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Abstract 

Background: Our previous studies of human breast and prostate cancer have shown that ab-

errant immune cell infiltration is associated with focal tumor capsule disruption and tumor cell 

budding that facilitate invasion and metastasis. Our current study attempted to determine whether 

aberrant immune cell infiltration would have similar impact on colorectal cancer (CRC).  

Materials and Methods: Tissue sections from 100 patients with primary CRC were assessed for 

the frequencies of focal basement membrane (BM) disruption, muscularis mucosa (MM) frag-

mentation, and tumor cell dissemination in epithelial structures adjacent and distal to infiltrating 

lymphoid aggregates using a panel of biomarkers and quantitative digital imaging. 

Results: Our study revealed: (1) epithelial structures adjacent to lymphoid follicles or aggregates 

had a significantly higher (p<0.001) frequency of focally disrupted BM, dissociated epithelial cells in 

the stroma, disseminated epithelial cells within lymphatic ducts or blood vessels, and fragmented 

MM than their distal counterparts, (2) a majority of dissociated epithelial cells within the stroma or 

vascular structures were immediately subjacent to or physically associated with infiltrating immune 

cells, (3) the junctions of pre-invasive and invasive lesions were almost exclusively located at sites 

adjacent to lymphoid follicles or aggregates, (4) infiltrating immune cells were preferentially as-

sociated with epithelial capsules that show distinct degenerative alterations, and (5) infiltrating 

immune cells appeared to facilitate tumor stem cell proliferation, budding, and dissemination.  

Conclusions: Aberrant immune cell infiltration may have the same destructive impact on the 

capsule of all epithelium-derived tumors. This, in turn, may selectively favor the proliferation of 

tumor stem or progenitor cells overlying these focal disruptions. These proliferating epithelial 

tumor cells subsequently disseminate from the focal disruption leading to tumor invasion and 

metastasis. 
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Introduction 

It has been well-documented that increased in-
filtration of immune cells into tumor masses can result 
in physical destruction of the targeted tumor cells, 
with a concomitant reduction in tumor burden and 
improvement in patient prognosis [1-4]. Paradoxical-
ly, it is equally well-documented that pre-invasive 
epithelial tumors with increased immune cell infiltra-
tion have a significantly higher frequency of progres-
sion to invasive lesions than their stage- and histo-
pathologically-matched counterparts lacking distinct 
immune cell infiltrates [5-7]. In addition, a number of 
in vitro studies have suggested that tumor infiltrating 
immune cells can promote tumor invasion and me-
tastasis through a number of mechanisms [8-12]. Un-
fortunately, the direct impact of tumor-infiltrating 
immune cells and the factors that regulate their ability 
to either inhibit or promote neoplastic progression 
remain elusive, making it difficult to judge the clinical 
significance of tumor-infiltrating immune cells.  

As all normal epithelial tissues and in-situ tu-
mors are physically surrounded by a dense continu-
ous capsule that must be breached before physical 
contact between tumor and immune cells can occur, 
or before tumor invasion and metastasis can proceed 
[13-15], we have speculated that the apparent contra-
diction in the direct impact of tumor infiltrating im-
mune cells may result primarily from the differences 
in tumor stages and physical locations of infiltrating 
immune cells. It has been well documented that all the 
primary infiltrating immune cells, including cytotoxic 
T-lymphocytes (CTL), natural killer (NK) cells, leu-
kocytes, macrophages, and Mast cells, have to physi-
cally contact their targets in order to exert their cyto-
toxic functions [16-21]. Thus, it is likely that infiltrat-
ing immune cells are initially recruited to the tumor 
site by focal tumor capsule degeneration- and disrup-
tion-related alterations, to remove damaged struc-
tures. Consistent with our speculation, we found a 
significant predilection of infiltrating immune cells in 
tumor nests with focal capsule disruption in breast 
(97% vs. 22%) and prostate (91% vs. 33%) than mor-
phologically similar counterparts without disrupted 
tumor capsules [22-24]. Our subsequent studies re-
vealed that residual breast myoepithelial and prostate 
basal cells within focally disrupted capsules express a 
significantly lower level of tumor suppressors and cell 
proliferation-related proteins, whereas demonstrate a 
significantly higher rate of degeneration-related 
changes than their morphologically similar, 
non-disrupted counterparts [25-32]. Our studies also 
revealed that the predominant immune cell type as-
sociated with epithelial capsules was CTL, which 

displayed significant cytotoxic impact on degenera-
tive myoepithelial or basal cells, but not on associated 
luminal cells [25-32]. In contrast, luminal cells over-
lying focally disrupted capsules have a significantly 
higher level of proliferation and expression of tumor 
stem cell- and growth factor-related genes than their 
adjacent counterparts distant from the disruptions 
[25-32]. Our more recent study has further shown that 
denatured collagen I, a main element of tumor cap-
sules, can function as a strong chemoattractant for 
macrophage recruitment [33].  

Together, these findings have led us to propose 
that aberrant immune cell infiltration at the 
pre-invasive stage may represent a trigger factor for 
tumor invasion and metastasis [25-29]. According to 
our hypothesis, focal degeneration of the epithelial 
capsule due to age or disease attracts immune cell 
infiltration, which further degrades the focally de-
generating area resulting in a focal disruption within 
the capsule. If the focal disruption occurs in a region 
underlying undifferentiated progenitor or tumor stem 
cells, the changing microenvironment may selectively 
favor their proliferation, leading to cell “budding” 
from the disruption and subsequent growth into the 
stroma or dissemination to vascular structures [25-32]. 
Our hypothesis has been recognized by a number of 
internationally recognized experts in the field [34-36] 
as more compatible with existing experimental evi-
dence than the traditional “protoelytic enzyme” the-
ory [37].  

