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Abstract 

Excessive systemic inflammation following sepsis, trauma or burn could lead to multi-organ 
damage and death. Bone marrow stromal cells (BMSCs), commonly referred to as mesen-
chymal stem cells (MSCs), has been studied in several immune-associated diseases in human 
and animal by modulating the inflammatory response. Adipose tissue derived mesenchymal 
stem cells (ATSCs), which can be obtained more easily, compared with BMSCs, has emerged 
as an attractive alternative MSCs source for cell therapy. We investigated the therapeutic 
effects of human ATSCs (hATSCs) in endotoxemic rat model and their capacity to modulate 
the inflammatory response. Endotoxemia was induced with Lipopolysaccaride intravenously 
injection (LPS, 10mg/kg). Animals were divided into the following three groups: (1) saline + 
saline (n=5), (2) LPS + saline (n=5) and (3) LPS + hATSCs (2x106) (n=5). The administration of 
LPS caused a consistent systemic inflammatory responses, increased concentrations of the 
pro-inflammatory cytokines that have an important role in sepsis. Treatment of endotoxemia 
with hATSCs decreased the level of inflammatory cytokines both in serum and in the lung, 
reduced inflammatory changes in the lung, prevented apoptosis in the kidney and improved 
multi-organ injury. In conclusion, our data demonstrates that hATSCs regulate the im-
mue/inflammatory responses and improve multi-organ injury and they could be attractive 
candidates for cell therapy to treat endotoxemia. 
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Introduction 
The sepsis involves complex inflammatory re-

sponses between a microbial pathogen and the host 
immune system. The host defense mechanisms fail to 
block pathogen invasion, which leads to microbial 
proliferation, and the release of microbial products 
activates the host inflammatory responses[1]. In early 
stage sepsis, endogenous pro-inflammatory cytokines 
and coagulation pathways are hyperactive and 

out-of-balance, causing multi-organ failure, collapse 
of the circulatory system, and death[2]. This imbal-
ance is rapidly compensated by an anti-inflammatory 
response that deactivates the major immune re-
sponses. The extent and duration of these multiple 
immune dysfunctions are related to morbidity and 
mortality, and the patients who survive sepsis are 
those who recover normal immune functions[3]. 
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Several clinical trials to control sepsis have 
modulated these complex inflammatory responses, by 
neutralizing cytokines with monoclonal antibodies or 
blocking the receptor of an inflammatory cyto-
kine[4,5]. However, these attempts, which focusing on 
a single pathway, have had limited efficacy. Mesen-
chymal stem cells (MSCs) function at several levels of 
the inflammatory response, especially in the early 
stage of sepsis, to regulate a wide panel of inflamma-
tory cytokines and inhibit leukocyte infiltration into 
several target organs[6,7]. Therefore, cell therapy has 
recently been explored as a new modality to regulate 
immune responses[8,9].  

Apart from BM-MSCs, MSCs have been also 
identified in several other accessible tissues, including 
umbilical cord blood, peripheral blood, and adipose 
tissue [10-12]. Several studies of bone marrow-derived 
stem cells (BMSCs) have been reported to treat in-
flammatory diseases[13-17]. However, bone marrow 
harvest is a painful procedure and low numbers of 
MSCs are present in the harvested marrow, which can 
be impose a load on some patients with severe com-
plication[11]. Compared with other tissues, large 
amounts of adipose tissue can be obtained from 
lipoaspirates and also contain high numbers of MSCs 
that can be easily expanded in vitro to generate clini-
cally effective dosages[19]. Because of this, hATSC has 
become an attractive alternative source of MSCs for 
cell therapy. Moreover, several studies have demon-
strated that adipose tissue stem cells (ATSCs) share 
some immunomodulatory properties with 
BMSCs[11,18,19]. We wondered whether human 
ATSCs (hATSCs) could bring disrupted inflammatory 
responses back into balance, thus improving the un-
derlying pathophysiology that progresses to severe 
sepsis, septic shock, and death. Therefore we investi-
gated the therapeutic effects of hATSCs in endotoxe-
mia. 

