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Abstract 

Objective: To establish a rapid detection method for identifying rpoB mutations associated 
with rifampin (RIF) resistance in sputum specimens. 

Methods: We detected rpoB mutations directly in 90 sputum specimens collected from 
suspected tuberculosis patients using PCR-based denaturing gradient gel electrophoresis 
(DGGE) and compared these results with those obtained by rpoB sequencing and conven-
tional drug susceptibility testing.  

Results: The positive detection rate of Mycobacterium tuberculosis (M. tuberculosis) was 52.2% 
by Acid-Fast Bacilli staining and 72.2% by conventional mycobacterial culture. In contrast, the 
positive rate was significantly higher (93.3%) by PCR-based detection of the rpoB gene in the 
same specimens. Furthermore, 75% of the tested specimens presented abnormal patterns 
compared with the wild-type pattern (standard H37Rv strain) analysed by DGGE. A total of 
12 different patterns, representing 12 different rpoB mutations, were observed in the 63 
abnormal patterns. The match rate of rpoB mutations detected by DGGE reached 96.9% when 
compared to DNA sequencing. 

Conclusion: Our findings indicate that PCR-based DGGE is a rapid and reliable 
bio-technique for direct detection of rpoB mutations associated with RIF resistance in the 
sputum of suspected tuberculosis patients. 
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Introduction 

The most serious threat related to tuberculosis 
control is the recent emergence of drug-resistant tu-
berculosis strains. This emergence has been induced 
by widespread use of the standard short-course drug 
regimen. Especially concerning is the emergence of 
multidrug-resistant tuberculosis (MDR-TB), defined 
as TB that is resistant to at least isoniazid and rifam-
pin (RIF)(1-3). The re-emergence of TB worldwide and 
the rise in MDR-TB have increased demand for rapid 
and reliable drug susceptibility testing (DST) to per-
form drug-resistance surveillance. Improved testing 

would also aid in the development of an efficient 
regimen for appropriate treatment of MDR-TB, the 
frequency of which has gradually increased in many 
regions of the world(4, 5). Early detection of MDR-TB 
isolates is essential for efficient treatment and control 
of TB. Resistance to RIF is almost exclusively associ-
ated with mutations in the rpoB gene, which encodes 
the β-subunit of RNA polymerase in M. tuberculosis(6). 
More than 70 distinct rpoB mutations have been 
characterised from RIF-resistant M. tuberculosis iso-
lates worldwide(7-11). Approximately 95% of 
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RIF-resistant isolates harbour mutations in the rifam-
pin resistance-determining region (RRDR), an 81-bp 
region of rpoB that spans codons 507 to 533. Mutations 
of the serine 531, histidine 526, and aspartate 516 co-
dons have been identified in approximately 86% of 
RIF-resistant isolates. Thus, these sites represent “hot 
spots” within the RRDR(6, 12). 

Conventional, „gold standard‟ drug susceptibil-
ity testing of M. tuberculosis is based on microbial 
culture and is performed by observation of either 
growth or metabolic inhibition in a medium contain-
ing anti-TB drug(s). This type of assay may take up to 
6 weeks to identify a positive culture. Furthermore, it 
has been reported that tuberculosis can be transmitted 
by 17% of smear-negative and culture-positive M. 
tuberculosis patients (5, 13). 

Several new techniques for early detection have 
been established to shorten turnaround time and im-
prove the convenience of case management, including 
micro-hole, micro-titre well methods, the 
non-radiometric BACTEC 960/Mycobacteria Growth 
Indicator Tube method, and others (14, 15). High 
costs, technical complexity and the absence of appro-
priately trained human resources make it difficult to 
perform any of these new techniques in the countries 
where they are needed most. In addition, these new 
methods still depend on bacterial culture and suffer 
from low predictability associated with clinical irrel-
evance of the results and unacceptably low reliability 
resulting from poor reproducibility (5). 

