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Abstract 

Artificial intelligence (AI), as an advanced science technology, has been widely used in medical fields 
to promote medical development, mainly applied to early detections, disease diagnoses, and 
management. Owing to the huge number of patients, kidney disease remains a global health 
problem. Challenges remain in its diagnosis and treatment. AI could take individual conditions into 
account, produce suitable decisions and promise to make great strides in kidney disease 
management. Here, we review the current studies of AI applications in kidney disease in alerting 
systems, diagnostic assistance, guiding treatment and evaluating prognosis. Although the number of 
studies related to AI applications in kidney disease is small, the potential of AI in the management of 
kidney disease is well recognized by clinicians; AI will greatly enhance clinicians’ capacity in their 
clinical practice in the future. 

Key words: Artificial intelligence, kidney disease, Alerting systems, Diagnostic assistance, Guiding treatment, 
Evaluating prognosis 

Introduction 
Kidney disease is a major public health problem 

in part because of its common etiology caused by 
diabetes, hypertension, obesity, and aging; the 
incidence of these conditions is increasing. According 
to the Global Burden of Diseases, Injuries, and Risk 
Factors Study 2015, 750 million people worldwide 
suffered from kidney disease [1]. Kidney disease 
brings a huge burden to society. In 2017, a survey 
showed that the yearly cost was approximately $1,205 
for a patient with stage 3 chronic kidney disease 
(CKD3), $1963 for a CKD4 individual, $8,035 for a 
person at CKD5 condition, and $34,554 for a 
hemodialysis patient [2]. Early detection and 
prevention of the progression of kidney disease 
towards end stage renal disease is therefore of 
significant importance. 

AI is a science of computer simulated thinking 
processes and human behaviors, which involves 
computer science, psychology, philosophy and 
linguistics. In 2016, Alphago 3-0 won a professional 

human Go player. It was the first computer program 
that defeated a world champion of Go, clearly 
revealing the potential that AI will bring technological 
advances in the era. The continued rapid growth in 
computer-processing power over the past two 
decades, the availability of large data sets and the 
development of advanced algorithms have driven 
major improvements in machine learning[3]. 

Electronic medical records (EMR) provide 
large-scale and real-world clinical data, which is the 
basis for developing AI technology in the clinic. It is 
challenging for humans to directly analyze these 
massive data; this is not only because of the massive 
time required and cares needed to avoid human 
errors but also the ability to derive the insights or 
information in depth. Clearly, AI technology holds 
nonparallel advantages over humans in these 
domains [4]. The studies of AI in kidney diseases are 
at a beginning stage. According to the existing 
literature, the function of AI in kidney disease mainly 
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focuses on four aspects: Alerting systems, Diagnostic 
assistance, Guiding treatment and Evaluating 
prognosis. 

Materials and Methods  
Data source 

A non-systematic review of the literature was 
performed by screening PubMed up to 1st of August 
2019. Using the search terms including "artificial 
intelligence", "machine learning", “artificial neuron 
networks”, “deep learning”, "kidney Disease", 
"chronic kidney disease" , "acute kidney Injury" and 
“nephrology”. 

Study selection 
Literature was derived from English articles or 

articles that could be obtained with English abstracts. 
Studies of human dataset were included. References 
were also identified from the bibliographies of 
identified articles and the authors’ files. 

The function of AI in kidney disease: 
Alerting systems, Diagnostic assistance, 
Guiding treatment and Evaluating 
prognosis. 
Alerting systems 

Early prediction of deterioration can play an 
important role in supporting health care 
professionals, as an estimated 11 percent of hospital 
deaths follow a failure to promptly recognize and 
treat deteriorating patients [5].AI can identify 
information quickly and effectively, explore intrinsic 
relationship. 

Alerting AKI 
It is reported that AI technology has an 

advantage in warning of critical illness, such as acute 
kidney injury (AKI) [6]. AKI is a common critical 
illness in clinic, especially for elderly and 
perioperative patients. The incidence of AKI was 
7-18% among hospitalized and 50% in ICU patients 
[7], and it was increasing by 11% per year [8]. AKI 
would prolong hospitalization and increase the cost of 
treatment [9]. Patients with AKI would be more likely 
to progress to end-stage renal disease (ESRD) than 
those without AKI [10]. There were approximately 2 
million patients died of AKI every year. The mortality 
rate was 10-30% for AKI patients without 
complication, and 30-80% for those with multiple 
organ failure [11]. At present, the diagnosis of AKI is 
still based on serum creatinine and urine output, 
which are not obvious in early AKI. It is difficult for 
clinicians to recognize AKI in time [12]. Early 

recognition and prevention of potential AKI is 
importance. 

The traditional linear models require the 
statistical assumption of a liner relationship between 
the covariates and the risk of morbidity, and are often 
overfitting and multicollinearity. Machine learning 
approaches were introduced for better or comparable 
predictive ability than statistical analysis to predict 
postoperative outcomes. AI may offer opportunities 
for identifying patients at risk within a time window 
that enables early treatment [5]. On 9 June 2014, 
National Health Service (NHS) England published the 
national AKI algorithm in its patient safety alert, 
recommending “the wide scale introduction and 
uptake of an automated computer software algorithm 
to detect AKI” [13]. In 2015, Google developed the 
Streams program, which could predict AKI and send 
warnings to doctors to early intervention [13]. After 
that, the application of AI in AKI gradually attracted 
scientists’ attention.  

Tomaše et al. build a model which can predict 
55.8% of all inpatient episodes of AKI, and 90.2% of all 
AKI that required subsequent administration of 
dialysis by AI in 703,782 adult patients [5]. Lee et al. 
[14] retrospectively reviewed 2,010 patients after 
cardiac surgery and used six machine learning 
techniques, including decision tree, random 
forest(RF), extreme gradient boosting, support vector 
machine(SVM), neural network classifier, and deep 
learning, to train AKI prediction models. The study 
demonstrated that the machine learning technique of 
extreme gradient boosting showed significantly better 
performance than the traditional logistic regression 
analysis or previous risk scores in predicting both AKI 
of all stages and stage 2 or 3 AKI after cardiac surgery 
which may help to evaluate the risk of AKI at the end 
of surgery. Yin et al.[15] retrospectively reviewed 
8,800 patients undergoing contrast administration to 
develop the model for prediction of Contrast-induced 
nephropathy (CIN), the third cause of all 
hospital-acquired renal failure [16], by the machine 
learning method of RF. The model shown good 
predictive ability of CIN development and might 
provide preventative measures for CIN. Hamid et al. 
[17] used boosted ensembles of decision trees to train 
an AKI prediction tool on retrospective data taken 
from more than 300,000 inpatients. The prediction tool 
offered important predictive capability for detecting 
which patients were likely to suffer AKI. Prediction is 
improved for the cases with closer kinetics to AKI. 
These tools allow clinicians to potentially intervene 
before kidney damage manifests. Tang et al. [18] built 
risk prediction models for AKI in 157 severely burned 
patients, and compare the prediction performance of 
XGBoost machine learning and logistic regression 