Our current study attempted to expand our ob-
servations to colorectal tumors. The hypothesis tested 
was that as colorectal tissues share very similar 
structural barriers, the basement membrane (BM) and 
the muscularis mucosa (MM), and the same hypothe-
sized sequence of tumor progression [38-41], aberrant 
immune cell infiltration may have the same destruc-
tive impact on epithelial capsules and the same pro-
moting impact on tumor progression as those seen in 
breast and prostate tumors [23-27]. In addition, our 
study intended to identify direct morphological and 
immunohistochemical signs suggestive of the poten-
tial sub-cellular mechanism(s) of tumor infiltrating 
immune cells on tumor progression.  

Materials and Methods 

De-identified and unstained slides of forma-
lin-fixed, paraffin-embedded (FFPE) consecutive tis-
sue sections were obtained from 100 age- and 
type-matched CRC patients with and without positive 
lymph nodes plus five normal controls. All tumor 
cases were confirmed to be adenocarcinoma and the 
five controls were confirmed to be free of morpho-
logical and immunohistochemical sings of colorectal 
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disease. These slides were retrieved under an Institu-
tional Review Board (IRB)-approved protocol 
(#2008001) from the Nanjing Municipal Hospital of 
Nanjing University of Traditional Chinese Medicine 
(TCM), China. The first and last slides from each tis-
sue block from each case were stained with hematox-
ylin and eosin (H&E) for morphological classification 
using established criteria. The remaining sections 
were used for immunohistochemical (IHC) assess-
ment. After preliminary examination, 8-cases are ex-
cluded due to the lack of sufficient tissue for analysis 
or tissue detachment from the slides. The clinical pa-
rameters of the study population are shown in       
Table 1. 

 

Table 1. Main clinical parameters of patients. 

 Parameters Node positive  Node negative   p 

Mean age (years) 59 61 > 0.05 

Tumor type Adenocarcinoma Adenocarcinoma  

Tumor size (cm)  4.95X3.68  4.55X3.54 > 0.05 

Depth of invasion    

Submucosa and/or 
superficial MP 

 4 (10.8%)  7 (12.7%) > 0.05 

Deep MP and subse-
rosa 

33 (89.2%) 48 (87.2%)  

 
 
Double immunohistochemistry was utilized to 

examine the distribution and interactions among tu-
mor-infiltrating immune cells, tumor capsules, and 
budding tumor cells. The following antibodies were 
used in this study: (a) leukocyte common antigen 
(LCA, clone: 2B11+PD7/26. Dako, Carpinteria, CA), 
which is expressed by all normal hematopoietic cells 
and their neoplastic transformations; (b) cytokeratin 
(CK) AE1/AE3 (clone: AE1/AE3, Dako, Carpinteria, 
CA), which detects high- and low-molecular weight 
keratins expressed by all epithelium-derived cells; (c) 
collagen IV (clone: CIV22, Dako, Carpinteria, CA), 
which is the main building block of the tumor capsule, 
(d) D2-40 (clone: D2-40, Signet, Dedham, MA), which 
is a phenotypic marker for lymphatic endothelium, 
and (e) CD34 (clone: clone: QBEnd 10; Dako, 
Carpinteria, CA, USA), which is a phenotypic marker 
for blood vessel endothelial cells. Double immuno-
histochemistry was carried out using our previously 
published methods (42). To assess the specificity of 
the immunostaining, various negative controls were 
used, including: (1) substitution of the primary anti-
body with the same isotype or pre-immune serum of 
the antibody, and (2) omission of the secondary anti-
body. All immunostaining procedures were repeated 
2-3 times under identical conditions.  

Lymphoid follicles, lymphocyte aggregates, and 
tumor-infiltrating lymphocytes were defined accord-
ing to commonly accepted criteria [38]. A focal dis-
ruption in the BM or a fragmentation in the MM was 
defined as a physical gap in these structures, larger 
than the combined diameter of at least three epithelial 
cells in at least three consecutive tissue sections. Dis-
sociated tumor cells were defined as isolated indi-
vidual cells, or small clusters of cells (few than15 
cells/cluster) observed to be physically separated 
from the tumor core in at least three consecutive tissue 
sections.  

To compare the frequencies of focal BM disrup-
tions, MM fragmentations, and dissociated tumor 
cells in structures adjacent to and distant from, infil-
trating lymphoid follicles and large immune cell ag-
gregates, the entire epithelium, lamina propria (LP), 
and MM of the pre-invasive tissue component was 
digitally photographed. The digital images were en-
larged to 400X and reviewed under the screen of a 
standard computer. The mean frequencies of focal BM 
disruptions, MM fragmentations, and dissociated 
tumor cells between these tissue sites were statisti-
cally compared with the Pearson’s Chi-square test. 
Statistical significance was defined as p<0.05.  

To assess the correlation of immune cell infiltra-
tion with tumor invasion, all junctions of pre-invasive 
and invasive lesions were identified and examined to 
determine whether these junctions are exclusively or 
preferentially associated with infiltrating immune cell 
aggregates.  