Over the last two decades, many studies have 
utilised molecular biological methods to detect rpoB 
gene mutations related to RIF-resistant M. tuberculosis 
in various cohorts of patient samples (7, 16, 17). 
PCR-based denaturing gradient gel electrophoresis 
(DGGE) is a simple and rapid method that has been 
widely applied to detection of mutation(s) and poly-
morphisms of various genes (18-23). This system can 
also be used to analyse mutations in the rpoB gene 
within the RRDR of M. tuberculosis (6, 24). In this 
study, we detected rpoB mutations directly in the 
sputum of suspected tuberculosis patients using the 
PCR-DGGE technique and compared these results 
with those obtained by rpoB sequencing and conven-
tional DST.  

Materials and Methods 

Sputum specimens and isolates  

A total of 90 sputum specimens were collected 
from 90 suspected tuberculosis patients diagnosed by 
experienced pulmonologists with strongly positive 
reaction to tuberculin skin test and specific signs and 
syndromes consistent with tuberculosis in the First 

Affiliated Hospital of Zhejiang University from Oc-
tober 2004 to May 2005. All patients hadn‟t received 
any anti-TB treatment. The standard M. tuberculosis 
isolate H37Rv was purchased from the Shanghai 
Centre for Disease Control and Prevention, China. 
Informed consent was obtained from all patients to 
utilise their sputum specimens for this study. All 
specimens were tested by conventional M. tuberculosis 
culture. Before culture, the sputum specimens were 
digested and decontaminated by the 
N-acetyl-L-cysteine (NALC)-NaOH to prevent over-
growth of the culture by nonmycobacterial microor-
ganisms. Two volumes of NALC-NaOH solution (4% 
NaOH, 1.45% Na-citrate, 0.5% NALC) were mixed 
with the each sputum specimen on a sterilized test 
tube for digestion. The mixture was cultured at room 
temperature for 15 minutes with a gentle shaking. Ten 
volumes of 6.7 mM phosphate buffer solution (PBS, 
pH 7.4) were added and the mixture centrifuged at 
3,000 x g for 15 minutes at room temperature. The 
supernatant was discarded and the pellet washed 
twice with PBS. Then the pellet was resuspended with 
0.5 ml of PBS. A 100 µl aliquot of the suspension was 
directly processed for M. tuberculosis culture, and the 
remainder used for Acid-Fast Bacilli (AFB) staining 
and PCR. M. tuberculosis culture were used by the 
conventional Lowensein-Jensen (LJ) medium at 37°C 
in 5% CO 2 for 1 week, at 37°C in air for another 7 
weeks and thereafter were observed once a week for 
M. tuberculosis growth. The fresh growth was then 
subcultured onto LJ medium for DST. DST for re-
sistance to the first-line drugs RIF (40 µg/ml), INH 
(0.2 µg/ml), ethambutol (EMB, 2 µg/ ml) and strep-
tomycin (STR, 4 µg/ ml) using the agar proportion 
method as previously described (25). In brief, growth 
from the primary isolation medium was subcultured 
onto LJ medium. Bacterial inoculation was performed 
by picking fresh colonies from the LJ medium and 
adjusting cultures to a turbidity matching that of a 
McFarland 1 standard. A 100 µl aliquot of 100- and 
10,000-fold dilution samples were plated onto 
drug-containing and no-drug sectors of Middlebrook 
7H10 quadrant plates. All inoculations were incu-
bated at 37ºC in 5% CO2 for 8 weeks. Resistance to the 
drugs was defined as >1% growth in drug-containing 
medium compared to growth in the drug-free control 
medium (American National Committee for Clinical 
Laboratory Standards, NCCLS, 1995). Isolates re-
sistant to at least RIF and INH were classified as 
MDR-TB.  