Int. J. Med. Sci. 2020, Vol. 17 

 
http://www.medsci.org 

972 

model; machine learning method was found to have a 
better prediction performance than logistic regression. 
Besides, a Gradient Boosting Machine algorithm 
predicted serum creatinine-based Kidney Disease 
Improving Global Outcomes stage 2 AKI using 
electronic health record data for longitudinal use in 
121,158 hospitalized patients. The algorithm had a 
sensitivity of 84% and a specificity of 85% for stage 2 
AKI which the AUC (95% CI) was 0.90 (0.90-0.90) for 

predicting stage 2 AKI within 24 hours and 0.87 
(0.87-0.87) within 48 hours. The AUC was 0.96 
(0.96-0.96) for receipt of renal replacement therapy in 
the next 48 hours [19]. Another study demonstrated 
that machine learning models (multivariate logistic 
regression, RF and artificial neural networks (ANN)) 
can predict AKI onset following ICU admission in 
23,950 patients with a competitive AUC (mean AUC 
0.783) [20] (Table 1). 

 

Table 1. Summary the role of AI in predicting AKI 

Study cohort 
size 

Research 
Type 

AI Algorithm specificity sensitivity AUC Factors used in the 
development of individual 
AI models 

Limitations 

Tomašev N,et 
al.[5] 

703,782  longitudinal 
dataset 

recurrent neural 
network 

83.3% (dialysis 
within  
30 days) 

84.3% (dialysis 
within  
30 days) 

83.5%(dialysis 
within 30 days) 

Age, ethnicity, gender, 
diabetes 

Retrospective study. The 
model is not 
representative 
of the global population 

Sanchez-Pinto 
LN,et al.[6] 

6,564 analytical 
study 

regression-based 
methods (stepwise 
backward selection 
using p-value and 
AIC, Least Absolute 
Shrinkage and 
Selection Operator, 
and Elastic Net) and 
tree-based methods 
(Variable Selection 
Using Random 
Forest, Regularized 
Random Forests, 
Boruta, and 
Gradient Boosted 
Feature Selection) 

NA NA AUC of 0.82 for the 
logistic regression, 
0.83 for the random 
forest, and 0.80  
for the gradient 
boosted machine. 

Age, years, Weight, Urine 
output (UOP), Bilirubin, 
mg/Dl,Blood urea 
nitrogen (BUN), 
Hemoglobin, Platelets, 
Potassium ,White blood 
cell count (WBC), Lowest 
systolic blood 
pressure(SBP),Systolic 
blood pressure standard 
deviation, Lowest 
SaO2/FiO2 (SF) ratio 
,Vasoactive-inotropic score 
(VIS), Disseminated 
intravascular 
coagulopathy (DIC) score, 
et al. 

Retrospective study. The 
study used the default 
settings of the algorithms 
that they tested and 
made no attempts to 
optimize the algorithms 
using different settings. 
 

Lee HC, et 
al.[14] 

2,010 Retrospective 
study 

decision tree, RF, 
extreme gradient 
boosting, SVM, 
neural network 
classifier 

NA NA 0.55-0.78 Age, Female, Body-mass 
index, Surgery type, 
Coronary artery bypass, 
Valvular heart surgery, 
Thoracic aortic surgery, 
Emergency, et al. 

Retrospective study. The 
analysis used only 
single-center data and 
included a relatively 
small number of cases 
and covariates, the 
external validity of 
results may be limited. 
Important predictors 
may be different 
according to different 
institutions. It is not 
certain that their results 
could translate into 
improved clinical 
outcomes for the 
patients. 

Yin WJ, et 
al.[15] 

8,800  a 
retrospective 
single-center 
case con- 
trol study 

the machine 
learning method of 
random forest 

0.788 0.827 0.907 baseline eGFR, red cell 
distribution width (RDW), 
triglycerides, the most 
recent serum creatinine 
before the procedure, 
high-density lipoprotein 
cholesterol (HDL), total 
cholesterol, low-density 
lipoprotein cholesterol 
(LDL), 
blood urea (BU), platelet 
larger cell ratio (P-LCR), 
serum sodium (Na+), 
plateletocrit (PCT), 
international normalized 
ratio (INR), and blood 
glucose (BG). 

This study is limited by 
its retrospective design; 
the prediction model is 
derived and validated by 
a single center; any 
variable that was 
missing for more than 
30% of the population 
was not assessed in the 
present study; they 
ignored unstruc- 
tured clinical notes. 

Mohamadlou 
H, et al.[17] 

30,0000 Retrospective 
study 

gradient boosted 
trees 

Prediction at 
Onset: 0.82. 
Prediction 12 
hours before 
onset: 0.73. 
Prediction 24 
hour: 0.64 
(patient data 

Prediction at 
Onset: 0.77. 
Prediction 12 
hours before 
onset: 0.75. 
Prediction 24 
hour: 0.79(patient 
data from 

Prediction at 
Onset: 0.872 
Prediction 12 hours 
before onset: 0.800 
Prediction 24 
hour: 0.795(patient 
data from Stanford 
Medical Center) 

Age, gender, heart rate, 
respiratory rate, 
temperature, SCr, and 
Glasgow Coma Scale 
(GCS), et al.  

Retrospective study. 
They cannot draw any 
conclusions about the 
impact the algorithm's 
predictions will have on 
patient outcomes in a 
clinical setting. 
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Study cohort 
size 

Research 
Type 

AI Algorithm specificity sensitivity AUC Factors used in the 
development of individual 
AI models 

Limitations 

from Stanford 
Medical 
Center) 

Stanford Medical 
Center) 

Tang CQ, et 
al.[18] 

157 Retrospective 
study 

Logistic regression 
and XGBoost 
machine learning 
algorithm 

0.844 
(Logistic 
regression) 
0.897(XGBoost 
machine 
learning 
algorithm) 

0.777 
(Logistic 
regression) 
0.820(XGBoost 
machine learning 
algorithm) 

0.875(Logistic 
regression) 
0.920(XGBoost 
machine learning 
algorithm) 

sex, age, admission time, 
features of basic injuries, 
initial score on admission, 
treatment condition, and 
mortality on post injury 
days 30, 60, and 90, et al. 