To identify the direct morphological and im-
munohistochemical signs suggestive of the potential 
sub-cellular mechanism(s) of infiltrating immune cells 
on tumor progression, tissue sections from 10 selected 
cases were assessed with three panels of bio-markers. 
First, they were subjected to triple immunohisto-
chemistry with vascular structure-related markers, 
including D2-40, CD34, and CD31 (clone: JC70A). 
Immunostained sections were examined to determine 
whether increased immune cell infiltration is associ-
ated with an increased vascular density, which has 
been suggested to promote tumor invasion and me-
tastasis. Second, they were subjected to triple im-
munohistochemistry with an epithelial capsule 
marker, collagen IV and markers to immune cells 
(CD8, clone: C8/144B; CD16, clone: DJ130C; Mast cell 
tryptase, clone: AA1. Dako, Carpinteria, CA, USA). 
Immunostained sections were examined to determine 
whether these immune cells are physically associated 
with the epithelial capsules and whether associated 
capsules show degenerative alterations. Third, they 
were subjected to triple immunohistochemistry with 
phenotypic markers to immune cells, stem cell 
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(CD133, clone: AC133, Miltenyi Biotec, Auburn, CA, 
USA; CK-19, clone: RCK108, Dako, Carpinteria, CA, 
USA), and proliferation marker Ki-67 (clone: MIB1) 
(Dako, Carpinteria, CA, USA). Immunostained sec-
tions were examined to determine whether increased 
immune cell infiltration is associated with increased 
epithelial cell proliferation, budding, and dissemina-
tion.  

Results 

In sections immunostained for collagen IV, the 
BM and MM in a vast majority of the normal and 
pre-invasive epithelial structures distant from lym-
phoid follicles or infiltrating immune cell aggregates 
were presented as a dense and continuous band, 
which completely encircles the colonic crypts and 
segregates the mucosae from the submucosae (Figure 
1A-B). In sections double immunostained for infil-
trating immune cells and epithelial capsules, immune 
cell infiltration and focal disruptions of the BM were 
readily appreciable in some normal colonic epithelial 
structures. However, most infiltrates distant from the 
tumor tissue were located at the middle or upper 
portion of the mucosae, and the BM in epithelial 
structures near the MM was generally intact (Figure 
1C-D). In addition, focal BM disruptions distant from 
the tumor tissue were facing the luminal direction, 
and the MMs were largely intact with no distinct 
immune cell infiltration (Figure 1E-F). In contrast, 
focal BM disruptions adjacent to the tumor tissue 
were generally facing the basolateral direction, and 
the MMs were often focally fragmented or separately 
with extensive immune cell infiltration within the 
MMs (Figure 1G-H).  

The frequency and extent of focal BM and MM 
attenuation or disruptions appeared to increase with 
increasing extent of immune cell infiltration and in-
creasing degree of malignancy. As shown in Figure 2, 
both the BM and MM in normal appearing epithelial 
structures distant from the invasive CRC are largely 
intact with fewer infiltrating immune cells. In con-
trast, both the BM and MM in normal appearing epi-
thelial structures immediately adjacent to the invasive 
CRC are focally attenuated or disrupted with exten-
sive immune cell infiltration. These infiltrating im-
mune cell aggregates harbor several epithelial cell 
clusters with no distinct surrounding BM (Figure 2B).  

A vast majority of the MM distant from lym-
phoid follicles was well defined and continuous. In 
sharp contrast, nearly all MMs immediately adjacent 
to lymphoid follicles exhibited aberrant alterations. 
As shown in Figure 3, all the MMs immediately adja-
cent to 7-lymphoid follicles in two cases are either 
totally absent or focally disrupted and variable num-

bers of dissociated individual epithelial cells or cell 
clusters are seen within or immediately adjacent to 
these lymphoid follicles.  

Nearly all epithelial structures distant from fo-
cally disrupted MMs were uniform in size with a dis-
tinct lumen, and were surrounded by a continuous 
BM. In sharp contrast, variable numbers of solid epi-
thelial cell clusters or dissociated individual cells 
lacking BM were seen overlying focally disrupted 
MMs, and some of these cells or cell clusters appeared 
to have migrated into the center of the lymphoid fol-
licles through the focal MM disruption (Figure 4).  

Within or immediately adjacent to lymphoid 
follicles, the vascular density was significantly in-
creased, compared to that seen in tissues distant from 
these follicles. As shown in Figure 5, these lymphoid 
follicles not only harbor a variable number of dissoci-
ated epithelial cells, but also harbor large open lumen 
vascular structures with disseminated cells. Over 75% 
of dissociated epithelial cells were either immediately 
adjacent to or physically associated with infiltrating 
Immune cells.  

Those dissociated epithelial cell clusters within 
the lymphocyte follicles or aggregates overlying fo-
cally disrupted MM (as shown in Figures 3-5) ap-
peared to be at increased risk to progress to invasive 
CRC. As shown in Figure 6, invasive CRC is exclu-
sively seen near the normal appearing epithelial 
structures physically associated with infiltrating im-
mune cell aggregates. The infiltrating immune cell 
aggregate in each of two cases harbor multiple epi-
thelial cell clusters that have no distinct surrounding 
BM, and they also share similar morphological fea-
tures with the adjacent invasive CRC. 