Acid-fast bacilli staining and DNA extraction 

All 90 sputum specimens were smeared for AFB 
staining. A 100 µl aliquot of the decontaminated spu-
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tum specimen was spread onto a slide over an area of 
1-2 cm, air-dried, and heat fixed. Smeared specimens 
were inactivated using 5% phenol in ethanol for 5 min 
before they were moved from the biosafety cabinet to 
the staining sink. Smear staining was performed as 
previously described (26). Extraction of M. tuberculosis 
DNA from all 90 decontaminated sputum specimens 
was performed using a QIAamp DNA mini kit (Qi-
agen, CA, USA) as previously described (27). Briefly, 
A 100 µl aliquot of the decontaminated sputum 
specimen was mixed with an equal volume of deion-
ised water and centrifuged for 10 min at 14,000 x g. 
The pellet was resuspended in ATL buffer (Qiagen, 
CA, USA) containing 1 mg/ml proteinase K and in-
cubated at 56 °C for 60 min. Subsequently, two cycles 
of freeze-thawing were performed to lyse the myco-
bacterial cells. DNA was then purified and collected 
for PCR detection. The standard M. tuberculosis H37Rv 
isolates and normal human-derived sputum were 
cultured as positive and negative controls and DNA 
was extracted from these samples using the same 
protocol. DNA extraction and PCR amplification were 
carried out in a specific PCR diagnosis room to pre-
vent cross-contamination of nucleic acids. 

PCR amplification 

The 126-bp partial sequence of the rpoB gene 
(GenBank accession no. L27989), including the RRDR 
(an 81-bp region within the rpoB gene that encodes 
residues 507 to 533), was amplified by PCR from all 
sputum specimens with forward 
(5‟-CGCCGCGATCAAGGAGTTCT-3‟) and reverse 
(5‟- TCACGTGACAGACCGCCGGG-3‟) primers 
purchased from Shanghai Sangon Company (Sangon, 
Shanghai, China). These primers specifically ampli-
fied M. tuberculosis sequences and did not cross-react 
with non-tuberculosis mycobacterial sequences. PCR 
reactions were performed according to the manufac-
turer‟s technical instructions (Invitrogen, NY, USA) 
and our previously described methods (7). Briefly, 
PCR reactions were carried out in 50 μl total volume, 
containing 1×PCR reaction buffer, 200 µM dNTPs, 1U 
of Taq polymerase, 20 pmoles of each primer, and 2 µl 
of the DNA sample. The reaction mixtures were then 
subjected to one cycle of 94°C for 2 min, followed by 
35 cycles of 94°C for 45 s, 55°C for 45 s, 72°C for 30 s, 
and a final cycle of 72°C for 7 min to complete elon-
gation of the intermediate PCR products. PCR prod-
ucts (5 µl) were analysed by electrophoresis through 
1.5% agarose gels and ethidium bromide staining. 
Each sample was tested in triplicate and the standard 
M. tuberculosis H37Rv isolate was used as a positive 
control. The presence of a 126-bp band on the agarose 
gel indicated successful amplification. 

PCR-DGGE  

PCR-based DGGE analysis was carried out to 
rapidly detect rpoB gene mutations from the 90 
specimens, followed by subsequent confirmation by 
conventional DST and DNA sequencing. The method 
employed was modified from Scarpellini, P. et al. (24) 
and McCammon, M. T. et al. (6). Briefly, 15 µl of the 
PCR products were loaded onto a 15% acrylamide gel 
in 1× TAE buffer. The denaturing gradient consisted 
of 50% to 80% denaturant (100% denaturant is 40% 
formamide and 7 M urea in 1× TAE buffer) at a con-
stant temperature of 60°C at 120 V for 4 hours. Gels 
were stained with SYBR GREEN I (Dingguo Biotech-
nology, Beijing, China) for 15 min and photographed 
on a UV transilluminator. The standard M. tuberculosis 
H37Rv isolate was used as a wild-type pattern con-
trol. The DGGE gel images were analysed using the 
BioNumerics software version 5.1. Position tolerance 
for band matching was set at 1% to help correct for 
slight migratory variation. Migratory distance for 
each band was determined by the BioNumerics soft-
ware. Similarity matrix and dendrogram of the DGGE 
profiles were generated on the base of Pearson corre-
lation coefficient. 

DNA sequencing 

PCR products were purified using a QIAquick 
gel extraction kit (Qiagen, CA, USA) followed by 
electrophoresis on 1.5% agarose gels. Five hundred 
nanograms of the purified PCR products were se-
quenced by the Shanghai Sangon Company (Sangon, 
Shanghai, China) on an ABI 373 automated sequencer 
(Applied Biosystems, CA, USA). The sequence data 
were analysed using the Sequencer program, version 
3.0. DNAssist version 1.02 was used to compare the 
sequences with the H37Rv genome database (Gen-
Bank accession no. L27989). 