Retrospective study. The 
prediction model in this 
article needs to be 
further validated in 
prospective studies; Do 
not record the use of 
nephrotoxic drugs, and 
do not explore its role in 
Effects on AKI in the 
model; the results of this 
study may be applicable 
only to patients with 
severe burns and inhaled 
injuries. Retrospective 
study, limited no. of pts 

Koyner JL, et 
al.[19] 

121,158  Observational 
cohort study. 

Gradient Boosting 
Machine algorithm 

0.61 
(Probability 
Cutoff≥ 0.004 
in Stage 2 
Acute Kidney 
Injury) 

0.96 (Probability 
Cutoff≥ 0.004 in 
Stage 2 Acute 
Kidney Injury) 

0.87  
(0.87–0.87) 
At Least Stage2 
AKI (48 hr) 
 
 

Demographics, location 
data, vital signs, 
laboratory values,  
interventions, 
medications, nurse 
documentation, and 
diagnostic orders 

The study did not use the 
urine  
output definitions of AKI 
due to the inability to 
accurately  
measure urine output on 
an hourly basis in the 
majority of the cohort, 
they are limited in that 
they do not have SCr 
values prior to the index 
hospitalization and as 
such cannot truly 
determine baseline SCr 
or know if a patient has 
CKD. They do not have 
information on unique 
procedures that occur 
during the index 
hospitalization (e.g., 
specific surgical 
procedures) nor do they 
have baseline 
comorbidity 
information. 

 Zimmerman 
LP, et al.[20] 

23,950 Retrospective 
study 

multivariate logistic 
regression, random 
forest, artificial 
neural networks 

0.730-0.756 0.660-0.698 0.783 Gender, Age, Ethnicity, 
Creatinine, Heart Rate 
Maximum (bpm), Heart 
Rate Mean (bpm), et al. 

Retrospective study. 
Data is not 
missing-at-random. Do 
not include comorbid 
diagnoses. Prospective 
trials with independent 
model training and 
external validation 
cohorts are needed. 

NA, not available. pts, patients. 
 
 

Alerting CKD 
There are also reports of AI applications in 

alerting the occurrence of CKD. A pilot program 
using e-technologies to detect CKD was conducted in 
Australia (Electronic Diagnosis and Management 
Assistance to Primary Care in Chronic Kidney 
Disease; EMAP-CKD). The software was built on 
algorithms trained to identify at-risk patients and to 
order a relevant screening test for CKD [21].  

In addition, AI has also been studied in the early 
warning of complications of CKD. Galloway et al. 
reported that using only 2 ECG leads, a deep-learning 
model detected hyperkalemia in patients with renal 

disease with an AUC of 0.853 to 0.883. The application 
of artificial intelligence to the ECG may enable 
screening for hyperkalemia of CKD patients. 
However, the study is retrospective and need 
prospective testing. Additionally,the model is a 
screening test with low specificity, with upwards of 
42% false-positive results, which may cause anxiety 
and inconvenience for patients.[22]. Pilia et al. also use 
an artificial neural network to reconstruct the 
extracellular ionic concentrations for both potassium 
and calcium with an acceptable precision in CKD 
patients [23]. 
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Table 2. Summary the role of AI in alerting CKD 

Study cohort 
size 

Research Type AI Algorithm specificity sensitivity AUC Factors used in the 
development of individual AI 
models 

Limitations 

Galloway CD, et 
al.[22] 

449,380 Retrospective 
study 

A deep 
convolutional 
neural network 
(DNN) 

0.632 for 
Minnesota,0.547 
for Florida; 
0.550 for Arizona. 

 0.902% for 
Minnesota; 
0.913 for 
Florida; 
0.889 for 
Arizona. 

0.883 for 
Minnesota, 
0.860 for 
Florida, and 
0.853 for 
Arizona.  

Age, Sex, BMI, eGFR,ECGs, 
serum potassium, et al. 

Retrospective study, a 
prospectively validated 
screening test in the home 
setting is needed to improve 
care and outcomes in patients 
with renal and cardiac disease. 

Pilia N, et al.[23]  71 Retrospective 
study 

neural network, 
Bayesian neural 
network 

NA NA NA concentrations of Ca2+and K+

、ECG, et al. 
Retrospective study, limited 
no. of pts. 

Lin SY, et al.[24] 48,153 Retrospective 
study 

RF, ANN 
 

NA 0.817 for 
RF, 0.640 
for ANN  

0.861 
for RF, 
0.685 for 
ANN  

Age, Sex, Urbanization level, 
Occupation, comorbidity, et al. 

No external validation; 
majority of participants were 
Taiwanese, further validation 
with different populations is 
require; lack of detailed 
information like clinical frailty 
scales,routine activities,body 
mass index, et al. 

Kanda E, et 
al.[25] 

7,465 observational 
and 
worksite-based 
study 

Bayesian 
network and 
SVM 

NA NA NA age, gender, body mass index 
(BMI), waist circumference, 
systolic and diastolic blood 
pressures, casual blood 
glucose, hemoglobin A1c 
(HbA1c) (NGSP), serum 
low-density lipoprotein  
(LDL) cholesterol, and 
creatinine levels, and 
proteinuria grade, et al. 

The results may be  
biased by unmeasured 
confounders; the population 
mainly consisted of healthy 
workers, and did not  
include elderly people and the 
subjects with missing data in 
this study; The study was 
carried out in only one region 
in Japan. 

Almansour NA, 
et al.[26] 
 

400 Retrospective 
study 

ANN /SVM 99.75% 
/97.75%(accuracy) 

NA NA Age , Blood Pressure, Blood 
Glucose , Blood Urea , Serum 
Creatinine, Sodium , 
Potassium, Hemoglobin , 
Packed Cell Volume , White 
Blood Cell Count , Red Blood 
Cell Count, et al. 