Materials and Methods 
Preparation of hATSCs  

Subcutaneous adipose tissues were acquired 
from elective surgeries with patient consent as ap-
proved by the Institutional Review Board of the 
Catholic University of Korea, College of Medicine. 
Ten grams of adipose tissue was stored in serum-free 
DMEM/F12 medium (Gibco-BRL). The adipose tissue 
was then washed thoroughly with PBS (PBS, Sig-
ma-Aldrich, St. Louis, MO, USA) and mechanically 
chopped before processing. To isolate the stromal 
vascular fraction (SVF), the tissue was enzymatically 
digested with serum-free DMEM/F12 medium con-
taining 0.1% collagenase A (Sigma Aldrich) for 30 to 

60 minutes at 37°C with continuous shaking. The di-
gested tissue was then washed with DMEM/F12 me-
dium containing 10% fetal bovine serum (FBS), and 
red blood cells were lysed with 3 ml of red blood cell 
lysing buffer (Sigma) for 5 minutes. Next, 47 ml of 
DMEM/F12 medium containing 10% FBS was added, 
and the cells were applied to a 40 μm cell strainer BD, 
Falcon, Franklin Lakes, NJ, USA). The cells were cen-
trifuged for 10 minutes at 200 g to remove blood and 
unnecessary tissue. The cell pellet was washed twice 
in DMEM/F12 medium containing 10% FBS. The SVF 
cell pellet was seeded onto a conventional tissue cul-
ture flask in DMEM/F12 supplemented with 10% 
FBS, 1% penicillin, 100 μg/mL streptomycin, 2mM 
L-glutamine (Gibco-BRL, Sigma Aldrich ), in a 37°C 
incubator with 5% CO2. After 24 h of culture, 
non-adherent cells were removed. The media was 
changed every other day. When the monolayer of 
adherent cells reached 90% confluence, the cells were 
sub-cultured using 0.05% trypsin-EDTA (Gibco-BRL). 
For this study, cells were used after 5 passages, and 
cell viability was assessed using the trypan blue ex-
clusion assay with 0.2% trypan blue. 

 Phenotypic Characterization of hATSCs  
hATSCs were suspended and washed twice in 

PBS by centrifuging at 200 ×g for 10 min at 4°C. To 
inhibit unnecessary binding of primary antibodies, 
the cells were treated with PBS (pH 7.5) supplemented 
with 1% bovine serum albumin (BSA, Bovogen, Bio-
logicals Pty, Australia) for 30 min at 4°C. Cells were 
then incubated with antibodies (CD29-FITC, 
CD34-FITC, CD105-FITC; Invitrogen, CD90-FITC; BD) 
for 30 min at room temperature. Fluorescence acti-
vated cell sorter (FACS) analysis was performed using 
a FACSCantoII flow cytometer (BD Biosciences, 
Germany). Gated events (2 × 104), except doublets and 
aggregates, were acquired for each sample and anal-
yses were carried out with FlowJo® and FACSdiva 
software. 

Induction of Endotoxemia with LPS and 
hATSCs Administration 

Endotoxemia was induced in male Spra-
gue–Dawley rats weighing 250–320 g. All interven-
tions and animal care were provided in accordance 
with the Laboratory Animals Welfare Act, the Guide 
for the Care and Use of Laboratory Animals, and the 
Guidelines and Policies for Rodent Survival Surgery 
provided by the Institutional Animal Care and Use 
Committee at the Catholic University of Korea School 
of Medicine. All rats had free access to food and wa-
ter, both before and after the procedure. 