Statistical analysis 

Data were evaluated using the chi-squared test 
for five different detection methods (Table 2) using 
the SPSS software, version 16.0. The level of signifi-
cance for all statistical analyses was P < 0.05. 

Results 

AFB staining and drug susceptibility testing 

Results of the AFB staining and DST for the M. 
tuberculosis samples tested are shown in Table 1. 
Overall, 52.2% (47/90) of the specimens from poten-
tial tuberculosis patients were classified as positive for 
M. tuberculosis by AFB staining. And the conventional 
term culture showed 72.2% (65/90) of sputum sam-
ples were positive for M. tuberculosis. The Subsequent 
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results of DST showed that 11 strains were single 
RIF-resistant strains (8 from AFB-positive and 3 from 
AFB-negative specimens) and 35 were MDR strains 
(29 from AFB-positive and 6 from AFB-negative 
specimens). Moreover, we identified 9 strains (6 from 
AFB-positive and 3 from AFB-negative specimens) 

that were susceptible to RIF but resistant to any of the 
other three anti-TB drugs (INH, EMB and STR) and 10 
strains that were susceptible to all four anti-TB drugs 
(4 from AFB-positive and 6 from AFB-negative 
specimens).  

 

Table 1. Detection of rpoB mutations from sputum samples by five different techniques.  

Analysis Method AFB-Positive  
n1=47  

AFB-Negative 
n2=43  

Total Percentage 
(%) 

AFB 47 43 47/90 (52.2) 

CMC 47 18 65/90 (72.2) 

DST R-RIF 8 3 11 

MDR 29 6 35 

R-I/E/S 6 3 9 

S-R/I/E/S 4 6 10 

rpoB-PCR 47 37  84/90 (93.3) * 

rpoB-DGGE 37 26 63/84 (75.0) 

rpoB-DNA Sequencing 38 27 65/84 (77.4)  

AFB: AFB smear, CMC: conventional mycobacterial culture, R-RIF: mono-resistance to rifampin, MDR: multidrug-resistant, R-I/E/S: re-
sistance to isoniazid, ethambutol or streptomycin, S-R/I/E/S: susceptible to rifampin, isoniazid, ethambutol and streptomycin.  

*: p < 0.05 compared to the AFB smear (52.2%) and CMC (72.2%). 

 
 

Table 2. Genetic alterations of the rpoB gene in 90 sputum specimens collected from suspected tuberculosis patients. 

Mutation 
codon 

DAN sequencing DST Frequency (%) of 
mutation 
n=84* 

PCR-DGGE 
positive (No.) 
n=84* Positive Negative 

Mutation Amino acid 
change 

R-RIF MDR R-I/E/S S-R/I/E/S 

533 CTG→TTG Leu→Leu     2 2(2.4) 2 

531 TCG→TTG Ser→Leu 2 2   1Δ 9(10.7) 8 

TCG→TGG Ser→Trp  2   2   

526 CAC→GAC His→Asp 5 22   5 43(51.2) 42 

CAC→TAC His→Tyr 2 7   1Δ   

CAC→CTT His→Leu 1       

521 CTG→TTG Leu→Leu   1   1 (1.2) 1 

519 AAC→GAC Asn→Asp   1   1 (1.2) 1 

518 AAC→GAC Asn→Asp   1   1 (1.2) 1 

516 GAC→GGA Asp→Gly   1  2 5 (6.0) 5 

GAC→TAC Asp→Tyr     2   

513 CAA→GAA Gln→Glu 1 2    3(3.6) 3 

Total mutation (%) 50  15 65 (77.4) 63(75.0) 

No Mutation   5 10 4   

R-RIF: mono-resistance to rifampin; MDR: multidrug-resistant; R-I/E/S: resistance to isoniazid, ethambutol or streptomycin, S-R/I/E/S: 
susceptible to rifampin, isoniazid, ethambutol and streptomycin 

*: Total of 84 rpoB-PCR positive specimens. 

