Cox 
regression analyses. In the prognostic model, we 
identified that the high expression of CD40LG and 
SFTPA1 were significantly correlated with favorable 

survival outcome in HNSCC, while the high 
expression of CHGB was associated with poor 
prognosis. As reported, CD40LG is a member of the 
tumor necrosis factor (TNF) family, mainly expressed 
on the surface of T cells CD4 activated and providing 
the necessary signal for immune response [45]. It was 
reported that the overexpression of CD40LG on T 
lymphocytes was observed in human and murine 
lupus [45]. Takezaki et al. reported that SFTPA1 
mainly involved in the development of idiopathic 
pulmonary fibrosis by promoting necroptosis of 
alveolar epithelial type II cells via JNK-mediated up- 
regulation of Ripk3 [46]. CHGB is initially identified in 
pheochromocytoma, and it encodes a tyrosinesulfated 
secretory protein (CHGB protein) that is expressed in 
endocrine cells and neurons. In a recent study, 
Stenman et al. indicated that the overexpressed CHGB 
was associated with progressive behavior and poor 
prognosis in pheochromocytomas and abdominal 
paragangliomas [47]. In the prognostic model, we 
found that patients with high-risk scores had worse 
survival outcomes. Considering the AUC of this 
model was only 0.635, we think it has potential 
prognostic value in HNSCC patients. Furthermore, it 
needs to be validated in large-scale and prospective 
studies. 

Copy number variation (CNV) is a form of 
genomic structural variation that can lead to 
abnormal copy numbers of one or more parts of DNA, 
including amplification, gain, loss, and deletion. It 
was reported that CNV plays a vital role in the 
carcinogenesis of a variety of malignant tumors [48]. 
In our study, we explored the relationship of CNV of 
IRGs and immune cell infiltration using TIMER. The 
results showed that compared with normal copy 
number, other forms of deletion or amplification of 
copy number may inhibit the infiltration of immune 
cells in HNSCC, which was compatible with the 
results of a previous study conducted by Zhang et al. 
[35]. To the best of our knowledge, this is the first 
study that comprehensively analyzed TMB, immune 
cell infiltration, and constructed an IRGs prognostic 
model in HNSCC. However, there are also several 
inevitable limitations in our study. First, there was no 
relevant basic experiment to detect the expression of 
the identified prognostic associated IRGs in cell lines 
or clinical samples; second, we did not further explore 
the relationship of immune cell infiltration and the 
identified IRGs in the model. Therefore, the findings 
in our study need to be validated in large-scale and 
prospective studies. 

Conclusions 
In summary, our study provides a systematic 

analysis of TMB and immune cell infiltration in 
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HNSCC patients and constructs an IRGs prognostic 
model. The results suggest that high TMB is 
associated with worse prognosis in HNSCC patients. 
Macrophages, T cells CD8, and T cells CD4 memory 
are the most commonly infiltrated subtypes of 
immune cells in HNSCC. Furthermore, we also 
identified three TMB-related IRGs and constructed a 
prognostic model. Further studies are warranted to 
verify the clinical utility of this prognostic model for 
HNSCC. 

Acknowledgements 
Author contributions 

All authors made substantial contributions to 
conception and design, acquisition of data, or analysis 
and interpretation of data; took part in drafting the 
article or revising it critically for important intellectual 
content; gave final approval of the version to be 
published; and agree to be accountable for all aspects 
of the work. 

Funding 
This research received no specific grant from any 

funding agency in the public, commercial, or not-for- 
profit sectors. 

Competing Interests 
The authors have declared that no competing 

interest exists. 

References 
1. Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, et al. 

Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, 
Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer 
Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease 
Study. JAMA oncology. 2017; 3: 524-48. 

2. Shield KD, Ferlay J, Jemal A, Sankaranarayanan R, Chaturvedi AK, Bray F, et 
al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite 
in 2012. CA: a cancer journal for clinicians. 2017; 67: 51-64. 

3. Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, et al. Comprehensive 
characterization of the alternative splicing landscape in head and neck 
squamous cell carcinoma reveals novel events associated with tumorigenesis 
and the immune microenvironment. Theranostics. 2019; 9: 7648-65. 

4. She Y, Kong X, Ge Y, Yin P, Liu Z, Chen J, et al. Immune-related gene 
signature for predicting the prognosis of head and neck squamous cell 
carcinoma. Cancer Cell International. 2020; 20. 

5. Yang J, Chen J, Wei J, Liu X, Cho WC. Immune checkpoint blockade as a 
potential therapeutic target in non-small cell lung cancer. Expert opinion on 
biological therapy. 2016; 16: 1209-23. 

6. Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. 
Evolution of Neoantigen Landscape during Immune Checkpoint Blockade in 
Non-Small Cell Lung Cancer. Cancer discovery. 2017; 7: 264-76. 