The risk of progression to invasive CRC for those 
dissociated epithelial cells or cell clusters was further 
suggested by the fact that all 35 morphologically dis-
tinct pre-invasive and invasive junctions detected in 
24 cases were located within or immediately adjacent 
to lymphoid follicles or infiltrating immune cell ag-
gregates. As shown in Figures 7-9, most of these dis-
sociated cells or invasive cancer cells are either im-
mediately adjacent to or physically associated with 
infiltrating immune cells, and dissociated epithelial 
cells in the mucosa migrate into the submucosa 
through focally disrupted MMs. No similar dissoci-
ated epithelial cells or pre-invasive and invasive junc-
tions were seen in tissues that completely lacked 
lymphoid follicles or large infiltrating immune cell 
aggregates.   

 
Increased immune cell infiltration appeared to 

stimulate lymphangiogenesis and angiogenesis, 
which facilitate intravasation of dissociated epithelial 
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cells. As shown in Figure 10, in morphologically 
comparable tissues, both the density and luminal size 
of lymphatic ducts are substantially higher and larger 
in tissues adjacent to than those distant from infil-
trating immune cell aggregates. Similar findings were 
obtained with phenotypic markers CD31 and CD34 
for blood vessel endothelium (data not shown). 

Infiltrating CTL, NK, and Mast cells were pref-
erentially seen within the normal appearing or 
pre-invasive tissue component and a majority of in-
filtrating immune cells were physically associated 
with the epithelial capsules, which often show distinct 
degenerative alterations. As shown in Figure 11, most 
infiltrating NK and Mast cells are located at or near 
the site of focally disrupted epithelial capsules, which 
harbor several dissociated epithelial cell clusters that 
lack distinct surrounding BM. In contrast, the BM 
distant from infiltrating NK and Mast cells is 
morphologically distinct and continuous. 

Increased immune cell infiltration also appeared 
to be associated with increased epithelial cell prolif-
eration. As shown in Figure 12, a majority of prolifer-
ating cells in normal appearing tissues are either 
physically associated with or immediately adjacent to 
infiltrating immune cells. In addition, these tissues 
harbor large open lumen lymphatic ducts with pro-
liferating disseminated cells (Figure 12 A-B).  

Increased immune cell infiltration appeared to 
facilitate tumor stem cell budding and dissemination. 
In sections double immunostained with markers of 
stem cells, blood vessel endothelial cells, or infiltrat-
ing immune cells, some isolated CK-19-positive cell 
clusters were seen within an overall CK-19-negative 
background. These CK-19-positive cell clusters within 
normal appearing epithelial structures are morpho-
logically and immunohistochemically similar to ad-
jacent invasive cancer cells and also to disseminated 
cells within the vascular structure (Figure 13). Nearly 
all these dissociated CK-19-positive cell clusters were 
either surrounded by or were physically associated 
with infiltrating immune cells and were also in direct 
physical continuity with invasive cancers within the 
submucosa (Figure 14). The results of CD 133 im-
munostaining were inconsistent (data not shown).  

A total of 91 lymphoid follicles and large lym-
phocyte aggregates were seen in 33 of 92 cases. All 
laminar propria (LP) immediately adjacent to these 
lymphoid follicles and lymphocyte aggregates har-
bored normal epithelial structures with focally atten-
uated or disrupted BM, or dissociated cells or cell 
clusters. In contrast, only 9 (10%) LPs distant from 
these follicles and aggregates harbored similar struc-
tures (Table 2; p<0.001). Similarly, all MM immedi-
ately adjacent to these follicles and aggregates were 

focally attenuated or fragmented, while only 9 (10%) 
MM distant from these lymphoid follicles showed 
similar alterations (Table 3, p<0.001). The morphology 
and distribution of infiltrating lymphocytes on the 
BM and MM of both node positive and negative cases 
appeared to be similar, except that lymphatic ducts 
with disseminated cells were exclusively seen in the 
lamina propria of node positive cases and a single 
‘node negative’ case with confirmed CRC metastasis.  

 

Table 2. Focal BM disruptions adjacent to and distant from 

lymphoid follicles and aggregates. 

Location Lymphoid follicles & 
aggregates 

Epithelia with focal BM 
disruptions 

 p 

Adjacent 
to  

 91  91 (100%) < 
0.001 

Distant 
from  

 91  9 (10%) 

 

Table 3. Focal MM disruptions adjacent to and distant from 

lymphoid follicles and aggregates. 

Location Lymphoid follicles & 
aggregates 

Focal MM attenuation & 
disruptions 

 p 

Adjacent 
to  

 91  91 (100%) < 
0.001 

Distant 
from  

 91  9 (10%) 

 

Discussion  

Consistent with our hypothesis, our current 
study has detected almost identical frequency and 
pattern of immune cell infiltration and associated ep-
ithelial capsule disruptions as those seen in our pre-
vious studies of human breast and prostate tumors 
[23-32]. In addition, our current study has yielded the 
following unique findings: (1) normal appearing epi-
thelial structures immediately adjacent to lymphoid 
follicles and infiltrating immune cell aggregates have 
a significantly higher frequency of focally attenuated 
or disrupted BM, dissociated cells within lymphatic 
ducts or blood vessels, and focally fragmented MM 
than their distant counterparts, (2) a vast majority of 
dissociated epithelial cells within the stroma or vas-
cular structures are either immediately adjacent to or 
physically associated with infiltrating immune cells, 
(3) the physical conjunctions of pre-invasive and in-
vasive lesions are exclusively seen at the sites of 
lymphoid follicles and infiltrating immune cell ag-
gregates, (4) aberrant immune cell infiltration is pre-
dominantly seen in normal appearing epithelial 
structures with focally disrupted BM and MM, (5) 
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infiltrating CTL, NK, and Mast cells are preferentially 
associated with the epithelial capsules, which is often 
associated with distinct degenerative alterations, (6) 
infiltrating immune cells appear to substantially 
stimulate lymphangiogenesis and angiogenesis, and 
(7) increased immune cell infiltration is associated 
with elevated stem cell proliferation, budding, and 
dissemination. Together, these findings suggest that 
tumor infiltrating immune cells may have promoting 
impact on tumor invasion and metastais.  