Δ: The specimens harboured rpoB mutations but present wild-type-like DGGE patterns. 
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PCR and DNA sequencing 

The PCR results (Figure 1) showed that 93.3% 
(84/90) of sputum specimens were positive for the 
rpoB gene; these samples included 47 AFB-positive 
and 37 AFB-negative specimens. The results of sub-
sequent DNA sequencing (Tables 1 and 2) of 84 
rpoB-positive PCR products, including samples from 
38 AFB-positive and 27 AFB-negative specimens, 
showed that 65 specimens displayed mutations in the 
rpoB gene. Our analysis detected a total of 12 mutated 
positions distributed among 8 codons within the 
RRDR of the rpoB gene. In total, 61 specimens dis-
played substitutions and 4 specimens displayed dou-
ble substitutions (3 at codon 516/GAC → GGA, 1 at 
526/CAC → CTT). The most frequent position for a 
mutation was codon 526 (51.2%, 43/84), followed by 
codon 531 (10.7%, 9/84) and codon 516 (6.0%, 5/84). 
Eight resistance-associated mutations in the rpoB gene 
occurred at codons 513 (3 specimens), 518 (1 speci-
men), 519 (1 specimen), 521 (1 specimen), and 533 (2 
specimens). Mutations at codon 526 of CAC → GAC 

(His → Asp) occurred in 32 specimens and the CAC 
→ TAC (His → Tyr) substitution occurred in 10 
specimens, while the CAC → CTT (His → Leu) muta-
tion occurred in only one specimen. Mutations at co-
don 531 of TCG → TTG (Ser → Leu) occurred in 5 
specimens, and a change of TCG → TGG (Ser → Trp) 
occurred in 4 specimens. The GAC → GGA (Asp → 
Gly) mutation at codon 516 occurred in 3 specimens 
and the GAC → TAC (Asp → Tyr) substitution was 
observed in 2 specimens. Comparison of these data 
with the results of conventional DST (showed in Table 
2) indicated that 11 of the RIF-resistant specimens and 
35 of the MDR-TB specimens harboured mutations at 
codons 513, 526 or 531. Four specimens susceptible to 
RIF but resistant to any one of the other three anti-TB 
drugs (isoniazid, ethambutol and streptomycin) har-
boured mutations at codons 516, 518, 519 and 521. 
Fifteen specimens that displayed mutations at codons 
516 (4 specimens), 526 (6 specimens), 531 (3 speci-
mens), and 533 (2 specimens) were classified as nega-
tive by DST. 

 

 

Figure 1. The results of PCR detection. M: DNA marker, 1-90: numbered sputum specimens, PC: positive control (standard H37Rv 

strain), NC: negative control (normal human sputum). From a total of 90 sputum specimens tested, 84 were positive and 6 (No. 4, 7, 23, 

25, 37 and 67) were negative for detection of the rpoB gene. The brightness of the PCR bands was determined by the concentration of M. 

tuberculosis. 
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Figure 2. The results of the DGGE analysis. A is the DGGE profile 

of rpoB RRDR mutations for 12 different mutations. The WT lane 

is the control wild-type strain H37Rv. The following lanes are 

various sputum specimens. B is the result of DGGE analysis using 

BioNumerics software version 5.1. †: the number of specimens 

(including 2 lanes of wild-type strain H37Rv; each specimen lane is 

the same as in image A), ‡: rpoB mutation codon. Lane 36, with a 

mutation at codon 519, represents 1 specimen; lanes 7 and 11, 

with mutations at codon 516 (a, GAC→GGA, b, GAC→TAC), 

represent 2 specimens; lanes 3 and 23, with mutations at codons 

513 and 518, represent 3 and 1 specimens, respectively; lane 56, 

with a mutation at codon 526 (b, CAC→TAC), represents 11 
specimens; lane 78, with a mutation at codon 531 (b, 

TCG→TGG), represents 2 specimens; lane 62, with a mutation at 

codon 526 (a, CAC→GAC), represents 33 specimens; lane 88, 

with a mutation at codon 533, represents 1 specimen; lane 50, 

with a mutation at codon 526 (c, CAC→CTT), represents 1 
specimen; lane WT, wild-type strain H37Rv, no mutation; lane 84, 

with a mutation at codon 531 (a, TCG→TTG), represents 5 

specimens; lane 49, with a mutation at codon 521, represents 1 

specimen. 