7. Bu X, Yao Y, Li X. Immune Checkpoint Blockade in Breast Cancer Therapy. 
Advances in experimental medicine and biology. 2017; 1026: 383-402. 

8. Hu ZI, Ho AY, McArthur HL. Combined Radiation Therapy and Immune 
Checkpoint Blockade Therapy for Breast Cancer. International journal of 
radiation oncology, biology, physics. 2017; 99: 153-64. 

9. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. 
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. 
Science (New York, NY). 2015; 350: 207-11. 

10. Massari F, Di Nunno V, Cubelli M, Santoni M, Fiorentino M, Montironi R, et 
al. Immune checkpoint inhibitors for metastatic bladder cancer. Cancer 
Treatment Reviews. 2018; 64: 11-20. 

11. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and 
clinical activity of pembrolizumab for treatment of recurrent or metastatic 
squamous cell carcinoma of the head and neck (KEYNOTE-012): an 
open-label, multicentre, phase 1b trial. The Lancet Oncology. 2016; 17: 956-65. 

12. Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, et al. 
Antitumor Activity of Pembrolizumab in Biomarker-Unselected Patients With 
Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma: 
Results From the Phase Ib KEYNOTE-012 Expansion Cohort. Journal of 
clinical oncology : official journal of the American Society of Clinical 
Oncology. 2016; 34: 3838-45. 

13. Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, et al. 
Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or 
metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a 
randomised, open-label, phase 3 study. Lancet (London, England). 2019; 393: 
156-67. 

14. Ferris RL, Blumenschein G, Jr., Fayette J, Guigay J, Colevas AD, Licitra L, et al. 
Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. 
The New England journal of medicine. 2016; 375: 1856-67. 

15. Larkins E, Blumenthal GM, Yuan W, He K, Sridhara R, Subramaniam S, et al. 
FDA Approval Summary: Pembrolizumab for the Treatment of Recurrent or 
Metastatic Head and Neck Squamous Cell Carcinoma with Disease 
Progression on or After Platinum-Containing Chemotherapy. The oncologist. 
2017; 22: 873-8. 

16. Oliva M, Spreafico A, Taberna M, Alemany L, Coburn B, Mesia R, et al. 
Immune biomarkers of response to immune-checkpoint inhibitors in head and 
neck squamous cell carcinoma. Annals of oncology : official journal of the 
European Society for Medical Oncology. 2019; 30: 57-67. 

17. Eder T, Hess AK, Konschak R, Stromberger C, Johrens K, Fleischer V, et al. 
Interference of tumour mutational burden with outcome of patients with head 
and neck cancer treated with definitive chemoradiation: a multicentre 
retrospective study of the German Cancer Consortium Radiation Oncology 
Group. Eur J Cancer. 2019; 116: 67-76. 

18. Lyu H, Li M, Jiang Z, Liu Z, Wang X. Correlate the TP53 Mutation and the 
HRAS Mutation with Immune Signatures in Head and Neck Squamous Cell 
Cancer. Comput Struct Biotechnol J. 2019; 17: 1020-30. 

19. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient 
and comprehensive analysis of somatic variants in cancer. Genome research. 
2018; 28: 1747-56. 

20. Schumacher Ton N, Kesmir C, van Buuren Marit M. Biomarkers in Cancer 
Immunotherapy. Cancer Cell. 2015; 27: 12-4. 

21. Lv J, Zhu Y, Ji A, Zhang Q, Liao G. Mining TCGA database for tumor mutation 
burden and their clinical significance in bladder cancer. Biosci Rep. 2020; 40. 

22. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. Omics : a journal of integrative 
biology. 2012; 16: 284-7. 

23. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling 
Tumor Infiltrating Immune Cells with CIBERSORT. Methods in molecular 
biology (Clifton, NJ). 2018; 1711: 243-59. 

24. Meng T, Huang R, Zeng Z, Huang Z, Yin H, Jiao C, et al. Identification of 
Prognostic and Metastatic Alternative Splicing Signatures in Kidney Renal 
Clear Cell Carcinoma. Frontiers in bioengineering and biotechnology. 2019; 7: 
270. 

25. Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: A Web Server for 
Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer 
research. 2017; 77: e108-e10. 

26. Cho SH, Pak K, Jeong DC, Han M-E, Oh S-O, Kim YH. The AP2M1 gene 
expression is a promising biomarker for predicting survival of patients with 
hepatocellular carcinoma. Journal of Cellular Biochemistry. 2019; 120: 4140-6. 

27. Han M-E, Kim J-Y, Kim GH, Park SY, Kim YH, Oh S-O. SAC3D1: a novel 
prognostic marker in hepatocellular carcinoma. Scientific Reports. 2018; 8: 
15608. 

28. Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: 
footprints and mechanisms. Nature Reviews Cancer. 2014; 14: 786-800. 