Rats were intraperitoneally anesthetized with 30 
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mg/kg Zolazepam (Zoletil 50, 25mg/ml, Virbac An-
imal Health Inc., France) and 10 mg/kg xylazine hy-
drochloride (Rompun, 23.32 mg/ml; Bayer Inc., To-
ronto, Canada). To induce endotoxemia, lipopoly-
saccharide (LPS extracted from Escherichia coli 0127: 
B8, Sigma-Aldrich, St Louis MO; 10 mg/kg) was in-
travenously injected via the tail vein. A sham inter-
vention was performed using the same amount of 
saline in control rats. Thirty minutes after adminis-
tering LPS, either hATSCs (2×106, 100 μl) or saline (100 
μl ) was slowly injected into the tail vein over 20 min. 
Rats were randomly assigned to one of three experi-
mental groups: 1) saline solution plus saline treatment 
(n=5), 2) LPS plus saline treatment (n=5), and 3) LPS 
plus hATSCs treatment (n=5). During all procedures, 
rat body temperatures were maintained at 36.5 ± 0.5°C 
with a heating pad (FHC, Bowdoinham, ME, USA).  

Serum and Tissue Collection  
Six hours after LPS challenge, the rats were sac-

rificed to collect serum and tissue. Blood was collected 
through cardiac puncture and centrifuged at 2,000 x g 
for 20 min to obtain the serum. Serum was stored at 
-70°C to determine cytokine levels and analyze bi-
omarkers. The right lung was removed en bloc and 
fixed in 10% buffered formalin (Sigma-Aldrich) for 
histopathology. The left lung was frozen at -70°C to 
determine cytokine levels. Both kidneys were fixed in 
10% formalin for 24 h before TUNEL staining.  

Cytokine Measurement in the Serum and Lung  
Levels of the cytokines, TNF-α, IL-6, and IL-10, 

in the serum and lung homogenates were measured 
by enzyme-linked immunosorbent assay (ELISA) us-
ing rat-specific kits (Thermo Scientific, Rockford, IL, 
USA). The lung was homogenized in ProPrepTM 
Protein Extraction Solution (iNtRON Biotechnology, 
Seongnam, Korea) and centrifuged for 10 min at 
12,000 rpm. Equal amounts of protein were used for 
ELISA. ELISA was performed according to the man-
ufacturer's instructions. All samples and standards 
were measured in duplicate.  

Measurement of Biochemical Markers for 
Organ Dysfunction  

Organ dysfunction was determined by measur-
ing biochemical indicators of organ function in serum 
samples taken 6 hours after LPS challenge. Serum 
levels of blood urea nitrogen and creatinine (indica-
tors of renal dysfunction), aspartate aminotransferase 
(AST) and alanine aminotransferase (ALT) (indicators 
of hepatic dysfunction), and lactate (an indicator of 
tissue hypoperfusion) were measured by IDEXX 
VetTest (IDEXX Laboratories, Maine, US). 

Histopathology Examination 
Lungs from each group were taken for histo-

pathology. The trachea was incised, and a 14-G tube 
was placed inside. The left lung was ligated with 3-0 
silk, and the right lung was fixed by inflation with 
10% buffered formalin solution and removed en bloc. 
Following overnight fixation, the right lung was em-
bedded in paraffin. The specimen was sliced into 
4-μM–thick sections and stained with hematoxylin 
and eosin. Images were taken under a Nikon Eclipse 
E800 microscope with a 40× objective. Two inde-
pendent experts blinded to the treatment accessed the 
Acute Lung Injury Score[20], which comprises 4 
components (alveolar capillary congestion, hemor-
rhage, inflammatory cells infiltrating the airspace or 
interstitium, and thickness of the alveolar wall) each 
scored on a 5-point scale (0 = minimal damage, 1+ = 
mild damage, 2+ = moderate damage, 3+ = severe 
damage, 4+ = maximal damage). The total injury score 
was the sum of all component scores.  