The promoting impact of tumor infiltrating im-
mune cells on tumor progression seen in our current 
study is in agreement with previous clinical observa-
tions that pre-invasive epithelial tumors with in-
creased immune cell infiltration have a significantly 
higher frequency of subsequent invasive lesions than 
their stage- and histopathologically-matched coun-
terparts without distinct immune cell infiltration [5-7]. 
The findings of the mechanistic assays in our current 
study are also consistent with those of others, which 
have shown that aberrant immune cell infiltration 
could promote tumor invasion and metastasis 
through a number of mechanisms: (a) macro-
phage-enhanced cancer cell migration through secre-
tion of chemotactic and chemokinetic factors known 
to promote angiogenesis and fibrillogenesis, allowing 
tumor cells to track along collagen fibers to blood 
vessels [8, 9], (b) macrophage digestion of tumor cells, 
resulting in the mixture of genetic material that cre-
ates a hybrid phenotype, which can metastasize to 
remote sites [10], and (c) infiltrating immune cell re-
lease of growth factors and other proliferation-related 
molecules to associated tumor cells through direct 
physical contact [11, 12]. To the best of our 
knowledge, however, our study is the first one to 
suggest that the primary impact of tumor-infiltrating 
immune cells may be associated with the physical 
destruction of the tumor capsule. As the disruption of 
the tumor capsule is an absolute pre-requisite for in-
vasion or metastasis of all epithelium-derived tumors, 
our findings appear to have unique scientific and 
clinical implications, compared to previously pub-
lished findings and theories regarding the impact of 
tumor-infiltrating immune cells.  

The BM is composed of type IV collagen, lam-
inins, and other molecules that form a continuous 
fibrous capsule, which attaches to the normal epithe-
lial cells and their derived pre-invasive tumor cells, 
physically segregating these cells from the surround-
ing stroma [13-17]. As the epithelial component is 
normally devoid of blood vessels and lymphatic 
ducts, the disruption of the BM is a pre-requisite for 
tumor invasion or metastasis [13-17]. The colorectal 
MM consists of two morphologically distinct smooth 

muscle layers that form a dense band-like structure, 
which physically separates the mucosa from the 
submucosa [38, 43-46]. Although its structural fea-
tures have been well described, the physiological 
functions of the MM remain elusive [38, 43, 44]. 
However, it has been suggested that the MM might 
have an important inhibitory role on tumor progres-
sion [43-46]. In human CRC, a focal disruption or ab-
sence of the MM is a pre-requisite for migration of 
invasion-initiating cells from the mucosa into the 
submucosa [38, 43-46].  

Because of these structural features, a focal dis-
ruption in the BM and MM could potentially have 
several consequences: (a) altered permeability for 
oxygen and nutrients [47], (b) direct epithelial-stromal 
cell contact [48], (c) direct exposure of epithelial cells 
to different growth factors [49], and (d) an open path 
allowing the migration of epithelial cells from the 
mucosa into the submucosa. As the adult gut stem cell 
population is basally located near the MM [50-55], 
these alterations may individually or collectively elicit 
the exit of stem cells from quiescence leading to in-
creased proliferation, which could have two funda-
mentally different consequences. On one hand, it may 
represent the normal colonic replenishment process, 
as the BM towards the luminal direction has to be 
degraded or disrupted in order to allow the cells at 
the base of the crypt growing upwards to replace aged 
or damaged apical luminal cells. On the other hand, it 
may selectively favor invasion and dissemination of 
the overlying tumor stem cells or a biologically more 
aggressive cell clone. The fate of the consequences of a 
given BM disruption is likely to be determined not 
only by the genetic profile of the overlying epithelial 
cells, but also by the physical location of the epithelial 
structure. The epithelial structures shown in Figure 
1E-F are likely to represent a normal replenishment 
process as the focal BM disruptions are facing the 
luminal direction and the MM is densely packed and 
continuous. In contrast, the structures shown in Fig-
ures 1G-H, 2B, 6-8, 11, and 12 are likely to be at in-
creased risk for invasion as (1) the focal BM disrup-
tions are facing the basolateral direction, (2) they 
harbor budding or dissociated cells, and (3) the MM is 
loosely packed with “channel”-like spaces containing 
a significant number of filtrating immune cells.  

Although these alterations are only microscopic, 
they may signify aberrant expression of the build-
ing-blocks of the BM and MM. It has been well doc-
umented that the expression levels of both mRNAs 
and proteins of the BM subunits changes substantially 
during colorectal carcinogenesis and are significantly 
down-regulated during CRC invasion [56-58]. It has 
also been reported that the expression of the collagen 
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IV or collagen I mRNAs or proteins can directly and 
significantly impact the lineage differentiation of both 
adult and embryonic stem cells [59-62]. A previous 
study assessed the physical integrity of the BM with 
immunohistochemistry for collagen IV and laminin 
(two primary components of the BM) and attempted 
to correlate BM disruptions with the survival of pa-
tients with different stage CRC [63]. The study re-
vealed that a total loss or considerable discontinuity 
of the BM was adversely correlated with survival, 
whereas no corresponding association of outcome 
with the stage of disease was evident [63].  