 

PCR-DGGE analysis 

A total of 84 amplified rpoB-PCR products, gen-
erated from 90 sputum specimens, 126 bp in length 
were analysed by DGGE. The DGGE profile results 
(Table 2) showed that 25% (21/84) of the specimens 
displayed the same (wild-type) patterns and 75% 
(63/84) were abnormal compared to the control 
wild-type pattern obtained from the fully susceptible 
standard M. tuberculosis H37Rv isolate. A total of 50 
specimens with abnormal DGGE patterns were also 
DST-positive. These included 11 specimens resistant 
to RIF, 35 specimens that were MDR and 4 specimens 
susceptible to RIF but resistant to any one of the other 
three first-line anti-TB drugs. When we combined 
these results with the DNA sequencing data, we de-
termined that 42 of the 63 specimens with abnormal 
patterns harboured mutations at codon 526, 8 dis-
played mutations at codon 531, 5 samples contained 
mutations at codon 516, 3 displayed mutations at co-
don 513 and 2 specimens contained mutations at co-
don 533; the remaining 3 specimens contained muta-
tions at codons 521, 519 and 518. The results of a Bi-
oNumerics analysis (Figure 2B) showed that 12 dif-
ferent DGGE patterns (typical specimens shown in 
Figure 2A) were observed in the 63 abnormal pat-
terns. Each mutation generated a specific DGGE pat-
tern that was dependent on the nucleotide alterations 
and/or the position of the mutations within the RRDR 
of the rpoB gene. The BioNumerics analysis also 
showed that the Pearson Correlation between 2 lanes 
of wild-type strain H37Rv (WT) reached 96.4%. The 
Pearson Correlation was 93.6% between the WT lane 
and lane 50 (mutation at codon 526); 91.3% between 
the WT lane and lane 88 (mutation at codon 533); and 
less than 85% between the WT lane and the remaining 
lanes. The DGGE method identified 96.9% of the same 
rpoB mutations as the DNA sequencing method (63 
specimens with abnormal DGGE patterns and 65 
specimens containing mutations). 

Discussion 

Resistance to RIF is almost exclusively associated 
with mutation of the rpoB gene, which encodes the 
β-subunit of RNA polymerase (28-30). More than 95% 
of rpoB mutations in RIF-resistant clinical isolates 
have been found within the RRDR. Over 70 distinct 
rpoB mutations and four frequent mutations (codons 
526, 513, 531 and 516) have been reported for 
RIF-resistant M. tuberculosis isolates worldwide (31, 
32). However, it can take 6 weeks or longer to detect 
RIF resistance in M. tuberculosis by conventional cul-
ture-based DST. Recently, more rapid and accurate 
biomolecular techniques have received increased at-
tention as alternatives to DST (33, 34) and have been 
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reported to detect rpoB gene mutations linked to 
RIF-resistant M. tuberculosis (14, 15). Kim et al. (16) 
used a method of polymerase chain reaction re-
striction analysis to analyse the rpoB gene for direct 
characterisation of non-tuberculous mycobacteria in 
AFB smear-positive respiratory specimens. The re-
sults of O‟Riordan et al. (35) revealed that rpoB muta-
tion molecular resistance testing has the potential to 
rapidly identify MDR-TB patients and would enable 
initiation of appropriate therapy significantly earlier 
than would be possible using conventional testing 
methods. Our previous study revealed that 
PCR-based single strand conformation polymorphism 
analysis (PCR-SSCP) is a rapid and useful molecular 
resistance screening approach for detection of 
MDR-TB (7). DGGE can distinguish mutant ampli-
cons from their wild-type equivalents based on the 
altered melting temperatures of the mutants as the 
DNA fragments migrate through a gradient of dena-
turants (6, 24, 36, 37). McCammon et al. (6) used 
DGGE combined with DNA sequencing to detect rpoB 
and pncA mutations in RIF- and pyra-
zinamide-resistant M. tuberculosis isolates after con-
ventional culture and DST. Their results demonstrat-
ed the power and usefulness of DGGE in detecting 
mutations associated with drug resistance in M. tu-
berculosis; DGGE is even more sensitive than DNA 
sequencing in detecting mutations in complex DNA 
samples. In addition, DGGE can detect point muta-
tions, small insertions, and deletions. Although Scar-
pellini et al. (24) and Hori et al. (22) ever used DGGE to 
detect rpoB mutations in DST positive specimens, as 
far as we are aware, investigators have not yet re-
ported on using DGGE to detect rpoB mutations in the 
sputum of suspected tuberculosis patients. 