The kidney was fixed with 10% formalin for 24 
hours and embedded in paraffin. Sections were ex-
amined for terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) staining with an in 
situ cell death detection kit (Millipore). 
TUNEL-positive cells were counted from 4 randomly 
chosen fields per slide by an investigator, who was 
blinded to the identity of the slides.  

Statistical analysis 
Statistical analysis was performed with the 

Stata/SE program 11.0 (StataCorp LP, College Station, 
TX). Comparisons among the three groups were made 
by Kruskal-Wallis test, with p < 0.05 used to reject the 
null hypothesis. The Bonferroni correction was used 
to assess differences between two groups, and a value 
of p < 0.017 was considered statistically significant. 
The bar on the each graph was expressed as mean ± 
standard deviation. 

Results  
hATSCs Culture and Phenotypic Characteri-
zation  

After the third passage, hATSCs appeared as a 
monolayer of flat cells. hATSCs appeared to be regu-
lar-sized, spindle-shaped, and had a fibroblastic 
morphology in culture, which was consistent with 
mesenchymal stromal cells[21](Fig 1A). hATSCs were 
95% viable, as determined by the trypan blue exclu-
sion assay.  

The surface markers expressed by hATSCs were 
determined by FACS to determine the purity of the 
population. The results demonstrated that the major-
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ity of hATSCs expressed MSC surface antigens, such 
as CD29 (90.8%), CD90 (98.5%) and CD105 (39.7%). 
and were negative for the hematopoietic stem cell 

marker, CD34 (<1%)(Fig 1B). hATSCs were classified 
as mesenchymal stem cells. 

 
 
 
 
 
 

 
Figure 1. A. hATSCs appeared to be of a regular size, spindle shape, and fibroblastic morphology in culture, which is consistent with 
mesenchymal stromal cells. (×40) B. Surface marker expression was determined by FACS. The majority of hATSCs expressed the surface 
antigens of mesenchymal stem cells (CD29, CD90 and CD105) and were negative for the hematopoietic stem cell marker (CD34). 
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hATSCs Reduce Systemic Inflammation in 
Endotoxemic Rats 

Rats were randomly assigned to receive injec-
tions of saline or hATSCs into a tail vein 30 mins after 
endotoxemia was induced with LPS. We measured 
cytokine concentrations in the serum and lung tissue 
from all groups 6 h after adminstering LPS. Figure 2 
summarizes the serum and pulmonary cytokine lev-
els. Compared to control rats, LPS consistently caused 
systemic inflammatory responses, such as increased 
concentrations of the pro-inflammatory mediators, 

TNF-a and interleukin-6 (IL-6), which have central 
roles in sepsis. hATSCs modulated the increase of 
these pro-inflammatory mediators in serum and in the 
lung tissue, especially decreasing the pulmonary IL-6 
level (*p<0.017), compared to controls. Both serum 
and pulmonary TNF-a levels tended to decrease in the 
hATSC group, compared to the LPS group. Serum 
levels of the anti-inflammatory cytokine IL-10 in LPS 
group tended to be higher than hATSC rats, although 
the difference was not significant. Pulmonary IL-10 
was not significantly different among all 3 groups. 

 

 
Figure 2. Cytokine levels in the serum and lung. Compared with control rats, LPS increased concentrations of the proinflammatory 
mediators, TNF-a, and interleukin (IL)-6. hATSC treatment modulated the increase in proinflammatory mediators, especially decreased 
pulmonary IL-6 compared with the LPS group (*p<0.017). Systemic levels of IL-10, an anti-inflammatory cytokine, were higher in the LPS 
group than the hATSC-treated group, though the difference was not statistically significant. Pulmonary IL-10 did not differ among the three 
groups. #P<0.017, sham/saline versus LPS/saline group. *P<0.017, LPS/saline versus LPS/hATSC group. n= 5 per group. The bar on each 
graph expresses mean ± standard deviation. 
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hATSCs Treatment Improves Multi-Organ 
Dysfunction induced by LPS 