The mechanism(s) and specific molecule(s) for 
the recruitment of tumor-infiltrating immune cells to 
the site of epithelial structures with focally degener-
ated BM and MM cannot be determined by our cur-
rent study, while it is most likely that immune cell 
infiltration is triggered by the convergence of tissue 
injury, innate immune response to that injury, and the 
presence of tumor stem cells at the site of the injury. 
Our previous studies have shown that a denatured 
component of the BM, collagen I, could act as a strong 
chemoattractant for the recruitment of macrophages, 
suggesting that degenerated tumor capsule elements 
may function as chemo-attractants for tu-
mor-infiltrating immune cells [33]. After focal disrup-
tion of the tumor capsule by infiltrating immune cells 
and the exposure of the overlying epithelial cells to 
the adjacent stroma, additional immune cells may be 
recruited to the site resulting from the accumulation 
of microvesicles on the surface of the tumor cell 
plasma membrane [64]. Microvesicles released from 
tumor cell membranes may contain proteins that 
function as self-epitopes activating a subset of im-
mune cells. Prior to their release, these microvesicles 
are embedded within the tumor cell membrane, and 
could potentially function as receptors to attract im-
mune cell infiltration. 

It was interesting to note that although distinct 
signs of degeneration were seen in epithelial capsules 
physically associated with infiltrating immune cells, 
whereas no distinct degenerative alterations were 
observed in epithelial cells physically associated with 
or surrounded by infiltrating immune cells. The un-
derlying mechanism(s) for the differential impact of 
immune cells on epithelial capsules and epithelial 
cells is unknown, while it could potentially result 
from two main factors: (a) the lack of tumor antigenic 
proteins on the surface of the associated epithelial 
cells. As those cells are located exclusively at or near 
focally disrupted epithelial capsules, they may repre-
sent a population of tumor progenitors or stem cells 
that are not “mature” enough to express a measurable 
amount of surface proteins on their plasma member 

[25,26]. Consistent with our speculation is the fact that 
our previous gene expression profiling with freshly 
frozen prostate and breast tissues have shown that 
tumor cells overlying focally disrupted capsules have 
a 5.03- and 5.45-fold increase in the expression level of 
two stem cell lineage markers, KIT and NCOR2, re-
spectively [25, 26], and (b) the presence of a subtype(s) 
of immune cells that lack cytotoxic functions. Immune 
cells physically associated with epithelial cells are 
likely to represent a population of CD4(+)/ 

CD25(+)/Foxp3(+) regulatory T cells or 
CD8(+)/CD28(-) cells. Recent studies have shown that 
the number of these infiltrating immune cells in-
creases with tumor progression, and that these cells 
can induce tolerance to tumor cells through cell-to-cell 
interactions or by secreting different cytokines, which 
suppress the cytotoxic functions of the immune cells 
[65].  

Focal BM disruptions and MM fragmentations 
seen in our current study in normal appearing colo-
rectal tissues are consistent with those of our previous 
studies, which have shown that 15-30% of patients 
with or without malignant prostate or breast lesions 
harbor morphologically normal epithelial structures 
that show extensive focal capsule disruptions and 
budding cells [22-25]. The intrinsic entity of these 
structures is unknown, but they are most likely to 
represent the previously undefined malignant phe-
notype, or pending malignant lesions with 
pre-disposition of genetic abnormalities. Our previ-
ous study revealed that breast clinging ductal carci-
noma in situ (DCIS) share a similar molecular and 
clinical profile with other types of DCIS, while it is 
often morphologically indistinguishable from normal 
breast epithelial structures [66]. Previous studies from 
others have also shown that: (1) the prostate tissues in 
a subset of aged men or normal-appearing prostate 
tissues adjacent to prostate cancer harbor a DNA 
phenotype that is identical to invasive and metastatic 
prostate cancer [67], and (2) cancer of unknown pri-
mary site (CUP) is one of the 10 most frequent cancers 
and is ranked as the 4th commonest cause of cancer 
deaths, but its primary tumor site remains elusive 
[68]. It is interesting to note that the dominant histo-
logical type of both CUP and CRC are adenocarcino-
ma [69, 70], raising a possibility that some of CUP may 
originate from CRC.  

In summary, our current study suggest that at 
the early stage of colorectal carcinogenesis, tumor 
infiltrating immune cells may be recruited to the tu-
mor site by the degenerated products of the tumor 
capsule due to age or disease. Infiltrating immune 
cells degrades the degenerating capsule resulting in 
the formation of a focal disruption in the capsule, 
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which selectively favors proliferation, “budding”, and 
dissemination of the underlying stem cells. Conse-
quently, aberrant immune cell infiltration into the 
pre-invasive tumors is likely to directly and signifi-
cantly promote tumor invasion into the stroma. Our 
findings could reasonable explain the contradictory 
reports and statements regarding the impact and 
clinical significance of immune cell infiltration into 
tumor tissues. More importantly, as the disruption of 
the tumor capsule is an absolute prerequisite for tu-
mor invasion and metastasis, local or systematic ad-
ministration of anti-inflammatory agents to prevent 
immune cell infiltration-induced capsule destruction 
may be beneficial in preventing tumor progression. A 
recent report published in Lancet Oncology has re-
vealed that regular use of Aspirin, a non-steroidal 
anti-inflammatory drug, reduces the long-term risk of 
CRC and other cancer and the risk of distant metasta-
sis [71].  
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Figures  