Retrospective study, limited 
no. of pts 

Chen Z, et al.[27] 
 
 

386 Retrospective 
study 

K-nearest 
neighbor 
(KNN), SVM, 
and soft 
independent 
modeling of 
class analogy 
(SIMCA) 

99.9% 
(SVM) 

97.6% 
(SVM) 

NA Age, Blood pressure, Specific 
gravity, Albumin, Sugar, Red 
blood cell, Pus cella, Pus cell 
clumps, Bacteria, Blood 
glucose random , Blood urea, 
Serum creatinine, Sodium, 
Potassium, Hemoglobin , 
Packed cell volume , White 
blood cell count, Red blood 
cell count, Hypertension , 
Diabetes mellitus, Coronary 
artery disease, Appetite, Pedal 
edema, Anemia 

Retrospective study, limited 
no. of pts 

Bermudez-Lopez 
M, et al.[28] 
 
 

395 Cross-sectional 
study 

RF NA NA 0.789 VLDL, cholesterol, triglyceride 
content in IDLs, LDL , HDL, 
triglycerides, Lp(a), the 
triglycerides/HDLCholesterol, 
PCSK9/LDL- Cholesterol 
ratios, et al. 

Cross-sectional study, limited 
no. of pts 

Kazemi Y, et 
al.[29] 
 

936 Retrospective 
study 

ensemble-based 
model 

97.1% 97.1% 99.6% sex, acid uric condition, 
calcium level, hypertension, 
diabetes, nausea and vomiting, 
flank pain, and urinary tract 
infection (UTI), et al. 

Retrospective study, limited 
no. of pts 

Liu X,et al.[30] 1,230  Retrospective 
study 

ANN  0.787 
(Accuracies) 
 

NA 
 

NA 
 

age, sex, and standardized 
serum creatinine level, et al. 

Retrospective study. Different 
methods for measuring GFR 
were a source of systematic 
bias in comparisons of new 
models to CKD-EPI, and both 
the derivation and validation 
cohorts consisted of a group of 
patients who were referred to 
the same institution 

 
 
Besides, AI can also predict cost and mortality of 

patients. Lin et al. claimed that applying AI modeling 
could help to provide reliable information about 
one-year outcomes following dialysis in the aged and 
super-aged populations. They concluded that those 

with cancer, alcohol-related disease, stroke, chronic 
obstructive pulmonary disease (COPD), previous hip 
fracture, osteoporosis, dementia, and previous 
respiratory failure had higher medical costs and a 
high mortality rate [24]. 
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Moreover, Eiichiro et al. identified factors of 
progressive CKD from healthy population at a health 
check point by using Bayesian network and artificial 
intelligence. They included hypertension, the 
time-series changes in the prognostic category of 
CKD, proteinuria and eGFR et al [25]. Besides, 
Almansour et al. compared the ANN and SVM 
techniques in a dataset of 400 patients to predict CKD 
in early stage. The empirical results from the 
experiments indicated that ANN performed better 
than SVM, with accuracies of 99.75% and 97.75%, 
respectively [26]. Chen Z et al. also used multivariate 
models, i.e., K-nearest neighbor (KNN), SVM, and soft 
independent modeling of class analogy (SIMCA), to 
evaluate risk of 386 patients to predict CKD. The 
overall accuracies were over 93% [27]. 
Bermudez-Lopez M et al. also used RF analysis to 
point out that new parameters such as Proprotein 
convertase subtilisin-kexin type (PCSK9) have a 
higher discrimination ability to classify patients into 
the non-diabetic CKD group [28]. 

The high morbidity rate associated with kidney 
stone disease is one of the main concerns in healthcare 
systems. Kazemi Y et al. developed a model for the 
early detection of the type of kidney stone and the 
most influential parameters in 936 patients with 
nephrolithiasis. The final ensemble-based model (with 
an accuracy of 97.1%) could be safely applied to 
predict the chances of developing nephrolithiasis [29]. 

Whereas, the current studies are mainly 
retrospective analyses, and the applicability needs 
further verification. Moreover, it is reported that an 
ANN model using 3 variables did not perform better 
than a new regression model in improving GFR 
estimation [30]. Furthermore, AI technologies face 
ethical and legal challenges yet to clarify. In 2016, 
DeepMind Technologies Limited, a wholly-owned 
subsidiary of the Google conglomerate, Alphabet Inc., 
announced its first major health project: a 
collaboration with the Royal Free London NHS 
Foundation Trust, to assist in the management of AKI. 
Initially received with great enthusiasm, the 
collaboration has suffered from a lack of clarity and 
openness, with issues of privacy and power emerging 
as potent challenges as the project has unfolded [13]. 
In the end, the project was halted due to a lack of 
privacy and consent to transferring population- 
derived dataset to large private prospectors [31]. 

Computer Aided Diagnosis--diagnostic 
assistance 

Computer Aided Diagnosis (CAD) is a 
technology combined medical image and computer 
image processing to quantify and judge the 
characteristics of the focus, could assist clinicians to 

identify and analyze lesions timely and accurately 
[32]. The function of CAD has been verified in many 
aspects, especially in tumors, such as skin cancer, 
breast cancer, lung cancer, and so on[33]. The studies 
related to kidney disease are scanty, mainly about 
imaging diagnosis and pathological diagnosis. 

Imaging diagnosis 
Autosomal Dominant Polycystic Kidney Disease 

(ADPKD) is the most common hereditary disease in 
kidney. It is characterized by progressive enlargement 
of the kidneys caused by progressive development of 
renal cysts, often accompanied by declining renal 
function [34]. Total kidney volume (TKV) associated 
with renal function, is a crucial biomarker for 
studying progression of ADPKD. Traditional methods 
for TKV computation are based on stereology and 
manual segmentation for Computed Tomography 
(CT) and Magnetic Resonance Imaging. The accuracy 
of this method depends on user-specified parameters. 
It is significantly important to develop rapid and 
reliable methods for TKV quantification, CAD is a 
good choice. In 2017, Kanishka et al. [35] used an 
automated segmentation method based on deep 
learning for TKV computed on CT dataset of 244 
ADPKD patients. The new method facilitates fast and 
reproducible diagnosis, and TKV measurements 
transmission agrees with manual segmentations from 
clinical experts. Similarly, Timothy et al. [36]used an 
automated method to segment the kidney and 
measure TKV from 2400 cases of MR images. The 
method simulated a multi-observer approach to 
create an accurate and robust method for 
segmentation and computation of TKV. However, 
CAD technology only could obtain a primary 
diagnosis. If some characteristics are not included in 
training database, they need to be judged by the 
clinician, after that they will be included in the 
training model to continue learning to improve the 
diagnostic ability. Most recently, van Gastel MDA et 
al. successfully developed a fully automated 
segmentation method for TKV measurement that uses 
a deep learning network in 540 abdominal magnetic 
resonance images (T2-weighted HASTE coronal 
sequences) from patients with ADPKD. TKV 
measured by the automated approach correlated 
highly with manually traced TKV (intraclass 
correlation coefficients, 0.998), with low bias and high 
precision (<0.1%±2.7% for TKV) [37]. 