Because the lethality of sepsis is associated with 
organ failure, we examined the dysfunction and pa-
thology of major organs often injured during sepsis. 
Organ dysfunction was determined by measuring 
biochemical indicators in serum samples taken 6 
hours after administering LPS. LPS increased the lev-
els of each biomarker, which demonstrated that LPS 
induced multi-organ dysfunction (Fig 3). Concentra-

tions of the liver enzymes, ALT and especially AST, 
released into the circulation upon injury, were lower 
in the hATSC group than the saline group (P < 0.017). 
Whereas, kidney function, as measured by BUN and 
creatinine, did not differ between the groups. Lactate, 
an indicator of tissue hypoperfusion, tended to de-
crease in the hATSC group compared to the LPS 
group, but the difference between the groups was not 
statistically significant. 

 

 
Figure 3. Effects of hATSC treatments on LPS-induced multi-organ dysfunction. Biomarkers of organ dysfunction (AST, ALT, 
BUN, creatinine, and lactate) were measured in serum. LPS increased the levels of each biomarker, demonstrating showed multi-organ 
injury. Administering hATSCs significantly reduced systemic AST levels (indicator of hepatic dysfunction) in endotoxemic rats (P < 0.017 
compared with LPS/saline group). ALT also tended to decrease with hATSC treatment. Kidney function (BUN and creatinine) did not 
differ between the saline- and hATSC-treated groups. Lactate (an indicator of tissue hypoperfusion) tended to improve in the hATSC 
treated group. #P<0.017, sham/saline vs LPS/saline group. *P <0.017, LPS/saline vs LPS/hATSCs group. n= 5 per group. 
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Effect of hATSCs Treatment on LPS-induced 
Acute Lung Injury  

Lungs were sampled at 6 h after administering 
LPS. Lungs from animals receiving LPS and saline 
had congested alveolar capillaries, hemorrhage, in-
flammatory cell infiltration, and some alveolar wall 
thickening (Fig 4B). Lungs from animals treated with 
hATSCs were devoid of these changes (Fig 4C). To 
quantify the effects of hATSCs on lung injury, we 
used the Acute Lung Injury Score. The Acute Lung 
Injury Score was decreased in the hATSC group 
compared with the LPS group (p<0.017) (Fig 4D). 

hATSCs Treatment Protects the Apoptosis in 
Kidney 

In control rats, apoptotic cells (those with acti-
vated caspase-3) were rare in the kidney (Fig 5A), 
whereas, in endotoxemic rats, many more apoptotic 
cells were present (Fig 5B). hATSs treatment tended to 
reduce the number of apoptotic cells, compared with 
saline treatment (Fig 5C). The number of apoptotic 
cells stained red (TUNEL-positive) were counted in 4 
randomly chosen fields per slide for all 3 groups. 
There were significantly fewer apoptotic cells in the 
hATSC treated group compared with the LPS-saline 
group (p<0.017) (Fig 5D)  

 

 
Figure 4. Pulmonary histology by Hematoxylin-Eosin staining in Control (A), LPS (B), and hATSCs-treated LPS rats 
(C). (×100) (B) Advanced inflammation with congestion of the alveolar capillaries, neutrophil infiltration, and diffuse thickening of the 
alveolar septum were observed in LPS group. (C) Neutrophil infiltration and thickening of alveolar septum were attenuated by hATSCs 
treatment. D. Acute Lung Injury Score was lower in the hATSCs-treated group (4.2 ± 0.8367) than the LPS-saline group (7.2 ± 0.8367). 
#P<0.017, sham/saline vs LPS/saline group, *P <0.017, LPS/saline vs LPS/hATSCs group. n= 5 per group. 
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Figure 5. hATSC treatment decreases apoptosis in the kidney after LPS challenge. TUNEL staining was used to identify 
apoptotic cells in kidney in the control (A), LPS (B) and LPS/hATSCs groups (C). (×100). In control rats, apoptotic cells (TUNEL-positive 
nuclei stained red) were rare in the kidney, whereas, they were common in endotoxemic rats. hATSCs treatment reduced the number of 
apoptotic cells compared with the LPS/saline group. D. The total number of apoptotic cells (TUNEL-positive) cells were counted in 4 
randomly chosen fields per slide cells in kidney. There were significantly fewer apoptotic cells in the hATSCs-treated group(9.6 ± 3.209) 
than the LPS-saline group (21.8 ± 4.764). (p<0.017). #P<0.017, sham/saline vs LPS/saline group,*P<0.017, LPS/saline vs LPS/hATSCs group. 
n= 5 per group. 