29. Fischer M, Grossmann P, Padi M, DeCaprio JA. Integration of TP53, DREAM, 
MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene 
regulatory networks. Nucleic Acids Research. 2016; 44: 6070-86. 

30. Lawrence MS, Sougnez C, Lichtenstein L, et al. Comprehensive genomic 
characterization of head and neck squamous cell carcinomas. Nature. 2015; 
517: 576-82. 

31. Guo G, Yu M, Xiao W, Celis E, Cui Y. Local Activation of p53 in the Tumor 
Microenvironment Overcomes Immune Suppression and Enhances Antitumor 
Immunity. Cancer research. 2017; 77: 2292-305. 

32. Morris LGT, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan Ş, et al. 
Recurrent somatic mutation of FAT1 in multiple human cancers leads to 
aberrant Wnt activation. Nature Genetics. 2013; 45: 253-61. 

33. Zwirner K, Hilke FJ, Demidov G, Socarras Fernandez J, Ossowski S, Gani C, et 
al. Radiogenomics in head and neck cancer: correlation of radiomic 
heterogeneity and somatic mutations in TP53, FAT1 and KMT2D. Strahlenther 
Onkol. 2019; 195: 771-9. 

34. Lin SC, Lin LH, Yu SY, Kao SY, Chang KW, Cheng HW, et al. FAT1 somatic 
mutations in head and neck carcinoma are associated with tumor progression 
and survival. Carcinogenesis. 2018; 39: 1320-30. 

35. Zhang C, Li Z, Qi F, Hu X, Luo J. Exploration of the relationships between 
tumor mutation burden with immune infiltrates in clear cell renal cell 
carcinoma. Ann Transl Med. 2019; 7: 648. 

36. Park SE, Park K, Lee E, Kim JY, Ahn JS, Im YH, et al. Clinical implication of 
tumor mutational burden in patients with HER2-positive refractory metastatic 
breast cancer. Oncoimmunology. 2018; 7: e1466768. 



Int. J. Med. Sci. 2021, Vol. 18 

 
http://www.medsci.org 

238 

37. Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. 
Tumor Mutational Burden as an Independent Predictor of Response to 
Immunotherapy in Diverse Cancers. Molecular cancer therapeutics. 2017; 16: 
2598-608. 

38. Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. The 
spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015; 
525: 384-8. 

39. Dvinge H, Guenthoer J, Porter PL, Bradley RK. RNA components of the 
spliceosome regulate tissue- and cancer-specific alternative splicing. Genome 
research. 2019; 29: 1591-604. 

40. Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in 
health and disease. Nat Rev Mol Cell Biol. 2018; 19: 697-712. 

41. Song J, Deng Z, Su J, Yuan D, Liu J, Zhu J. Patterns of Immune Infiltration in 
HNC and Their Clinical Implications: A Gene Expression-Based Study. Front 
Oncol. 2019; 9: 1285. 

42. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and 
metastasis. Nat Med. 2013; 19: 1423-37. 

43. Wu Z, Wang M, Liu Q, Liu Y, Zhu K, Chen L, et al. Identification of gene 
expression profiles and immune cell infiltration signatures between low and 
high tumor mutation burden groups in bladder cancer. Int J Med Sci. 2020; 17: 
89-96. 

44. Voigt C, May P, Gottschlich A, Markota A, Wenk D, Gerlach I, et al. Cancer 
cells induce interleukin-22 production from memory CD4(+) T cells via 
interleukin-1 to promote tumor growth. Proceedings of the National Academy 
of Sciences of the United States of America. 2017; 114: 12994-9. 

45. Zhou Y, Yuan J, Pan Y, Fei Y, Qiu X, Hu N, et al. T cell CD40LG gene 
expression and the production of IgG by autologous B cells in systemic lupus 
erythematosus. Clinical immunology (Orlando, Fla). 2009; 132: 362-70. 

46. Takezaki A, Tsukumo SI, Setoguchi Y, Ledford JG, Goto H, Hosomichi K, et al. 
A homozygous SFTPA1 mutation drives necroptosis of type II alveolar 
epithelial cells in patients with idiopathic pulmonary fibrosis. The Journal of 
experimental medicine. 2019; 216: 2724-35. 

47. Stenman A, Svahn F, Hojjat-Farsangi M, Zedenius J, Söderkvist P, Gimm O, et 
al. Molecular Profiling of Pheochromocytoma and Abdominal Paraganglioma 
Stratified by the PASS Algorithm Reveals Chromogranin B as Associated With 
Histologic Prediction of Malignant Behavior. The American journal of surgical 
pathology. 2019; 43: 409-21. 

48. Liang L, Fang JY, Xu J. Gastric cancer and gene copy number variation: 
emerging cancer drivers for targeted therapy. Oncogene. 2016; 35: 1475-82. 