In this study, PCR-based DGGE was performed 
to probe for rpoB mutations associated with RIF re-
sistance in 90 sputum specimens collected from sus-
pected tuberculosis patients in Eastern China. The 
results of our study indicate that the positive rate of 
detection of M. tuberculosis is only 52.2% for detection 
by AFB staining and 72.2% by conventional mycobac-
terial culture. In contrast, the positive rate of M. tu-
berculosis detection reached 93.3% for PCR detection 
of the rpoB gene in the same specimens, which in-
cluded 47 AFB-positive and 37 AFB-negative sputum 
samples. The positive rate of M. tuberculosis detection 
by PCR was significantly higher than the rates ob-
tained with AFB staining or DST (p < 0.05). The 
PCR-based DGGE results demonstrated that 75% 
(63/84) of specimens presented a total of 12 DGGE 
different patterns that differed from the wild-type 
pattern. The rate of agreement in detection of rpoB 
mutations between DNA sequencing and DGGE 

reached 96.9%. Comprehensive analysis also revealed 
that 50 of the specimens with abnormal DGGE pat-
terns were validated as DST-positive, including 46 
RIF-resistant samples (or MDR) and 4 specimens 
susceptible to RIF but resistant to any one of the other 
three first-line anti-TB drugs. The other 13 specimens 
have not been tested by DST but have been analysed 
by PCR-based DGGE (15 positive by PCR-based DNA 
sequencing). Of these 13 specimens, 7 harboured 
mutations at codon 526, 4 contained mutations at co-
don 516 and 2 displayed alterations at codon 533. 
Many reports have demonstrated that M. tuberculosis 
isolates containing rpoB mutations at codons 526 and 
516 are always resistant to RIF (31, 32, 38). According 
to this assumption, at least 11 of the 13 specimens 
with abnormal DGGE patterns were possibly 
RIF-resistant. This assumption may also help to ex-
plain why 3 specimens that harboured rpoB mutations 
at codons 521, 519, and 518 presented abnormal 
DGGE patterns but were susceptible to RIF. However, 
the mechanism of this phenomenon is unclear. Inter-
estingly, we observed that one strain with a mutation 
at codon 516 was susceptible to RIF. Together, our 
results indicate that PCR-based DGGE is more sensi-
tive than AFB and faster than DST (a couple of days 
vs. 6-8 weeks) in detecting M. tuberculosis isolates. 
Therefore, the technique of DGGE analysis can rea-
sonably be considered an alternative to other indirect 
techniques of rpoB mutation in RRDR. Its compara-
tive reproducibility, together with the fact that it is 
fast and easy to complete, means that it can be used in 
clinical detection. 

In conclusion, as a rapid and valid bio-technique, 
DGGE has a number of practical advantages com-
pared to other methods. It is less laborious than the 
manual single-strand conformation polymorphism 
(SSCP) method used in our previous study (7) because 
it does not require the casting of ultrathin gels or the 
use of radioactive isotopes. Furthermore, compared 
with the conventional culture system, DGGE is per-
formed with a relatively inexpensive machine and 
lower cost of the molecular commercial kits (BACTEC 
960 system, US$ 38,000 plus reagents and drugs cost 
per test US$ 12; DGGE system, US$ 3,500 plus rea-
gents cost per test US$ 10) used for the rpoB mutation 
analysis that allows for controlled experimental con-
ditions and optimum reproducibility. Although 
DGGE is not a novel molecular technique, our results 
and other studies have demonstrated that it is a rapid 
and valid bio-technique for early and fast detection of 
rpoB gene mutations associated with rifampin re-
sistance in the sputum of suspected tuberculosis pa-
tients. These findings will be aid in generating a novel 
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and rapid drug resistance screening approach for 
treatment of MDR-TB. 
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