 

Fig 1. The BM and MM status in normal tissues with and without infiltrating immune cells. Human normal colonic tissue sections were 
immunostained with different markers. Black circles identify low magnification views of the structures in B, D, F, and H, respectively. Blue circles identify 
epithelial structures with infiltrating immune cell aggregates in E and G, and epithelial structures with focally disrupted BM in F and H. Thick arrows identify 

the BM. Thin arrows identify infiltrating immune cells. Arrowheads identify the MM. Note that both the BM and MM distant from infiltrating immune cells 
are densely packed and continuous. However, the BM and MM adjacent to infiltrating immune cells are generally attenuated or focally disrupted. Figures 
1E-H (which are a set of two adjacent sections) show two different patterns of focal BM disruptions: (a) disruptions facing towards the luminal direction, 

and (b) disruptions facing the MM. Note that the epithelial structures with focal BM disruptions facing the MM harbor budding and dissociated epithelial cells 

and the MM is loosely packed with “channel”-like spaces filled with a significant number of immune cells. In contrast, the BM in epithelial structures with 

focal BM disruption facing the luminal direction shows no distinct change. A, C, E, and G: 80X. B, D, F, and H. A higher (400X) of A, C, E, and G, respectively. 
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Fig 2. The BM and MM status in epithelial structures adjacent to invasive CRC. A CRC tissue section were double immunostained for collagen 

IV (brown) and LCA (red). A circle identifies the low magnification view of the structure in B. Thick and thin arrows identify the BM and infiltrating immune 
cells, respectively. Stars identify epithelial structures with no or focally disrupted BM. Arrowheads identify the MM. Note that the MM distant from 
infiltrating immune cell aggregates is well defined and continuous, while is substantially attenuated adjacent to the aggregates, Also note that the infiltrating 

immune cell aggregate harbor several epithelial structures with no or focally disrupted BM. A: 80X. B: 400X. 
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Fig 3. Focal fragmentations in the MM adjacent to lymphoid follicles. Two sets of two adjacent (A-D and E-H) normal colonic tissue sections at 
a distance from CRC from two different cases were double immunostained for CK AE1/3 (red) plus LCA or collage IV (brown). Smaller circles identify the 

low magnification views of the structures in B, D, F, and H. Larger circles in F and H identify gaps in the MM. Stars identify lymphoid follicles. Arrowheads 
identify the MM. Arrows identify dissociated epithelial cells or cell clusters without the surrounding BM. Note that the MMs adjacent to all 7-lymphoid 

follicles are focally disrupted. A, C, E, and G: 80X. B, D, F, and H: a higher magnification (400X) of A, C, E, and G, respectively. 
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Figure 4. Dissociated cells or cell clusters overlying disruptions in MM near lymphoid follicle. A normal colon tissue section from a 
node-positive case was double immunostained for CK AE1/3 (red) and collagen IV (brown). The circle identifies the low magnification view of the structure 

in B, and the circle in B identifies the gap in the MM. Arrows identify solid epithelial cell clusters without a distinct BM overlying the focal disruption in the 
MM. Arrowheads identify the MM. Stars identify normal epithelial structures with a distinct lume (stars). Note that a vast majority of the epithelial 
structures distant from lymphoid follicles are uniform in size with a distinct lumen, while isolated solid cell clusters without a lumen and the surrounding BM 

are exclusively seen overlying the focal disruption in the MM. A: 80X. B: 400X 
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Fig 5. Dissociated epithelial cells within lymphoid follicles with increased vascular density. Two sets of two adjacent CRC tissue sections (A-D 
and E-H) from two node-positive cases were double Immunostained for CK AE1/3 (red) plus LCA or D2-40 (brown) or for CK-19 (red) plus CD34 or 
D2-40 (brown). Circles identify the low magnification views of the structures in B, D, F, and H. Thick and thin arrows identify dissociated epithelial cells and 

associated lymphocytes (B) or lymphatic ducts (D, F, and H), respectively. Note that the vascular density in each of the follicles is substantially increased and 

some disseminated cells are located within these follicles. A, C, E, and G: 100X. B, D, F, and H: a higher magnification (300X) of A, C, E, and G, respectively. 
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Fig 6. Invasive CRC adjacent to lymphoid follicles and aggregates. CRC tissue sections from two cases were double immunostained for collagen 
IV (brown) and LCA(red). Circles identify the low magnification views of the structures in B and D. Asterisks identify the invasive CRC. Stars identify 

epithelial structures within or adjacent to lymphocyte aggregates with no distinct BM. Arrows identify infiltrating immune cells. Note the MM distant from 
the lymphocyte aggregates is well defined and continuous, while it is focally disrupted at and near these aggregates. Also note that multiple epithelial cell 
clusters adjacent to these lymphocytes are morphologically similar to invasive cancer. A and C: 80X. B and D: a higher magnification (400X) of A and C, 

respectively. 
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Fig 7. CRC invasion within lymphoid aggregates. A CRC tissue section was double immunostained for collagen IV (brown) and LCA (red). The circle 
identifies the low magnification views of the structures in B. Asterisks identify the invasive CRC. Stars identify epithelial structures within or adjacent to 
lymphocyte aggregates with no distinct BM. Arrows identify infiltrating immune cells. Note the MM distant from the lymphocyte aggregates is well defined 

and continuous, while it is focally disrupted at and near lymphocyte aggregates. Also note that multiple epithelial cell clusters adjacent to these lymphocytes 

are morphologically similar to invasive cancer. A: 80X. B: a higher magnification (400X) of A. 
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Fig 8. Pre-invasive-invasive junction adjacent to large lymphocyte aggregates. A CRC tissue section was double immunostained for CK AE1/3 