 
 

Discussion 
The severity of sepsis is determined more by the 

specificity and ferocity of the host response than by 
the inciting organism. Uncontrolled inflammatory 
and coagulopathic mechanisms lead to endothelial 
and epithelial cell injury, apoptosis and cellular acti-
vation with increased production of an-
ti-inflammatory mediators, leukocyte adhesion and 
transmigration, and activation of the coagulation and 
complement systems. Ironically, the inflammatory 
and coagulopathic mechanisms that are detrimental 
when uncontrolled during sepsis are probably bene-
ficial on a normal day. Confined inflammation and 
accelerated coagulation are beneficial when they limit 
spread of local infection or injury[22].  

Stem cells characteristic include self-renewal, 

long-term viability, and the potential to differentiate 
into diverse cell types depending on specific envi-
ronmental conditions. This potential makes MSCs 
attractive candidates for cell therapy applica-
tions[23-25]. Attempts to use BMSCs therapeutically 
have been explored in preclinical and clinical studies 
of various immune associated diseases, such as is-
chemic heart disease, ischemic kidney injury, and 
Crohn’s disease[26-32]. Also, several reports have 
demonstrated the therapeutic efficacy of BMSCs in 
animal models of sepsis and that BMSCs suppress 
systemic inflammation[8,33,34].  

A critical issue for the clinical use of BMSCs, 
however, is the large quantities required for treat-
ment. MSCs from subcutaneous adipose tissue were 
first identified by Zuk et al[11]. Since then, ATSCs 
have been studied as an alternative to BMSCs in sev-
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eral animal models of incurable diseases[26,36,37]. 
Unlike BMSCs, large amounts of ATSCs can be easily 
obtained from a disposable byproduct of lipoaspira-
tion of healthy donors, and rapidly expanded in vitro 
to generate sufficient dosages[19,21,37]. Moreover, 
ATSCs have been shown to share immunomodulatory 
properties with BMSCs[19,36].  

The beneficial effects of MSCs were mostly at-
tributed to paracrine effects, the release of signaling 
factors for tissue repair, rather than incorporation into 
tissue, trans-differentiation, or fusion with cells in 
injured areas[38,39]. These paracrine effects have been 
attributed to immunosuppresive cytokines such as 
transforming growth factor-β (TGF-β), hepatocyte 
growth factor, prostaglandin E2, IL-10, and 
NFκB[34,40]. Those soluble factors and products de-
rived from MSCs, modulate immune responses, create 
an immunosuppressive microenvironment capable of 
modulating inflammation. Aggarwal et al. showed 
that MSCs decreased secretion of TNF-a by mature 
type 1dendritic cells[7]. Currently, the precise mech-
anisms by which MSCs act remain unclear, but MSCs 
seem to have effects at multiple levels, not just a single 
immune response pathway[26,35].  

The fact that our results occurred in a short time 
frame also suggests that hATSCs have beneficial ef-
fects through paracrine activity, rather than cell dif-
ferentiation or cell fusion.  

Like other reports, we observed that hATSC 
treatment significantly decreased the levels of 
pro-inflammatory cytokines (TNF-a and IL-6) and 
attenuated inflammatory changes in the lungs in re-
sponse to experimental endotoxemia[9,24,36,37]. 