It is often difficult for physicians to achieve 
preoperative differential diagnosis between renal cell 
carcinoma and some benign renal tumors by virtue of 
existing imaging techniques (including CT and MRI), 
such as adiposity angiomyolipoma [38].In most cases, 
such benign tumors only require conservative 
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treatment or follow-up, so it is particularly important 
to achieve accurate preoperative diagnosis of renal 
cell carcinoma and renal benign tumors[39]. 
Automatic deep feature classification (DFC) method 
can distinguished both benign angiomyolipoma 
without visible fat (AMLwvf)[40, 41] and 
oncocytoma[42] from malignant renal cell carcinoma 
(ccRCC) from abdominal computer tomography (CT) 
images. 

Besides, Image genomics can complete genomic 
analysis in characterizing disease biology by 
extracting a large number of tumor image features 
through AI, and associating the image features with 
the underlying mutation status of tumors, molecular 
markers, underlying activated biologic pathways, or 
clinical outcomes by developing “association maps” 
between them [43, 44]. Jamshidi et al. constructed an 
alternative model for multi-gene expression 
molecular detection of renal clear cell carcinoma 
based on image genomics by using CT imaging 
features, thus achieving the independent prediction of 
disease-related survival of patients without any 
invasion method [45]. It is found out that the 
associations between tumor angiogenesis and 
radiomic imaging features from PET/MRI, which can 
predict the prognostic and guide the treatment of 
antiangiogenic agents of clear cell renal cell carcinoma 
(ccRCC) [46, 47]. However, most of the current clinical 
studies are single-center studies with small sample 
size, and lacking cross-test and verification.  

What is more, Kuo et al. identified the CKD 
status defined by an eGFR of <60 ml/min/1.73 m2 
based on 4,505 kidney ultrasound images by deep 
neural network (The AUC of the model is 0.904). A 
Pearson correlation coefficient of 0.741 and accuracy 
of 85.6% indicated the strong relationship between AI 
and creatinine-based GFR estimations [48].  

Congenital abnormalities of the kidney and 
urinary tract (CAKUT) in children are a challenging 
task. A pre-trained deep learning model 
(imagenet-caffe-alex) is adopted for transfer 
learning-based feature extraction from 3-channel 
feature maps computed from ultrasound images. 
SVM classifiers are then built upon different sets of 
features, including the transfer learning features, 
conventional imaging features, and their combination. 
The AUC for classifiers built on the combination 
features were 0.92, 0.88, and 0.92 for discriminating 
the left, right, and bilateral abnormal kidney scans 
from controls with classification rates of 84%, 81%, 
and 87%; specificity of 84%, 74%, and 88%; and 
sensitivity of 85%, 88%, and 86%, respectively. It is 
suggested that the combination of transfer learning 
features and conventional imaging features yielded 
the best classification performance for distinguishing 

CAKUT patients from normal controls based on their 
ultrasound kidney images [49, 50]. 

Pathological diagnosis 
Renal interstitial fibrosis is an indicator of the 

presence and extent of chronic kidney disease. The 
standard quantitative method of visual evaluation is 
very important for the diagnosis of renal diseases. The 
Banff schema is one of the standards used for the renal 
allograft rejection grades classification. The visual 
scoring is subject to pathologists’ intra- and 
inter-observer variability, may not be repeatable or 
reproducible. CAD can reduce the workload of 
pathologists, also has an advantage of precision and 
meticulousness. Wei et al.[51] developed an 
automated quantification system for measuring the 
interstitial fibrosis in 40-image and use 70 kidney 
patients to prove the error rate. It had shown an 
average error of 9%. The system demonstrated to be 
an effective quantification system as a diagnostic aide. 
Kannan et al. developed a deep learning framework 
to accurately identify and segment glomeruli from 
digitized images of human kidney biopsies. The 
segmentation model that was based on the 
convolutional neural network (CNN) multilabel 
classifier accurately marked the globally sclerosis 
glomeruli on the test data, which indicated the power 
of deep learning for assessing complex histologic 
structures from digitized human kidney biopsies [52]. 
Vijaya B Kolachalama et al. also leveraged a deep 
learning architecture to better associate 
patient-specific histologic images with clinical 
phenotypes (training classes) including CKD stage, 
serum creatinine, and nephrotic-range proteinuria at 
the time of biopsy, and 1-, 3-, and 5-year renal 
survival in 171 patients. AUC values for the CNN 
models in predicting creatinine, proteinuria and 1-, 3-, 
and 5-year renal survival were 0.912, 0.867, 0.878, 
0.875, and 0.904 [53]. Li C et al. trained a RF algorithm 
in 222 patients to build a pathological prediction 
model of primary nephrotic syndrome (accuracy 
62.2%) [54]. However, the specimen number was 
small, and the general applicability was uncertain, 
more researches were needed to improve in the 
future. 

Make appropriate ICD Codes  
International Classification of Disease (ICD) 

codes is important for population health and cohort 
discovery when clinical information is limited. Sina 
Rashidian et al. used deep learning methods which 
based on demographics, lab results, and medications, 
as well as codes from previous encounters to model 
coder decision making. Three test cases were 
investigated including acute renal failure (ARF) and 
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CKD, the AUC of predicting ARF and CKD were 
0.9194 and 0.9424 separately[55]. 

Guiding treatment  
Guidelines are the basis for decision-making, 

which are formulated through large-scale 
investigations. These guidelines are thus 
population-based and adjustments are needed using 
the guidelines on individual cases. Personalized and 
accurate treatment protocols are required. AI can 
analyze the association of treatment protocols and 
efficacy from a large number of patients, develop 
models based on efficacy and risk factors, guide the 
choice of treatment protocols, and improve clinical 
efficacy. Related studies on kidney disease are scanty, 
mainly in hemodialysis patients. 