(red) and collagen IV (brown). The circle in A identifies the low magnification views of the structures in B and C, and the circle in B identifies a gap in the 
MM (arrowheads). Black and blue stars identify the invasive lesion and normal epithelial structures, respectively. Curve lines identify a tongue-like epithelial 
cell projection invading the submucosa through focally disrupted MM. Note that this cell projection appears to be directly budding from a normal epithelial 

structure. A: 80X. B: A higher (200X) of A. 
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Fig 9. Cell budding from normal epithelial structures at pre-invasive-invasive junction. A CRC tissue section was double immunostained for 
CK AE1/3 (red) and LCA (brown). The circle in A identifies the low magnification views of the structures in B. Stars identify normal appearing epithelial 
structures at the pre-invasive-invasive junction. Thick and thin arrows identify dissociated epithelial cells and their associated lymphocytes, respectively. 

Note that the entire section harbor no morphologically distinct intra-mucosal carcinoma, while many dissociated epithelial cells or cell clusters are seen at 
the pre-invasive and invasive junction. These dissociated epithelial cells appear to be directly budding from the normal epithelial structures (stars). Also note 
that the pre-invasive-invasive junction and dissociated epithelial cells are exclusively seen adjacent to the lymphocyte aggregates. A: 80X. B: A higher (200X) 

of A. 
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Fig 10. Significantly increased lymphatic duct density near lymphocyte aggregates. A normal colonic tissue sections distant from CRC was 
triple immunostained for CK AE1/3 (red), LCA (blue) and D2-40 (brown). Circles and squares identify tissues adjacent to and distant from an infiltrating 

immune cell aggregate, respectively. Note that substantially more and larger lymphatic ducts (arrows) are seen in the tissue adjacent to than distant from, 

the infiltrating immune cell aggregate. A: 80X. B: a higher (400X) magnification of A.  
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Fig 11. Direct physical contact between the BM and infiltrating immune cells. Two normal colonic tissue sections distant from CRC were triple 

immunostained for collagen IV (red), CD16 (NK cells; brown), and Mast cells (blue). Black circles identify the low magnification view of the structures in B 
and D. Yellow circles identify focal disruptions in the epithelial capsules (arrowheads). Thin and thick arrows identify NK and Mast cells, respectively. Stars 
identify dissociated cell clusters without a distinct surrounding BM. Note that infiltrating NK and Mast cells are preferentially located at or near the site of 
focal disruptions in the epithelial capsule. The BM without associated infiltrating immune cells is generally continuous and well-defined. A and C: 100X. B and 

D: a higher (500X) magnification of A and C, respectively.  
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Fig 12. Elevated cell proliferation in cell cluster adjacent to infiltrating immune cells. A CRC (A-B) section was triple immunostained for LCA 
(red), Ki-67 (black), and D2-40 (blue) and a normal (C-D) colonic section was double immunostained for CD8 (red) and Ki-67 (brown). Circles identify the 
low magnification views of the structures in B and D. Stars identify the MM. Arrowheads identify lymphatic ducts. Thin and thick arrows identify infiltrating 

immune cells and proliferating epithelial cells, respectively. Note that dissociated epithelial cells within the lymphatic duct (A-B) or the stroma (C-D) had 

a higher proliferation identix than their adjacent counterparts. A and C: 100X. B and D: a higher (400X) magnification of A and C, respectively.  
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Fig 13. Simiilarity among budding CK-19 positve, invasive, and disseminated cells. A CRC tissue section was double immunostained for CK-19 
(red) and CD34 (brown). A circle identifies the low magnification view of the structures in B. A square identifies a cluster of CK-19-positive cells located 
within an overall CK-19-negative epithelial structure. Stars identify normal CK-19-negative epithelial structures. Asterisks identify invasive cancer. Arrows 

identify dissociated or disseminated CK-19-posive cell clusters. Note that these budding cells are immunohistochemically and morphologically similar to 

invasive and disseminated cells within the vascular structure. A: 80X. B: a higher (300X) magnification of A. 



Int. J. Med. Sci. 2013, Vol. 10 

 

http://www.medsci.org 

497 

 

Fig 14. CK-19-positive cell cluster budding form CK-19-negative epithelial structures. A CRC tissue section was double immunostained for 

CK-19 (brown) and LCA (pink). A circle identifies the low magnification view of the structures in B. Stars identify normal CK-19-negative epithelial 
structures. Thick and thin arrows identify CK-19-posive cell clusters and physically associated immune cells, respectively. Note that these budding cells are 
either surrounded by or physically conjoined with infiltrating immune cells. Also note that these budding cells are immunohistochemically and morpho-

logically similar to invasive cancer cells (asterisk). A: 80X. B: a higher (300X) magnification of A. 

 