Multi-organ failure contributes to mortality in 
sepsis. The lung is the most common organ involved 
in severe sepsis, rapidly resulting in respiratory in-
sufficiency[22,41]. Perhaps, because the lung is the 
only organ to directly receive the entire cardiac output 
and to be thoroughly exposed to all inflammatory and 
coagulation abnormalities[41]. In this study, hATSC 
treatment significantly diminished the levels of pul-
monary proinflammatory cytokines, especially IL-6, 
and reduced the acute lung injury score. 

We observed that hATSCs improved mul-
ti-organ failure due to decreased pro-inflammatory 
cytokines and reduced apoptosis in the kidney. The 
liver enzymes(ALT,AST) and lactate as an indicator of 
tissue hypoperfusion were decreased in the hATSC 
group . This results suggests that, hATSCs seem to 
reduce the detrimental imbalanced inflammation 
through several pathways and at several levels, in 
contrast to what can be achieved by any single medi-
ator . 

Gonzalez-Rey et al. demonstrated that hATSCs 

decreased inflammatory cytokine levels and increased 
IL-10 levels in experimental colitis[37]. We observed 
similar reductions in pro-inflammatory cytokine lev-
els, but systemic IL-10 was not increased by hATSC 
treatment. In contrast, systemic IL-10 decreased in the 
hATSC treatment group, though not significantly, and 
pulmonary IL-10 level did not differ among the 3 
groups. Shirley also had reported similar results like 
us, decreased IL-10 in the BMSC-treated group and 
elevated IL-10 in saline-treated CLP septic mice[24]. 
This discrepancy of IL-10 results may be due to dif-
ferences in study design. Ne´meth et al. studied the 
effects of BMSCs pretreatment, thus BMSCs were de-
livered 24 hours before CLP procedure[34]. IL-10 lev-
els started to rise 3 hr after BMSCs treatment, almost 
doubled by 6 hours, and were still elevated at 12 hr. 
Whereas, we measured IL-10 levels 6 hours after 
hATSC treatment, thus they may not have reached 
their maximum level. Therefore, further IL-10 in-
creases might have been possible, given more time. In 
addition, Gonzalez-Rey et al used a higher ratio of 
hATSCs to animal weight (1ⅹ106 in mice, weight 30g) 
compared with our study (2ⅹ106 in rat, weight 
250~300g)[37]. These differences in study design may 
result in conflicting observations of IL-10.  

One limitation of this study is the endotoxemic 
animal model, which does not completely reflect sep-
tic conditions in humans. A variety of experimental 
animal models have been used to study sepsis path-
ophysiology and treatment[42]. We used an endo-
toxemia model instead of a polymicrobial sepsis 
model that may better mimic human sepsis. The rea-
son we chose this model was because the primary 
experimental question was whether hATSC treatment 
would modulate inflammation and systemic inflam-
mation abnormalities, especially early in sepsis, can 
be observed and quantified more quickly and reliably 
in animal models of endotoxemia[43]. Further studies 
to explore the effects of hATSCs in sepsis should con-
sider polymicrobial models. Also, the timing of ex-
ogenous stem cell infusion after injury may be im-
portant, but the optimal time point has not yet been 
established. In this study, we infused hATSCs 30 min 
after inducing sepsis, which is not clinically possible. 
Therefore, future studies should explore the effects of 
hATSCs infused at different times after sepsis.  

In conclusion, hATSC treatment in an endotox-
emic rat model modulated host responses, decreased 
inflammatory cytokine levels in serum and lung, re-
duced alveolar inflammatory cell infiltration in the 
lung, and prevented apoptosis in the kidney in re-
sponse to endotoxemia. hATSC administration also 
reduced liver injury and improved tissue hypoperfu-
sion. A systemic hATSC injection at the disease onset 
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ameliorated the serological and histological signs of 
endotoxemia and they could be attractive candidates 
for cell therapy to treat endotoxemia. 
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