Anemia treatment 
Anemia is one of the main common 

comorbidities in patients undergoing hemodialysis. 
The incidence and severity of anemia are gradually 
increasing as renal function declining [56]. In 2016, 
China Dialysis Outcomes and Practice Patterns Study 
(China’s DOPPS) showed the prevalence of anemia in 
CKD being 21% [57]. Anemia can increase the 
proportion of left ventricular hypertrophy, cause 
heart failure and myocardial infarction, reduce 
quality of life and increase the risk of death. 
Treatment costs and mortality were also significantly 
increased by anemia [58]. The major cause of anemia 
in CKD is deficiency in erythropoietin (EPO) 
production [59]. Erythropoietin stimulating agents 
(ESAs), which would supplement EPO and increase 
hemoglobin (Hb) level, are widely applied by 
clinicians. However, the toxicities of ESAs have been 
verified. ESAs would increase the incidence of 
cardiovascular events, tumor progression, and 
mortality [60, 61]. It was reported that the toxicities 
are associated with dose [62]. It is important to find an 
adequate treatment for every patient in each 
particular situation.  

Substantial progress has been made in the 
application of computer-driven methods to provide 
erythropoietic dosing information for patients with 
anemia resulting from chronic kidney disease. Initial 
solutions were simply computerized versions of 
traditional paper-based anemia management 
protocols. True personalization was achieved through 
the use of advanced modeling techniques such as 
artificial neural networks, physiologic models, and 
feedback control systems [63]. Early in 2003, experts in 
Spain have carried out an individualized prediction of 
the EPO dosage to be administered to CKD patients 
and successfully aided in the individualization of 
dosage and provided state-of-the-art regression 

models to clinicians [64] in a single center. In 2008, 
Gaweda et al. also reported that model predictive 
control (MPC) by using an artificial neural network 
model of EPO may result in improved anemia 
management [65]. Both studies had relatively small 
sample sizes. In 2014, Carlo used Machine Learning 
(Multilayer Perceptron, MLP) and linear model, 
which were built for prediction of ESAs therapy 
response, to recommend suitable ESAs doses. The 
accuracy of MLP prediction model was more than 
90%. The MLP model outperforms previous 
approaches of the Hb prediction [66]. To evaluate the 
impact of the model, the team conducted a 24-month 
retrospective study using additional 752 hemodialysis 
patients in 2016. It was reported that median ESAs 
consumption decreased and on-target Hb values 
increased based on the model suggestions. Moreover, 
Hb fluctuation had a significant decrease. The model 
could help to improve anemia outcomes of patients 
with hemodialysis, minimizing ESAs dose with the 
potential to reduce treatment cost [67]. In 2018, María 
et al. [68] also assessed the usefulness of this model. 
The model could help to increase the percentage of 
Hb in range and reduce the intake of ESAs with less 
Hb fluctuations. Meanwhile, the transfusion, 
hospitalization and cardiovascular events were all 
decreased. In conclusion, the model was an effective 
tool to help clinicians to minimize the risks of 
treatment with ESAs and reduce costs. However, the 
sample size was not very large and the follow-up time 
was insufficient to assess the impact of the model on 
cardiovascular morbidity and mortality. At that time, 
the model has only used for hemodialysis patients, 
more trials should be carried out to verify the 
usefulness of anemia treatment in pre-dialysis and 
peritoneal dialysis patients. Moreover, these 
approaches are data-intensive and typically perform 
well in ranges in which adequate data exist to model 
the ESA response, but are unable to extrapolate 
beyond these ranges [63]. 

Blood pressure and fluid volume management 
Blood pressure (BP) and fluid volume are crucial 

points for patients undergoing hemodialysis. The 
prevalence of hypertension is 40-90% of patients with 
ESRD according to the BP definition used, the 
population selected, and the timing of measurement 
[69, 70]. Clinicians often reduce extracellular fluid 
volume overload to control BP, which would increase 
the incidence of intradialytic hypotension. Both 
intradialytic hypotension and chronic hypertension 
are associated with poor prognosis. The clinical 
system EuCliD® is an international electronic health 
record repository allowing point-of-care data 
collection of routine clinical practice information [71]. 
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By exploiting such wealth of information, Carlo et al. 
[71] developed a multiple-endpoint model predicting 
session-specific Kt/V, fluid volume removal, heart 
rate, and BP based on 766,000 records in 2019. The 
accuracy and precision of the model is encouraging. 
The model may help to make the optimized decision 
in multidimensional other than currently limited 
single-endpoint treatment strategies. 

Wearable dialysis devices 
Dialysis is the main treatment for ESRD. Dialysis 

affects the patient's life in a wide range, and some 
patients cannot tolerate hemodynamic instability of 
intermittent dialysis, there are great expectations for 
the development of wearable artificial kidneys. 
Wearable dialysis devices can make the real-time 
analysis of equipment alarms, dialysis parameters, 
and patient-related data with a real-time feedback 
response. Martin et al. [72] combined AI and 
regenerative medicine technology to develop 
wearable dialysis devices. These devices can conduct 
continuous dialysis, remove toxins effectively and 
have little effect on hemodynamic (Figure 1). The 
devices have been tested in 15 ESRD patients. The 
results showed that dialysis was effective without any 
adverse reactions. The devices were authorized as a 
breakthrough device by the America Food and Drug 
Administration. However, the sample size is small; 
more researches are needed to include more patients 
to improve the model in the future. Another 
interesting approach is the wearable artificial kidney, 
a 5-kg wearable, miniaturized device with a 
sorbent-based hemodialysis system that is worn on 
the waist like a toolkit belt and is currently under 
development at the University of Washington, USA. 

An exploratory clinical trial with 10 patients received 
therapy with a wearable artificial kidney for 24 h. 
However, the trial was stopped after the inclusion of 
the 7th subject because of device-related technical 
problems, including an excessive presence of carbon 
dioxide bubbles in the dialysate circuit, which 
exceeded its degassing capacity; tubing kinks; and 
variable pump function that resulted in fluctuating 
blood and dialysate flow rates [73]. Another 
remarkable innovation is the implantable Renal Assist 
Device (iRAD) that uses micromachining techniques 
to fabricate a biohybrid system able to mimic renal 
morphology and function. This artificial kidney is a 
bionic device that incorporates a silicon nanopore 
membrane and a bioreactor of live kidney cells that 
will concentrate the ultrafiltrate into urine. The 
bundle is enclosed in a body-friendly box and 
connected to a patient’s circulatory system and 
bladder. Despite having been used with success in 
animal models [74], it is still under development to 
scale it up to the clinical environment [75]. Recently, 
experts found MXene Sorbents for Removal of Urea 
from Dialysate, which open a new opportunity in 
designing a miniaturized dialysate regeneration 
system for a wearable artificial kidney [76]. 

Assistance of needle insertion 
Robotics are also steadily being introduced in 

health care, especially in surgery, with systems such 
as the da Vinci® Surgical System that involves a 
magnified 3D high-definition computer vision system 
(part of it aided by ML) and tiny wristed instruments 
that bend and rotate more complexly than the human 
hand. An autonomous image-guided robotic needle 
insertion for blood draws and intravenous insertions 

 

 
Figure 1. Artificial intelligence involves the science and engineering for developing smart wearable artificial kidneys [72] 
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has also been designed that combines robotics, AI, 
computer vision, and image technology (Figure 2) 
[77]. It must be made clear that a dialysis machine is 
not an AI-guided robot, since it is not able to respond 
to its environments in ways that humans have not 
explicitly taught it to. However, it is easy to imagine 
future dialysis robots capable of carrying out complex 
series of actions automatically or in a 
semi-autonomous fashion. Besides, it is reported that 
accurate needle insertion (< 3 mm error) can be 
achieved in common target sites including the 
kidneys when using a CT-guided robotic system [78]. 
The proposed optical tracker based robot registration 
and serving method is capable of accurate three 
dimension needle operation for ultrasound-guided 
percutaneous renal access (PRA) procedure with 
improved precision and shortened time [79]. 

Evaluating prognosis 
AI can identify factors affecting prognosis by 

analyzing database, and develop models evaluating 
the relationship between factors and prognosis. In this 
section, we will summarize AI applications in 
evaluating prognosis involving several common 
kidney diseases. 

Chronic Kidney Disease Mineral and Bone Metabolism 
Disorders (CKD-MBD) 

CKD-MBD is another common comorbidity in 
ESRD patients, which increases mortality. The serum 
concentrations of phosphate (P), calcium (Ca) or 
parathyroid hormone (PTH) are associated with 
negative outcomes. The three parameters, P, Ca, PTH, 
interplay of each other, but the relationship is 
non-linear. Classical statistical methods have no 
advantages on analyzing associations among 
variables non-linear but affected by non-trivial 
feedback loops. The machine learning seems to be a 
predictive analytic approach. To quantify the degree 
of association between the three parameters, Mariano 
et al developed a data analysis system by RF from 
1,758 HD patients. Comparing with Classical 
statistical methods, the power of prediction of the new 
model was markedly increased [80]. In 2018, Kleiman 
et al.[81] used RF algorithms to build model 
predicting risks for development of calciphylaxis in 
CKD patients.With an AUC value of 0.872, the model 
could successfully predict calciphylaxis, provide an 
opportunity for clinical translation of the predictive 
models. 

 

 
Figure 2. System design and architecture for automated cannula insertion. (a) Functional prototype. (b) Major functional components. (c) Device data flow.(d) Hardware 
architecture grouped by function [77]. 
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IgA nephropathy (IgAN) 
IgAN is the most common primary glomerular 

kidney disease. About 20-40% of IgAN patients will 
reach ESRD within 10-20 years of diagnosis. Early 
prediction of ESRD is valuable. Liu et al. [82] 
retrospectively reviewed 262 biopsy-proven IgAN 
patients, and employed artificial intelligence to 
predict the ESRD status in IgAN patients. The 
predictive model showed that Oxford-MEST scores, 
C3 staining and eGFR were important role for ESRD 
prediction in Chinese IgAN patients. Most recently, 
Chen et al. [83] developed a prediction model using 
routinely available characteristics (demographic, 
clinical, and pathologic variables) and based on the 
combination of a machine learning algorithm and 
survival analysis which can stratify risk for kidney 
disease progression in the setting of IgAN. 

Diabetic Kidney Disease (DKD) 
DKD is a common complication and a mainly 

cause of diabetes deaths. It is critical to identify the 
risk factors to stratify DKD risk to improve patient 
management. As early in 2013, Leung RK et al. used a 
multi-staged strategy based on machine learning and 
mathematical modeling to predict genotype- 
phenotype risk patterns in 119 DKD patients and 554 
without DKD type 2 diabetic patients. They found out 
that age, age of diagnosis and lipid parameters were 
major clinical predictors while genetic 
polymorphisms related to inflammation and lipid 
metabolism were the most selected genetic predictors 
[84]. 

In 2018, Arianna et al. [85] used machine 
learning to set a predictive of type 2 diabetes mellitus 
complications from 1000 patients with type 2 diabetes. 
The Random Forest model had the highest predictive 
performance. The model showed that variables, such 
as gender, age, time from diagnosis, body mass index, 
glycated hemoglobin, hypertension, and smoking 
habit, contributed more than others. The accuracy of 
the model was 0.838, more studies should be conduct 
to improve the accuracy and sensitivity. Another 
research also claimed that machine learning could 
compare frequent medical problems of African 
American and Caucasian Diabetic Kidney disease in 
4,623 diabetic patients. This study found that African 
Americans have much higher rates of CKD-related 
medical problems than Caucasians for all five CKD 
stages, and prominent markers leading to ESRD were 
high glucose, high systolic BP, obesity, alcohol/drug 
use, and low hematocrit. In 2019, Ravizza et al. [86] 
carried out a direct comparison of algorithms derived 
from real-world data (RWD) and clinical data for 
quantifying the risk of CKD as a long-term 
complication of diabetes. After teaching the 

Roche/IBM model using seven prioritized features, 
including age, body mass index, and glomerular 
filtration rate, creatinine, albumin, glucose, and 
hemoglobin, the AUC of the prediction algorithm was 
0.7937. It is concluded that the teaching of predictive 
analytics algorithms using real-world data could 
achieve equivalent or even enhanced accuracy 
compared with those using clinical trial data. Most 
recently, Song X et al. presented an ensemble feature 
selection approach to identify a robust set of 
discriminant factors to predict DKD in 15,645 adult 
patients with type 2 diabetes [87]. The ensemble 
model identified a set of 440 features, including 191 
labs, 51 visit details (mainly vital signs), 39 
medications, 34 orders, 30 diagnoses, and 95 other 
clinical features with an AUC of 0.82 on internal 
validation and 0.71 on external temporal validation. 
Besides, Makino et al. also constructed a new 
predictive model for DKD using AI based on the EMR 
of 64,059 diabetes patients. AI could predict DKD 
aggravation with 71% accuracy (the resultant average 
of the AUC was 0.743) which may contribute to more 
effective and accurate intervention to reduce 
hemodialysis [88]. 

Kidney transplantation  
Kidney transplantation is another main 

treatment for ESRD. But only a few patients can 
receive kidney transplantation because the shortage of 
kidney and high technical requirements. Predicting 
the outcome of kidney transplantation is important to 
optimize transplantation parameters and modify 
factors related to recipient, donor, and transplant 
procedure. Lofaro et al. [89] retrospectively analyzed 
80 renal transplant patients with 5-year follow-up, 
using classification trees to develop two predictive 
models and identifying six variables that contributed 
high on patient outcomes. The AUC values of these 
two models are 0.847 and 0.824 respectively. In 
another study, 4754 systemic lupus erythematosus 
patients who underwent kidney transplantation were 
enrolled. Predictive models were developed by 3 
machine learning algorithm. The AUC of ANN (0.73) 
based on six variables was slightly better than the 
logistic regression based on six variables selected by 
Weka (0.73) and classification trees (0.70). The study 
showed that the ANN model had better predictive 
performance than other models [90]. Abdeltawab H et 
al. also developed a deep-learning based CAD system 
based on the fusion of both imaging markers and 
clinical biomarkers for the early detection of acute 
renal transplant rejection. The overall accuracy of the 
proposed system is 92.9% with 93.3% sensitivity and 
92.3% specificity in distinguishing non-rejected 
kidney transplants from rejected ones [91]. 
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CKD after AKI 
Several studies between 2008 and 2017 have 

demonstrated that although acute kidney injury is 
usually reversible, some patients may experience 
incomplete recovery of kidney function, while others 
subsequently develop accelerated loss of kidney 
function, resulting in an increased risk of chronic 
kidney disease [92-94]. A prediction of advanced CKD 
following hospitalization with AKI will result in got 
opportunities to intervene and potentially improve 
long-term outcomes and avoid unnecessary use of 
clinical resources [95, 96]. A multivariable model was 
developed with 9973 participants and was externally 
validated with 2761 participants to develop a practical 
risk stratification approach that could be used to 
identify patients at high risk of chronic kidney disease 
after they are discharged. This model using routine 
laboratory data was able to predict advanced chronic 
kidney disease following hospitalization with acute 
kidney injury. But requires evaluation of its utility in a 
clinical setting [97]. 

CKD severity 
Norouzi et al. predicted renal failure progression 

in 465 CKD patients by using Integrated Intelligent 
Fuzzy Expert System and found out that the model 
could accurately (>95%) predict the GFR for 
sequential 6-, 12-, and 18-month intervals [98]. Xiao et 
al. compared nine predictive models, including 
logistic regression, Elastic Net, lasso regression, ridge 
regression, SVM, RF, XGBoost, neural network and 
k-nearest neighbor in prediction of CKD progression 
in 551 patients with proteinuria (The AUC values of 
the 9 models were 0.873, 0.871, 0.872, 0.865, 0.857, 
0.854, 0.868, 0.854, 0.802, respectively). The study 
showed that the model with the highest sensitivity 
was Elastic Net (0.85), while XGBoost showed the 
highest specificity (0.83). ALB, Scr, TG, LDL and eGFR 
levels, showed predictive ability for CKD severity 
[99]. Moreover, Zacharias HU et al. identified CKD 
patients at risk of progressing to ESRD in 4,640 
patients by state-of-the-art machine learning methods. 
The results demonstrated that proton nuclear 
magnetic resonance features, such as creatinine, 
high-density lipoprotein, valine, acetyl groups of 
glycoproteins, and Ca2+-EDTA carried the highest 
weights are predicting factors [100]. 

Death Risk, cardiovascular risk after dialysis 
The study was carried out on a contemporary 

cohort of 27,615 US veterans with incident ESRD by 
implementing a random forest method on 49 variables 
obtained before dialysis transition to predict 
outcomes of 30-, 90-, 180-, and 365-day all-cause 

mortality after dialysis initiation. The results showed 
that the model provided C-statistics (95% CI) of 0.7185 
(0.6994-0.7377), 0.7446 (0.7346-0.7546), 0.7504 
(0.7425-0.7583), and 0.7488 (0.7421-0.7554) for 
predicting risk of death within the 4 different time 
windows [101]. Mezzatesta S et al. used non-linear 
SVC with RBF kernel algorithm, optimized with 
GridSearch, allowed to obtain an accuracy of 95.25% 
in the Italian dataset and of 92.15% in the American 
dataset, in the prediction of Ischaemic Heart Disease 
in patients on dialysis [102]. 

Summary 
It is noticeable that AI does not only play great 

role in Nephrology (Figure 3), but also in many other 
disciplines. Take Urology as an example, AI is applied 
for the prediction of genitourinary cancers [103]. We 
are witnessing the development of medical practice 
from empirical medicine to evidence-based medicine 
to intelligent diagnosis and to AI-directed medicine. 
While AI medicine is still in its infant stage, it is no 
question that by taking advantage of the diversity and 
complexity of the real-world data, AI will produce 
prediction algorithms suitable for routine clinical 
application in the near future. These findings may fuel 
a fundamental discussion of future medical evidence 
beyond the exploration of original targets for 
analyzing and interpreting data that are potentially 
costly, long-term clinical trials with a limited number 
of patients that may one day enhance, or even 
partially replace, real-world data-driven risk 
assessments [86]. In the future, AI is increasingly 
important in clinic, which can make clinician work 
efficiency and alleviate the pressure. Nonetheless, AI 
is facing multiple challenges, including the data 
quality uneven, lacking of agreed standards of 
different center, lacking of scientific verification, and 
the security, privacy of data. At the same time, the 
current studies are major retrospective studies, and 
absent large multi-center studies. More research is 
needed to apply AI to kidney diseases. 
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Figure 3. AI applications in kidney disease in alerting systems, diagnostic assistance, guiding treatment and evaluating prognosis. AKI, acute kidney disease. CKD, chronic kidney 
disease. CKD-MBD, Chronic Kidney Disease - Mineral and Bone Disorder. IgAN, IgA nephropathy. 
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